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A five-channel, filtered-x-ray-detector (XRD) array has been used to measure time-dependent, soft-

x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories,

Albuquerque, New Mexico, USA). The preceding, companion paper [D. L. Fehl et al., Phys. Rev. ST

Accel. Beams 13, 120402 (2010)] describes an algorithm for spectral reconstructions (unfolds) and

spectrally integrated flux estimates from data obtained by this instrument. The unfolded spectrum

SunfoldðE; tÞ is based on (N ¼ 5) first-order B-splines (histograms) in contiguous unfold bins

j ¼ 1; . . . ; N; the recovered x-ray flux F unfoldðtÞ is estimated as
R
SunfoldðE; tÞdE, where E is x-ray energy

and t is time. This paper adds two major improvements to the preceding unfold analysis: (a) Error

analysis.—Both data noise and response-function uncertainties are propagated into SunfoldðE; tÞ and

F unfoldðtÞ. Noise factors � are derived from simulations to quantify algorithm-induced changes in the

noise-to-signal ratio (NSR) for Sunfold in each unfold bin j and for F unfold (� � NSRoutput=NSRinput): for

Sunfold, 1 & �j & 30, an outcome that is strongly spectrally dependent; for F unfold, 0:6 & �F & 1, a result

that is less spectrally sensitive and corroborated independently. For nominal z-pinch experiments, the

combined uncertainty (noise and calibrations) in F unfoldðtÞ at peak is estimated to be �15%.

(b) Generalization of the unfold method.—Spectral sensitivities (called here passband functions) are

constructed for Sunfold and F unfold. Predicting how the unfold algorithm reconstructs arbitrary spectra is

thereby reduced to quadratures. These tools allow one to understand and quantitatively predict algorithmic

distortions (including negative artifacts), to identify potentially troublesome spectra, and to design more

useful response functions.
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I. INTRODUCTION: A SUMMARY OF
PRINCIPAL EQUATIONS FOR THE
UNFOLD ALGORITHM IN PART 1

Part 1 of this article formulated and tested a spectral
unfold algorithm, applied to experimental dataDiðtÞ from a
filtered-x-ray-detector (XRD) diagnostic of N channels
(typically, N ¼ 5). In this method, the channel-wise re-
sponse functions RiðEÞ are assumed to be calibrated, and
the incident x-ray spectrum SðE; tÞ under diagnosis is
presumed to be at least piecewise continuous—though
not necessarily Planckian, SbbðE; TÞ. A priori information
about the source is used to formulate a reconstruction
SunfoldðE; tÞ of SðE; tÞ, where Sunfold is represented by an
N-bin histogram over an unfold interval, ½�E� ¼
½ELO; EHI� (Pt. 1: Sec. III and Pt. 1: Table II). The diag-
nostic goal is to estimate the incident x-ray fluxF ½�E�ðtÞ in
½�E� from the spectral integral F unfoldðtÞ of SunfoldðE; tÞ.
[Equations (1)–(6) below summarize this algorithm.] In
part 1 the unfold method was tested in noise-free simula-
tions based on prescribed incident spectra SðE; tÞ: binwise
averages, hSij, were compared to the corresponding histo-

gram values SjðtÞ (also called unfold coefficients), as were

the flux values, F ½�E�ðtÞ and F unfoldðtÞ. Further tests com-

pared the results of this algorithm with other methods for
simulated and real data.
In this second part of the article, we extend the charac-

terization of the unfold algorithm. Section II examines the
effect of perturbations "i [Eq. (1)] on the reconstruction
Sunfold. The propagation of both systematic errors and
random uncertainties are considered for input data noise,
calibrational uncertainties in the response functions, and
real data. (Here, the terms systematic error, deterministic
error, and bias are considered equivalent.) Section III gen-
eralizes the histogram unfold algorithm so that spectral
reconstruction for arbitrary incident spectral functions is
reduced to quadratures, an approach that makes several
otherwise difficult issues accessible. For example, one can
now address the general quantitative validity of the unfold
algorithm as well as its specific behavior in the simulations
described in part 1. Neither analysis (Secs. II and III) has
previously been reported for the Z diagnostic nor, we
believe, for similarly filtered-detector arrays. A summary
and concluding remarks appear in Sec. IV. Several deriva-
tions and comments to the main text are given in five
appendices and endnotes. References to part 1 of this
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article are prefixed with ‘‘Pt. 1:’’ (e.g., ‘‘cf. Pt. 1: Fig. 2’’);
references to this part contain no prefix (e.g., ‘‘cf. Fig. 1’’).

For convenience here, the unfold algorithm is summa-
rized as follows:

Z EMAX

0
RiðEÞSunfoldðE; tÞdE

�
Z EMAX

0
RiðEÞSðE; tÞdEþ "iðtÞ

� diðtÞ þ "iðtÞ � DiðtÞ ði ¼ 1; . . . ; NÞ (1)

is the data model: SðE; tÞ is the incident spectrum;
fRiðEÞgNi¼1 is the calibrated set of response functions;
diðtÞ is the noise-free x-ray channel data linked to both
Ri and S; "iðtÞ denotes uncertainties and noise; and DiðtÞ

thus represents experimental data. EMAX is an x-ray energy
beyond which Ri and S are disregarded (Pt. 1: Sec. II A).
The unfolded reconstruction SunfoldðE; tÞ, given DiðtÞ, is

then

SunfoldðE; tÞ ¼
XN
j¼1

SjðtÞBjðEÞ

¼ XN
j¼1

�XN
i¼1

ðR�1ÞjiDiðtÞ
�
BjðEÞ; (2)

where the Bj’s are first-order B-splines (histograms) that

divide the unfold interval ½�E� � ½0; EMAX� into N unfold
bins ½�Ej�, and where

ðRÞij ¼
Z EMAX

0
RiðEÞBjðEÞdE ¼

Z Ejþ1

Ej

RiðEÞdE (3)

[Pt. 1: Eqs. (12) and (13), Table II]. Existence and unique-
ness in Eq. (2) depend on the condition of R, as previously
verified [Pt. 1: Eqs. (24) and (25)]. The quantities, SjðtÞ,
DiðtÞ, diðtÞ, and "iðtÞ, above can formally be represented
by N-dimensional vectors: SðtÞ, DðtÞ, dðtÞ, and "ðtÞ.
Equation (2) is then equivalent to

SjðtÞ ¼ ½R�1DðtÞ�j (4)

[Pt. 1: Eq. (21)]. Finally, given SunfoldðE; tÞ, the unfolded
x-ray flux is

F unfold � �E � SðtÞ � XN
j¼1

XN
i¼1

½ðR�1ÞjiDiðtÞ��Ej; (5)

which is, in general, time dependent [Pt. 1: Eq. (23)].
In noise-free simulations, the spectrum S is specified.

The unfolded values Sj are then compared with the average

values, hSij ¼ ð�EjÞ�1
R
½�Ej� SðE; tÞdE, of S in each un-

fold bin ½�Ej�, and F unfold is compared to F ½�E�:

F ½�E�ðtÞ �
Z EHI

ELO

SðE; tÞdE ¼ XN
j¼1

ð�EjÞhSijðtÞ: (6)

Equations (1)–(6) have been formally written for physi-
cally admissible spectra SðEÞ emitted by a z pinch (i.e.,
conforming to the assumptions in Pt. 1: Table I), and are
thusly used in Sec. II below. But, the same equations apply
equally for more general ‘‘spectral functions,’’ denoted by
fðEÞ, and are used in Sec. III. Table I summarizes the
mathematical definitions and notation used in both papers.

II. UNCERTAINTYANALYSIS

Part 1 (Sec. IV) assessed the histogram algorithm under
the best unfold conditions. The channel data and response
functions were noise free, and identical responses were
used for simulation and spectral reconstruction. This sec-
tion relaxes these conditions by allowing uncertainty and
inconsistency in both theDi’s and RðEÞi’s. Such effects are

ν
ν

FIG. 1. Noise amplification in the unfolding process for uni-
form relative data errors. Part (a) gives the binwise noise factor
(NF) �j½T�—i.e., NSRðSjÞ=NSRðDiÞ—for Planckian spectra,

T ¼ 150–250 eV. (The colored, broken lines indicate the enve-
lope of these calculations.) Part (b) shows the corresponding
NF’s �F ½T�—i.e., NSRðF unfoldÞ=NSRðDiÞ and NSRðF LSÞ=
NSRðDiÞ—for the unfolded flux estimate F unfold (red curve)
and for a different flux estimate F LS [Ref. [8]] (Planckian
spectra, T ¼ 25–250 eV). The sequence of numbers m�ð1=2Þ
(m ¼ 1; . . . ; 5) on the left-hand scale represent hypothetical
degrees of freedom for noise averaging.
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TABLE I. Definitions and mathematical notations. All mathematical quantities considered in this article are real valued.

A; t; x; . . . ; "; �;� (except �) Scalars

A; a;B;b; . . . Vectors, defined by indexed components Ai or as N-tuples ðA1; . . . ; ANÞ
A;B; . . . Matrices, defined by doubly indexed elements Aij or a two-dimensional array [e.g., Pt. 1,

Eq. (24)].

AT Transpose of A: i.e., ðATÞij ¼ ðAÞji
�z;�Z;�Z;�fðxÞ; . . . Differences in z;Z;Z; fðxÞ; . . . , relative to references zref ;Zref ;Zref ; frefðxÞ . . . . [�fðxÞ �

fðxÞ � frefðxÞ]
{*}, fa;b;Cg, fzigNi¼1 A set of objects (scalars, functions, vectors, matrices).

A;B; . . . Names of sets

L2 Hilbert Space of square-integrable functions over a specified domain.

R The set of real numbers.

�A, �A, and �A Scalar multiplication.

a �B ¼ PN
i¼1 aiBi Inner product of vectors relative to an orthonormal basis.

a �B ¼ 0, ða;B � 0Þ Orthogonal vectors

AB, Ab Matrix-matrix and matrix-vector multiplicationPN
i¼1 �iai A linear combination of objects (scalars, vectors, functions, etc.)PN
i¼1 �iai ¼ 0

only if all �i ¼ 0
The objects a1; . . . ; aN are linearly independent, except for functions evaluated at a finite

number of points (i.e. a set of measure zero).

M : A ) B A mapping M between sets A and B associates each element in A with exactly one element of

B.
If MðXþ �YÞ ¼ ½MðXÞ
þ�MðYÞ� for all X, Y in A and

arbitrary scalar �.

A linear mapping

fðx; y; . . .Þ A function maps a multidimensional set of variables x; y; . . . into R

Ab A linear transformation between two vector sets by means of a matrix A associates each vector

b in the first set with Ab in the second set

P : f ) R or P ½f� A functional, i.e., a mapping P from a set of functions ffðxÞg into R

O: A ) B or O½A� An operator over A, i.e., a mapping O of a set of functions A ¼ fAðxÞg into another set of

functions B ¼ fBðxÞg
ðf1jf2Þ The inner product,

REMAX

0 f1ðEÞf2ðEÞdE, of two real-valued, spectral functions f1 and f2.
Riemann integration is implied. (Functions requiring Lebesgue rules are not used in this

article.)

ðf1jf2Þ ¼ 0 Orthogonal functions if f1, f2 � 0 for all x.
k � k Norms: kak ¼ jaj (the absolute value), kbk ¼ ½PN

i¼1 b
2
i �1=2 (the Euclidian norm), and kfk ¼ffiffiffiffiffiffiffiffiffiffiffiðfjfÞp

.

h�i An average over some set

hfik The average of fðEÞ over ½Ek; Ekþ1�
hh�ii The successive (double) average h½h�i�i over two sets.

fðxÞ The shape of a function fðxÞ over ½a; b�: fðxÞ � fðxÞ=Rb
a fðx0Þdx0 if fðxÞ is non-negative, not

identically zero, and integrable in ½a; b�
Random variable a with distri-

bution Nð0; �2Þ
A random variable assumed drawn from a normal distribution with specified distribution zero

mean and variance �2ðaÞ ¼ hða� haiÞ2i ¼ ha2i � hai2. The square root, �ðaÞ, of the variance
is termed the standard deviation of the distribution.

covða; bÞ The covariance, hða� haiÞðb� hbiÞi ¼ habi � haihbi between two random variables a, b.
Such variables are correlated if covða; bÞ � 0. If a, b are statistically independent, then

covða; bÞ ¼ 0 (Ref. [1]) covða; aÞ ¼ �2ðaÞ.
Random vector B A vector with random components ðB1; . . . ; BNÞ which may, in general, be correlated.

CðBÞ The covariance matrix of a random vector B, an N � N array of elements, ½CðBÞ�ij ¼
covðBi; BjÞ ¼ covðBj; BiÞ ¼ ½CðBÞ�ji

Spectra vs spectral functions:

SðEÞ, SðE; tÞ Spectra, i.e., physically admissible functions of x-ray energy E that satisfy the assumptions of

Pt. 1: Table I and are associated with experimental data. SðE; tÞ indicates a time-indexed

sequence of such spectra.

fðEÞ, fðE; tÞ Spectral functions, i.e., general members of L2½0; EMAX�, including negative-valued functions.

SbbðE; TÞ Planckian functions, SbbðE; TÞ [Pt. 1, Eq. (7)].
SðEÞ, SbbðE; TÞ, fðEÞ are all elements of L2½0; EMAX�.
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assumed here to be independent and additive perturbations
[2,3] to the x-ray detection process, and "i represents their
sum in the data model [Eq. (1)]. Included in "i are bias and
random perturbations, which may be channel dependent
and differ in time scale. Here, a general expression for the
effect of these perturbations on the unfolded spectrum is
first derived and then applied to several error models.
Uncertainties are then estimated for real experimental
data, and the section concludes with a comparison of
simultaneously fielded, independent, filtered-XRD arrays
at the Z accelerator.

A. A General formalism for error propagation
in the Z unfold problem

The recorded data Di in Eq. (1) are assumed due to an

x-ray interaction term, di ¼
REMAX

0 RiðEÞSðEÞdE, plus per-
turbations "i, which can enter in two ways. Some pertur-
bations �Di superpose onto di in the data-gathering
process: e.g., signal noise, digitization errors, uncertainties
in geometric factors, etc. Other perturbations add an
energy-dependent factor �RiðEÞ to the experimentally
measured response functions RiðEÞ: e.g., the �Ri may
result from drift and uncertainty in the fit parameters, Ail

and �im [Pt. 1: Appendix B, Eqs. (B1) and (B2)]. Such
perturbations shift the matrix, R ! Rþ�R, in Eq. (3):
i.e., Rij ! Rij þ �Rij, where

ð�RÞij ¼ �Rij ¼
Z EMAX

0
½�RiðEÞ�BjðEÞdE: (7)

By whichever route, perturbations "i to Eq. (1) induce
deviations �SunfoldðEÞ in the nominally unfolded spectrum
SunfoldðEÞ. The binwise effect �Sj on the nominal unfold

coefficient Sj is found (Appendix A) from Eq. (4) in

vector-matrix notation:

�S ¼ R�1½�Dþ ð�RÞS�; (8)

where ð�RÞS is analogous to �D. Equation (8) is thus
identical in form to the unfold algorithm [Eq. (4)].
Equation (2) then yields �SunfoldðEÞ, with �Sj substituted

for Sj. (General mathematical bounds for this process were

noted in Pt. 1: Sec. III G.) This approach obviates the need

for calculating �ðR�1Þ when error propagation is at-
tempted directly with Eq. (2).
An estimate of the perturbation �F unfold in F unfold due

to data and calibrational perturbations then follows
(Appendix A) from Eq. (5):

�F unfold ¼ �E � ½ðR�1Þfð�DÞ þ ð�RÞSg�; (9)

where the components of �E are the fixed unfold bin
widths �Ej (Pt. 1: Table II).

Since data and calibrational perturbations have been
assumed independent of one another, their effects may be
treated separately and later combined. The rest of this
section is devoted to examples of deterministic and random
models for �D and �R. In each case it is assumed that
nominal values of Sj, S, SunfoldðEÞ, and F unfold have al-

ready been obtained from Eqs. (2)–(5).

B. Deterministic effects (bias)

If �D and �R represent deterministic effects, then �S
and �F unfold are the corresponding induced biases in
nominal values of S and F unfold. Two examples show
how the analysis of such perturbations establishes toleran-
ces for the Z diagnostic.

1. Example: Data shifts �Di alone

Consider the recording of time-dependent, channel data
by a set of waveform digitizers. Zero voltage for any
diagnostic signal may or may not coincide with the
‘‘zero’’ digitization level (baseline) of the recording sys-
tem. What relative errors in the nominal S and F unfold can
one expect from uncorrected baseline biases, �D?
We assume the following simplified model of the record-

ing process: (a) The x-ray data diðtÞ are assumed noise free
and non-negative (relative to the actual zero voltage),
and for convenience all the diðtÞ’s peak at t ¼ tpeak.

(b) The recorded data, DiðtÞ ¼ diðtÞ þ�Di, have a
time-independent offset �Di ¼ �diðtpeakÞ, where j�j 	
1 and is independent of channel. (c) F unfoldðtpeakÞ �
max½F unfoldðtÞ�> 0.
The induced effects of �Di in this model follow from

Eqs. (8) and (9). In particular, the unfold coefficient bias,

Associated functions:

SðEÞ, fðEÞ A spectrum or spectral function that generates channel data

hSik, hfik The average of SðEÞ, fðEÞ in bin ½Ek; Ekþ1�
�SBðEÞ, �fBðEÞ The part of SðEÞ, fðEÞ not approximated by basis functions: e.g., fðEÞ �P

N
j¼1hfijBjðEÞ

SunfoldðEÞ, funfoldðEÞ The reconstructed spectrum obtained via Pt. 1, Eq. (21):
P

N
j¼1 SjBjðEÞ,

P
N
j¼1 fjBjðEÞ

Sj, S, fj,f The unfold coefficients of SunfoldðEÞ, funfoldðEÞ, also denoted as the N components of S, f.

X-ray flux definitions:

F The ‘‘total’’ flux integral,
R
SðEÞdE or

R
fðEÞdE, over ½0; EMAX�.

F ½�E� The flux integral over ½�E� ¼ ½ELO; EHI� � ½0; EMAX�.
F unfold The flux estimate from SunfoldðEÞ, funfoldðEÞ over [�E] via Pt. 1, Eq. (23)

TABLE I. (Continued)
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�S ¼ �SðtpeakÞ, and the flux bias, �F unfold ¼
�F unfoldðtpeakÞ, are independent of time; but, the relative

error, �F unfold½F unfoldðtÞ��1 ¼ �F unfoldðtpeakÞ�
½F unfoldðtÞ��1, is time dependent. Thus, if a relative bias,
j�F unfoldj½F unfoldðtÞ��1, as large as 10% is allowed for flux
measurements in the range 0:1 
 F unfoldðtÞ�
½F unfoldðtpeakÞ��1 
 1, then the tolerance in the baseline

bias must be no more than 1% of peak signal.

2. Example: Calibrational shifts �RiðEÞ alone
Slow drifts in the XRD sensitivity �iðEÞ [Pt. 1: Eqs. (2)

and (B1)] modify the response functions of a filtered-XRD
array [4] and are an insidious perturbation to spectral
reconstructions, if not corrected. The typical case involves
channel data garnered from drifted responses, RiðEÞ þ
�RiðEÞ, but (inadvertently) unfolded with an earlier cali-
bration RiðEÞ. This problem can again be addressed with
Eqs. (8) and (9), but an example has already been noted in
Pt. 1: Fig. 10(a), where this scenario is labeled as ‘‘incon-
sistent.’’ Specifically, noise-free channel data were simu-
lated from SbbðE; 200 eVÞ and responses R1a; . . . ; R5a

(Pt. 1: Fig. 2) but unfolded with the (biased) inverse matrix
R�1 from responses R1; . . . ; R5 (Pt. 1: Fig. 2). The un-
folded spectrum is spurious, disagreeing with the ‘‘consis-
tent’’ unfold (i.e., inverted with R�1

a ) by at least 40% and
flux estimate by �50%. One can argue that spectral dif-
ferences between the response sets R1; . . . ; R5 and
R1a; . . . ; R5a have been magnified by unfold-matrix condi-
tion number �11 (cf. Pt. 1: Sec. III G). Potential errors of
this size argue for frequent calibrations, modeling of cal-
ibrational drifts in the fielded environment, and multiple
flux diagnostics.

C. Random effects

Random perturbations, �Di and �Rij, induce random

uncertainties in�Sj and�F unfold via the unfold algorithm.

These terms are now represented by probability distribu-
tions [1], which for convenience we assume to be normal
with zero means but nonzero variances—denoted
Nð0; �2½�Di�Þ and Nð0; �2½�Rij�Þ [5]. Since Eqs. (8) and
(9) are linear, �Sj and �F unfold are likewise distributed as

Nð0; �2½�S�Þ andNð0; �2½�F unfold�Þ. The goal is to derive
�2ð�SjÞ and �2ð�F unfoldÞ from �2ð�DiÞ and �2ð�RijÞ.

In the error propagation analysis here, statistical corre-
lations [Table I] among �Di, �Rij, and �Sj must be

considered: the�Rij’s share the same measured fit parame-

ters for response function RiðEÞ (Pt. 1: Appendix B), and
the �Di’s and �Rij’s link all the �Sj’s through R�1. The

principal tool is the covariance matrix Cð�SÞ:

C ð�SÞ¼
�2ð�S1Þ . . . covð�S1;�SNÞ

..

. . .
. ..

.

covð�SN;�S1Þ ��� �2ð�SNÞ

0
BB@

1
CCA; (10)

where covð�Sj;�SlÞ is the covariance between the j and l

components of �S in Eq. (8). Cð�SÞ is a symmetric matrix
with diagonal elements �2ð�SjÞ. (An alternative approach

is the Monte Carlo method [6].)
Cð�SÞ may be straightforwardly deduced from the cor-

responding covariance matrices,Cð�DÞ andCð½�R�SÞ, for
�Di and �Rij because Eq. (8) is linear. One finds

[Appendix B and Ref. [7]]

C ð�SÞ ¼ ðR�1Þ½Cð�DÞ þ Cð½�R�SÞ�ðR�1ÞT; (11)

where ðR�1ÞT denotes the transpose of R�1. Terms like
covð�Di;�RijÞ do not appear in Eq. (11) because the

response-function calibrations and diagnostic shot data
are assumed independent. Cð�SÞ then leads directly to
the variance �2ð�F unfoldÞ in F unfold via Eq. (9):

�2ð�F unfoldÞ ¼ �E � f½Cð�SÞ��Eg; (12)

where �E again represents the fixed unfold bin widths
�Ej. In the following examples, error propagation pro-

ceeds by first deriving Cð�DÞ and Cð½�R�SÞ from error
models for�Di and�Rij, then constructingCð�SÞ and the
�2ð�SjÞ’s from Eq. (11), and lastly connecting

�2ð�F unfoldÞ to Cð�SÞ via Eq. (12).
For later reference, it is convenient to list the compo-

nents of Eqs. (11) and (12):

cov ð�Sj;�SlÞ ¼
XN
i¼1

XN
k¼1

ðR�1Þjicovð�Yi;�YkÞðR�1Þlk;

(13)

where �Ym ¼ �Dm þ ð½�R�SÞm, and

�2ð�F unfoldÞ ¼
XN
j¼1

XN
l¼1

ð�EjÞcovð�Sj;�SlÞð�ElÞ: (14)

1. Example: Random data fluctuations �Di only

We focus first on random data perturbations �Di and
ignore response-function uncertainties. The �Di’s may
represent low-level additive signal noise seen in [8] and
Pt. 1: Fig. 3. For simplicity, we assume not only that
Nð0; �2½�Di�Þ but that all the �Di’s are statistically inde-
pendent of one another: i.e.,

cov ð�Di;�DkÞ ¼ �2ð�DiÞ�ik ¼ �2i d
2
i �ik; (15)

where �ik is the Kronecker delta function. Here, �i is the
data noise-to-signal ratio (NSR) in the ith data channel,
�ð�DiÞd�1

i ¼ �i (di � 0). It follows that Cð�DÞ for this
error model is diagonal.
Substituting Cð�DÞ into Eq. (11) and ignoring

Cð½�R�SÞ, one finds Cð�SÞ. The j; lth element is
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C ð�SÞjl ¼ covð�Sj;�SlÞ ¼
XN
i¼1

ðR�1ÞjiðR�1Þlid2i �2i :

(16)

For the Z diagnostic, Cð�SÞ is not diagonal due to the
overlap of the RiðEÞ’s. Thus, while the data perturbations
may be statistically independent, the �Sj’s are dependent.

The variances, �2ð�SjÞ, and �2ð�F unfoldÞ, for �Sj and
�F unfold, respectively, are then (Appendix C)

�2ð�SjÞ ¼ Cð�SÞjj ¼
XN
i¼1

ðR�1Þ2jid2i �2i ; (17)

and, after some manipulation,

�2ð�F unfoldÞ ¼
XN
i¼1

�XN
j¼1

�EjðR�1Þji
�
2
d2i �

2
i : (18)

To appreciate the propagation of data noise into flux
uncertainties, it is useful to assume that the data NSR’s are
independent of channel and relatively small: i.e.,
�ð�DiÞd�1

i ¼ �i ¼ � 	 1. Then by factoring �2 out of
Eqs. (17) and (18), one may define the N þ 1 parameters,
�j � ��1�ð�SjÞS�1

j and �F � ��1�ð�F unfoldÞF�1
unfold,

which via Eqs. (4), (5), (17), and (18) reduce to

�j � 1

�

�ð�SjÞ
Sj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðR�1Þ2jid2i
q
P

N
i¼1ðR�1Þjidi

(19)

and

�F � 1

�

�ð�F unfoldÞ
F unfold

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1½

P
N
j¼1 �EjðR�1Þji�2d2i

q
P

N
i¼1½

P
N
j¼1 �EjðR�1Þji�di

;

(20)

where the noise-free x-ray di has been substituted for Di,
since by assumption � 	 1. Such parameters are called
noise factors (NF) [2] because each is the ratio of an
‘‘output’’ NSR [e.g., �ð�SjÞS�1

j ] to an ‘‘input’’ NSR

[e.g., �]. A � > 1 indicates amplification of input data
noise (or uncertainty) in the unfold process; � < 1 signifies
noise reduction—typically, by averaging processes.

As defined, these NF’s depend on the incident spectrum
through di. Such dependences, �j½T� and �F ½T�, are shown
in Figs. 1(a) and 1(b) for the Planckian spectra SbbðE; TÞ,
studied previously (Pt. 1: Sec. IV). In Fig. 1(a), one sees
strongly temperature-dependent amplifications �j½T� of

relative data noise into the unfold NSRðSjÞ for the periph-
eral unfold bins, an easily explained result: at the highest
temperatures, S1 in bin ½�E1� depends on small differences
in similar data values due to response-function overlap,
while at the lowest temperatures, S5 in bin ½�E5� is
constructed from essentially no signal [Eq. (2), Pt. 1:
Eq. (25), and Pt. 1: Figs. 1 and 4]. In the central bins,
�2½T�, �3½T� � 1 because the responses R2ðEÞ and R3ðEÞ

are more localized spectrally than the others and thus have
fewer contributing data channels and correspondingly less
data noise [Pt. 1: Fig. 1, and Pt. 1: Eq. (25)]. An upper
bound to the �j’s is set by the condðRÞ [[9–14]; Pt. 1:

Sec. III G], and one may verify that the inequality,

��1½PN
j¼1 �

2ð�SjÞ�1=2½
P

N
j¼1 S

2
j Þ��1=2 
 condðRÞ ffi 11, in

fact holds for these simulations. [Excluded from Fig. 1(a)
are simulations in which some Sj < 0, i.e., for

T < 150 eV.]
By contrast, the flux NF �F ½T� in Fig. 1(b) shows a

reduction inNSRðF unfoldÞ relative to data noise and a gentle
dependence on spectral shape. (All Planckian simulations
are included becauseF unfold > 0 in each.) This difference in
behavior between �F and �j occurs because F unfold is an

average over the Sj’s (thus benefiting from the central limit

theorem [1,7,15]), whereas the Sj’s themselves depend on

differences among the channel data Di [15]. Applying the
Cauchy-Schwarz inequality [16–18] to Eq. (18), one derives

formal bounds, ðN � nÞ�1=2 & �F & 1, for the effective

number of unfold channels (N � n) that dominate data-
noise propagation into F unfold; Fig. 1(b) suggests that 1–3
statistically independent channels characterize
�2ð�F unfoldÞ for the spectra considered. Figure 1(b) also
shows the corresponding flux noise factor for the flux esti-
mate, F LS, based on the same response functions but with-
out an unfolding procedure (cf. Ref. [8] and Pt. 1: Sec. V).
The similarity in results for these independent measures
lends support to our definition of F unfold (cf. Sec. III C).

2. Example: Calibrational errors only

A second application of Eqs. (11) and (12) highlights
random perturbations �RiðEÞ, which refer to errors in the
responses Ri due to uncertainty in the calibrational fit
parameters (Pt. 1: Appendix B). Such perturbations enter
Eqs. (8) and (9) as the elements �Rij of �R and propagate

into �2ð�SjÞ and �2ð�F unfoldÞ: thus, covð�Rij;�RklÞ !
Cð½�R�SÞ ! Cð�SÞ ! �2ð�F Þ. As in the previous ex-
ample, the analysis requires an error model, which here
requires N2 random variables, instead of N for �Di

(cf. Appendix D). This model, nevertheless, yields similar
expressions for �2ð�SjÞ and �2ð�F unfoldÞ as Eqs. (17) and
(18).
Three assumptions define this error model. First, each

channel i of the filtered-XRD array consists of a known,
single-component filter and a photocathode, calibrated
separately. Thus, for i ¼ 1; . . . ; N

RiðEÞ � Ai	xrd;iðEÞ exp½��i	i;fðEÞ�; (21)

where the x-ray coefficients,	i;f and	xrd;i, for each filter-

XRD pair include known weight fractions [19] of atomic
elements, compounds, or composites (cf. Appendix D).
The terms, Ai and �i, are experimental fit parameters
with associated errors, �Ai and ��i. Second, �Ai and
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��i derive from independent distributions, N½0; �2ð�AiÞ�
and N½0; �2ð��iÞ�; hence, covð�Ai;��kÞ ¼ 0 for all i, k
and covð�Ai;�AkÞ ¼ covð��i;��kÞ ¼ 0 for i � k. Third,
the NSR’s of the fit constants, �ð�AiÞA�1

i � 
i and
�ð��iÞ��1

i � �i, are assumed to be small (
i, �i 	 1),
so that again di ffi Di.

The error-propagation process begins with definitions of
the perturbations,�RiðEÞ and�Rim, caused by uncertainty
in the fit constants. To first order, the variation in Eq. (21)
due to �Ai and ��i is

�RiðEÞ ¼
�
�Ai

Ai

�
RiðEÞ �

�
��i
�i

�
½�i	i;fðEÞ�RiðEÞ; (22)

and the corresponding perturbation �Rim to the matrix
element Rim is found by integrating Eq. (22) over each
unfold bin ½�Em�, as in Eq. (3):

�Rim ¼
�
�Ai

Ai

���i
�i

h�i	i;fim
�
Rim ¼ ð�RÞim; (23)

where the unitless quantity, h�i	i;fim �
�iR

�1
im

REmþ1

Em
RiðEÞ	i;fðEÞdE, is an average of the exponent

of the filter transmission [Eq. (21)] over unfold bin ½�Em�
and weighted by RiðEÞ=Rim.

When �Ai and ��i are random numbers, this model
statistically correlates intrachannel matrix elements, �Rim

with �Rin, because the same experimental fit parameters,
Ai and �i, appear in the various bins, m and n; however,
interchannel elements, �Rim and �Rkn (i � k), are uncor-
related due to our second model assumption. The statistical
covariances, covð�Rij;�RklÞ, between these elements of

�R are then straightforwardly derived (Appendix D) from
Eq. (22), and are used to estimate C½ð�RÞS�, where S
represents a nominal unfold estimate. One finds that
C½ð�RÞS� is diagonal, as was Cð�DÞ in the previous
example [Eq. (15)].

Propagated estimates of Cð�SÞ and �2ð�F unfoldÞ can
then be computed from Eqs. (11) and (12) (Appendix D).
The propagated uncertainties of interest are

�2ð�SjÞ ¼
XN
i¼1

ðR�1Þ2jid2i ð
2
i þ hh�i	i;fii2�2i Þ (24)

and

�2ð�F unfoldÞ ¼
XN
i¼1

�XN
j¼1

�EjðR�1Þji
�
2

� ð
2
i þ hh�i	i;fii2�2i Þd2i ; (25)

where we have defined a spectrally dependent, double
average, hh�i	i;fii�

P
N
m¼1RimSmd

�1
i h�i	i;fim. Equations

(24) and (25) are identical to Eqs. (17) and (18), except that

the data NSR’s �i are replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
i þ hh�i	i;fii2�2i

q
.

Thus, under this error model, the unfold algorithm

produces similar spectral behavior (amplification or reduc-
tion) for calibrational uncertainties as for the data-noise
model [Figs. 1(a) and 1(b)].

3. Example: A first-order analysis
of random errors for Z-shot 165

Since shot-time noise and calibrational uncertainties for
the Z diagnostic are assumed statistically independent,
their corresponding error models [Eq. (17), (18), (24), and
(25)] may be combined in quadrature to estimate first-order
uncertainties, �ð�SjÞ and �ð�F unfoldÞ, in real experi-

ments. Thus, one has

�2ð�SjÞ ¼
XN
i¼1

ðR�1Þ2jid2i �2
i (26)

and

�2ð�F unfoldÞ ¼
XN
i¼1

�XN
j¼1

�EjðR�1Þji
�
2
d2i �

2
i ; (27)

where �i, an effective input NSR, is defined by �2
i ¼

�2ð�DiÞd�2
i þ �2ð�AiÞA�2

i þ hh�i	i;fii2�2ð��iÞ��2
i .

More realistic error models contribute additional terms
(cf. Example 4, below, and Appendix D).
This analysis was applied to filtered XRD, channel data

from Z-shot 165. For this discussion, the calibrated re-
sponse functions were R1bðEÞ; . . . ; R5bðEÞ (Pt. 1: Fig. 2),
and the data values Di � di were taken at peak voltage
(Pt. 1: Fig. 3). The nominal unfold coefficients Sj were

obtained from Eq. (2). Noise-to-signal ratios were then
estimated as follows: �ð�DiÞD�1

i ffi �ð�DiÞd�1
i & 10%;

�ð�AiÞA�1
i & 10%–15% [4]; and �ð��iÞ��1

i & 5% [4].
The double average hh�i	i;fii varies from �1:5–2:5 for

Planckian spectra of temperatures, 150–250 eV, and is
nearly independent of channel; we choose hh�i	i;fii ¼ 2.

Hence, a first-order estimate of the effective experi-

mental NSR in Eqs. (26) and (27) is �i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið0:1Þ2 þ ð0:125Þ2 þ ð2Þ2ð0:05Þ2p � 0:2; the correspond-
ing experimental uncertainty, �idi ffi �Di, is then �20%
of the measured data, of which calibrational uncertainties
outweigh data noise at this sample time.
Figure 2(a) shows the unfolded (histogram) spectrum at

peak emitted x-ray power with these error estimates. For
clarity, the solid points centered on horizontal bars denote
the nominal unfold values Sj and the bin widths �Ej,

respectively, of SunfoldðEÞ. The vertical error bars appended
to SunfoldðEÞ represent Sj  �ð�SjÞ. In general agreement

with Fig. 1(a), the peripheral unfold bins show the largest
binwise NSR’s. The estimated flux for this peak-power
spectrum is F unfold  �ð�F unfoldÞ ¼ ½6:6 0:8� �
1012 W sr�1; the NSR of F unfold is then �12%, which is
a reduction of the input NSR (20%) by a factor of�0:6, in
general agreement with Fig. 1(b).
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Because this spectral unfold includes both data and
calibrational uncertainties, it is appropriate to compare
the resulting spectrum to theoretical expectations. One
such hypothesis, already entertained (Pt. 1: Sec. II D), is
that the incident spectrum is nearly Planckian,
SðE; tpeakÞ ffi SbbðE; T � 200 eVÞ. Figure 2(a) includes

this spectrum, scaled for comparison with SunfoldðEÞ.
Specifically, the continuous blue line in the figure is

SbbðE; scaledÞ ¼ ðF unfoldF�1
½�E�ÞSbbðE; 200 eVÞ, where

F ½�E� is calculated from Sbb over the same interval ½�E�
asF unfold. [Typical units for Sunfold and Sbb differ by source
area, which the Z diagnostic does not measure, so this
scaling is equivalent to comparing the flux-normalized
shapes, Sunfold and Sbb (Pt. 2: Table I; Pt. 1: Sec. III A)].
One sees in the figure that SunfoldðEÞ is similar to
SbbðE; scaledÞ—especially in the high-energy tail—but
appears to peak at a somewhat lower x-ray energy; hence,
SunfoldðEÞ may have a lower ‘‘color temperature’’ than
SbbðE; 200 eVÞ. The indicated uncertainties in SunfoldðEÞ,
however, make this inference speculative.
A more stable appraisal of spectral or ‘‘radiation’’ tem-

perature for Sunfold is based directly on F unfold. This as-
sessment, however, requires additional experimental
information: in particular, one needs an emission model
for the x-ray-emitting plasma source and a cross-sectional
area. Assuming, first, that the z-pinch source in Z-shot 165
was uniform and Lambertian [2,20,21], one infers from
F unfold a peak, emitted x-ray power of 190 TW12% into
4 sr (Pt. 1: Appendix A). Second, x-ray framing-camera
photographs in this shot show the z pinch at stagnation as
roughly cylindrical (2 cm high and �2 mm in diameter),
albeit with many hot spots. A blackbody of these dimen-
sions and radiating 190 TW has a temperature of�196 eV
[20–22], in reasonable agreement with the hypothesized
spectrum SbbðE; 200 eVÞ.

4. Example: Comparisons of paired filtered-XRD arrays

The validity of these error models for the Z diagnostic
can be tested by comparing spectral unfolds and flux
estimates from two such diagnostics fielded together on a
sequence of x-ray shots. Since the source may itself vary
from shot to shot, we modify the data model by replacing
SðEÞ at fixed time in Eq. (1) by SðEÞ þ�SðEÞ, where
�SðEÞ represents a random spectral variation,
N½0; �2ðSÞ�. Then the recorded data in the ith channel of
diagnostic X have the following form:

XDi ¼
Z EMAX

0
½XRiðEÞ þ X�RiðEÞ�SðEÞdE

þ
�Z EMAX

0
½XRiðEÞ þ X�RiðEÞ��SðEÞdE

þ X�Di

�
; (28)

where XRiðEÞ is the calibrated response function with error
X�RiðEÞ, and X�Di is signal noise. If the net responses,

XRiðEÞ þ X�RiðEÞ, are constant for all the shots, then the
first term on the right of Eq. (28) varies by channel, but not
by shot: it carries calibrational bias into the unfold. The
second term (in braces) in Eq. (28), on the other hand,
encodes shot-to-shot variations about the calibrational bias
and data noise.

FIG. 2. Estimated experimental uncertainties for the Z diag-
nostic, and fluctuations for repeated experiments. Part (a) shows
the unfolded peak-power spectrum for Z-shot 165 (cf. Pt. 1:
Figs. 3 and 4). Here, for clarity, SunfoldðE; tpeakÞ is denoted by

solid (red) points at the midpoint of each unfold bin (Pt. 1:
Table II), with horizontal bars indicating the bin widths; the
ordinates [GWsr�1 eV�1] are the unfold coefficients, Sj.

Vertical error bars give the combined, propagated uncertainties,
�ð�SjÞ. The blue curve is a 200-eV Planckian spectrum

[GWsr�1 eV�1 cm�2] scaled by integrated flux to the same
units. Part (b) compares unfold coefficients and flux for two
independent, filtered-XRD arrays (denoted ‘‘A’’ and ‘‘B’’),
which were simultaneously fielded on five, nominally identical,
tungsten z-pinch shots at the Z facility (Z-shots 163-167). The
solid points are the binwise unfold ratios, ASj=BSj, for each shot

at peak power (left scale); the additional points at the right side
of the figure are the corresponding unfold flux ratios,

AF unfold=BF unfold (right axis, same scale). The notation ‘‘2X’’

indicates two nearly identical ratios; and the red ‘‘þ’’ symbols
denote the sample ratio mean for each bin j and the flux estimate.
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Two independent filtered-XRD arrays, as described for
the Z-shot 165 (Sec. II C 3), were simultaneously fielded on
five consecutive tungsten z-pinch shots (Z-shots 163–167)
over the course of �1 week. (Calibrational drift was thus
assumed negligible over this time period.) The two diag-
nostics (labeled, X ¼ “A” and “B”) were located at dis-
tances 24 and 19 m, respectively, from the z-pinch x-ray
source, which was replaced after each shot. For this se-
quence of experiments the configurations of the wire array,
the Z accelerator, and the filtered-XRD diagnostics were
held fixed, so that only relatively small spectral variations
were expected. Channel data from each diagnostic were
unfolded via Eq. (2), using the appropriate inverse matrices
(AR

�1 and BR
�1), which were derived from up-to-date

calibrations and the same energy bins. Time-varying, un-
fold coefficients (ASj and BSj) and fluxes (F unfoldA and

BF unfold) were obtained for each shot.

Figure 2(b) compares the unfolded results at tpeak in this

shot sequence (solid points). Binwise coefficient and flux
ratios, ðASjÞðBSjÞ�1 (j ¼ 1; . . . ; 5) and ðAF unfoldÞ�
ðBF unfoldÞ�1, are shown. One sees that the five-shot aver-

age (red crosses) of ðASjÞðBSjÞ�1 differs from 1 by& 15%,

and the corresponding mean of ðAF unfoldÞðBF unfoldÞ�1 dif-

fers from 1 by 11%.
These results are consistent with the model in Eq. (28),

which combines the data and calibrational error models
developed in previous examples of this section. For ex-
ample, by simulations [Pt. 1: Sec. IVA, Fig. 10(a)] and
theoretical arguments [23], one does expect these ratios to
be close to unity. Moreover, the average values in Fig. 2(b)
suggest first-order bias effects X�RiðEÞ of �10%, proba-
bly traceable to the calibrations themselves and to other
fixed experimental parameters. Lastly, the shot-to-shot
channel-wise fluctuations in ðASjÞðBSjÞ�1 and ðAF unfoldÞ�
ðBF unfoldÞ�1 are qualitatively similar to the noise factors in

Figs. 1(a) and 1(b) for T ¼ 200 eV and would be compat-
ible with shot-dependent terms, X�Di and �SðEÞ.

III. GENERALIZATION OF THE UNFOLD
PROCEDURE

To this point, our testing of the histogram unfold algo-
rithm with simulations has relied heavily on Planckian
spectra. However, a more abstract approach is needed to
make sense of the algorithm’s deterministic behavior for
arbitrary spectra. The key to this analysis is the functional
separability [24] of the detection/unfold process. It allows
this operation to be reduced to the integrated product of a
postulated spectral function with response-based ‘‘pass-
band’’ functions, without explicit data computations
(cf. Pt. 1: Fig. 4). The goal of this approach is to understand
quantitatively (a) the distortions observed in part 1
(Sec. IV), (b) how violations of the diagnostic model
(Pt. 1: Table I) are processed, (c) why negative unfold
values appear, and (d) how such artifacts should be treated

in a flux estimate. This analysis does not supersede the
principal unfold equations [Eqs. (2)–(5)], which address
experimental data.

A. An abstract view of the unfold problem

The unfold problem of Eq. (1) can be posed mathemati-
cally in terms of four interconnected abstract structures,
within which previous sections of this article may be
interpreted. These structures include: (a) the Hilbert space
L2½0; EMAX� of real functions fðEÞ defined over ½0; EMAX�;
(b) a linear space D of vectors D; (c) a forward linear
mapping M: L2 ) D; and (d) an inverse linear mapping,
M�1

BD: D ) B, where B is proper subset of L2.
The properties of such abstract structures are, of course,

well known, but it is useful to highlight here certain
properties of each before applying them to the unfold
algorithm (cf. Table I).
The real Hilbert space L2½0; EMAX� is an infinite-

dimensional set [10,16,17,25–34] of real functions fðEÞ
that are square integrable [ðfjfÞ ¼ REMAX

0 f2ðEÞdE <1] in

the interval ½0; EMAX�. (The Dirac delta function [2,24,35]
is excluded.) L2 includes functions of physical relevance to
spectral emission from a z pinch and to the Z diagnostic:
e.g., broad continuum spectra SðEÞ (Pt. 1: Table I); the N
response functions Ri (Pt. 1: Fig. 2); and the N histogram
basis functions Bj [Pt. 1, Eq. (13)]. Other functions in L2
need have no physical relevance and can, in fact, be
troublesome for unfolding: e.g., null functions f0 have

the property, ðf0jRiÞ �
REMAX

0 f0ðEÞRiðEÞdE � 0 for all

the Ri’s, and form their own infinite-dimensional subspace
N in L2 (Pt. 1: Sec. II C). L2 also contains a closed
N-dimensional subspace Bmade of all linear combinations
of the histogram basis functions,

PN
j¼1 fjBjðEÞ.

The vector space D comprises all N-dimensional real
vectors of the form D ¼ ðD1; . . . ; DNÞ with components
Di. The inner product D �D0 of two vectors, D and D0, is
defined as

P
N
i¼1 DiD

0
i, which leads to the Euclidian norm,

kDk � ffiffiffiffiffiffiffiffiffiffiffiffi
D � Dp

. Some vectors D represent experimental
channel data in the Z diagnostic.
A mapping M from L2 to D associates each function

fðEÞ in L2 with one (and only one) vector in D. In the
absence of perturbations [" ¼ 0], Eq. (1) defines such a
mapping, linking fðEÞ with the vector of N inner products:
that is, Mf ¼ ½ðR1jfÞ; . . . ; ðRNjfÞ�, which describes x-ray
detection in the context of the Z diagnostic. This mapping
is both linear (i.e.,M½
f1 þ �f2� ¼ 
Mf1 þ �Mf2 for
functions f1, f2 and scalars 
, �) and continuous. As
defined, M is perforce a many-to-one mapping because
the dimension of L2 exceeds the dimension of D.
[In particular, the null functions f0ðEÞ map into
0 ¼ ð0; 0; . . . ; 0Þ; cf. Pt. 1: Sec. II C.] For the particular
responses and basis functions here, this mapping has two
additional properties: (a) each vector D in D is linked by
M to at least some function fðEÞ in L2; and (b) each vector
D is associated by M with a unique member,

CHARACTERIZATION AND . . .. II. ERROR ANALYSIS . . . Phys. Rev. ST Accel. Beams 13, 120403 (2010)

120403-9



P
N
j¼1 fjBjðEÞ, in subspace B [10,28]. (These properties

obtain because the Ri’s are linearly independent; and the
Bj’s are likewise independent and nonorthogonal to the

Ri’s; cf. Pt. 1: Sec. III.)
M may thus be exploited to define a formally separate

mapping, MBD: B ) D, between the N-dimensional
spaces B of L2 and D. Simply, we define MBD to coincide
with M over all the elements, fB ¼ P

N
j¼1 fjBjðEÞ, in

B; that is, MBD½fB� � M½fB� � ½PN
j¼1 fjðR1jBjÞ; . . . ;P

N
j¼1 fjðRNjBjÞ�, which is a vector in D. The reason for

this secondary mapping will become clear presently.
According to the particular properties, (a) and (b), of M
above,MBD must be a one-to-one mapping. It must, there-
fore, have an inverse mapping,M�1

BD: D ) B, from D onto

B, which can be shown to be both linear and continuous
over D. In fact, the numerical process, ðf1; . . . ; fNÞ ¼
R�1ðD1; . . . ; DNÞ defined in Eq. (4), just represents
M�1

BDD, which describes the reconstruction for the histo-

gram unfold algorithm.
It follows that, given arbitrary fðEÞ in L2, it is possible to

find the vector image, Mf ¼ ðd1; . . . :; dNÞ, in D and then
to connect this vector uniquely to a histogram,P

N
j¼1 fjBjðEÞ ¼ M�1

BDðd1; . . . :; dNÞ in B � L2. This com-

bined process, Uf � M�1
BD½Mf� or M�1

BDMf, we previ-

ously called collocation (Pt. 1, Sec. III E) and used it to test
the unfold algorithm (Pt. 1: Sec. IV). That is, we applied
the two parts of U in sequence to a prescribed spectrum
SðEÞ to obtain the histogram reconstruction, SunfoldðEÞ
[Pt. 2: Eq. (2)]. M and M�1

BD may be regarded as a

transform/inverse-transform pair, in analogy to the
Fourier transform and its inverse.

More formally, the composite mappingU here defines a
continuous linear operator in L2, i.e., a mapping of L2 into
itself, that allows one conveniently to compute the unfold
algorithm for all spectral functions f in L2 without the
intermediate step of explicitly simulating data (in contrast
to Pt. 1: Sec. IV).U then represents processes of detection
and reconstruction in which pointwise detail and even
some average information about f is lost. The following
subsection explores a representation ofU that permitsUf
to be quickly visualized.

B. Passband functions for the unfold coefficients

1. Definition and properties

According to the Riesz representation theorem [17,24],
the imageKf of a continuous linear operatorK in L2 can
always be written as an inner product of f with a unique
function KðE; E0Þ:

K f � fKðEÞ �
Z EMAX

0
KðE; E0ÞfðE0ÞdE0; (29)

where KðE; E0Þ is bounded over the two-dimensional do-
main, ½0; EMAX� � ½0; EMAX�, E is a fixed parameter with
respect to the integral [17,24,36], and fKðEÞ is a function

in L2. (K is sometimes called an averaging kernel, cf. [37]
and Pt. 1: Sec. III C.) Hence, when KðE; E0Þ is known, the
computation of fKðEÞ is reduced to quadrature. The goal
of this subsection is a similar description of U, the simu-
lation/unfold operator above [Sec. III A], which leads to a
deeper understanding of how the unfold algorithm re-
sponds to arbitrary f.
To illustrate how Eq. (29) works, consider the linear

operator A that associates fðEÞ with the piecewise-
constant function, Af ¼ fAVEðEÞ ¼

P
N
j¼1hfijBjðEÞ,

where the hfij’s are simple averages [cf. Eq. (6)] over the

unfold bins ½�Ej� (Pt. 1: Table II). Results of this operator
were illustrated in part 1 of this article for Planckian
spectra SbbðE; TÞ (Pt. 1: Fig. 8). An integral representation
of A is obtained by substituting AðE; E0Þ �PN

j¼1ð�EjÞ�1BjðEÞBjðE0Þ for KðE; E0Þ in Eq. (29). To

prove that this particular representation duplicates Af,
one notes thatE andE0 are separable [24] inAðE; E0Þ so that
Z EMAX

0
AðE;E0ÞfðE0ÞdE0

¼
Z EMAX

0

�XN
j¼1

ð�EjÞ�1BjðEÞBjðE0Þ
�
fðE0ÞdE0

¼ XN
j¼1

ð�A;jjfÞBjðEÞ ¼ fAVEðEÞ ¼ Af; (30)

where

�A;jðEÞ ¼
BjðEÞ
�Ej

: (31)

We call �A;j an averaging passband function ofA because

the calculation of the coefficient hfij in bin ½�Ej�
is a simple integral: hfij ¼ ð�A;jjfÞ ¼

REMAX

0 �A;jðE0Þ
fðE0ÞdE0. Thus, each �A;j plays the role of a sensitivity or

filter function used in signal analysis [2,7,38–41], and
f�A;jgNj¼1 provides everything one needs to know about

the operation of A. Figure 3(a) plots these passband func-
tions. (The vertical axis of each �A;j is displaced for clarity.)

The passband concept similarly applies to the unfold
operator, U ¼ M�1

BDM, which associates each fðEÞ in L2
with a simulation/unfold reconstruction, funfoldðEÞ. In this
case, substituting the separable kernel [24] UðE; E0Þ �P

N
j¼1

P
N
i¼1ðR�1ÞjiBjðEÞRiðE0Þ for KðE; E0Þ in Eq. (29)

yields the representation

U f ¼ XN
j¼1

ð�U;jjfÞBjðEÞ ¼ funfoldðEÞ; (32)

where the function

�U;jðEÞ �
XN
i¼1

ðR�1ÞjiRiðEÞ (33)
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is called an unfold passband function �U;jðEÞ, analogous
to �A;jðEÞ above, and where R�1 is the unfold matrix

[cf. Eq. (3)]. Equation (33) defines each �U;jðEÞ as a linear
combination of the response functions; and the terms,
ð�U;jjfÞ, in Eq. (32) are the unfold coefficients (Pt. 1:

Sec. IV), fj ¼
REMAX

0 �U;jðE0ÞfðE0ÞdE0, obtained here

without explicit data calculations [Ref. [42], Eq. (1), and
Pt. 1: Fig. 4]. Thus, each �U;jðEÞ is a spectral sensitivity for
computing fj with arbitrary fðEÞ, and together these func-
tions embed all the a priori conditions and behavior of the
unfold algorithm. Figure 3(b) plots the �U;jðEÞ’s for re-

sponses, R1; . . . ; R5 (Pt. 1: Fig. 2).
It is instructive to compare the shapes and integral

properties of �A;jðEÞ and �U;jðEÞ. Defined solely by

BjðEÞ, each averaging passband function �A;jðEÞ in

Fig. 3(a) is positive and nonzero only in the jth unfold bin.

It follows that
REkþ1

Ek
�A;jðEÞdE ¼ �jk and h�A;jik ¼

ð�EjÞ�1�jk over arbitrary ½�Ek�. In addition, according

to Eq. (30), the integral,
REMAX

0 �A;jðEÞfðEÞdE, returns hfij,
which is a ‘‘bin-localized’’ value for f. Both these proper-
ties recall the action of a Dirac delta function, but on a
much cruder scale.
The unfold passband functions �U;jðEÞ in Fig. 3(b) show

similar properties. Although composed of linear combina-
tions of the RiðEÞ’s, the �U;j’s also exhibit nonzero behav-

ior largely within the corresponding unfold bins j—
especially for �U;1ðEÞ; . . . ; �U;3ðEÞ. The sharp peaks in

these three passband functions are due to the characteristic
x-ray absorption edges of R1ðEÞ; . . . ; R3ðEÞ; but, the
higher-energy ‘‘humps’’ visible in the response functions
are absent in �U;1ðEÞ; . . . ; �U;3ðEÞ. The higher-order pass-

bands, �U;4ðEÞ and �U;5ðEÞ, are broader than the compa-

rable averaging passbands: in particular, both show
noticeable spectral sensitivity above the upper cutoff of
the unfold algorithm (EHI ¼ 2300 eV). They also display
some negative behavior, which is absent in the �A;j’s.

One can, nevertheless, show [43] that the same integral
properties as above also apply to the �U;j’s: i.e.,REkþ1

Ek
�U;jðEÞdE ¼ �jk, and h�U;jik ¼ ð�EjÞ�1�jk, plus

the crude binwise localization value, fj [Eq. (32)].

2. Applications of unfold passband functions

Some previous assertions about how the unfold algo-
rithm works can now be verified. We examine specifically:
(a) Why do the unfolded and averaged spectra in Pt. 1:
Figs. 7 and 8 agree as well as they do? (b) How does the
unfold algorithm respond to spectra that violate assump-
tions in Pt. 1: Table I? And (c) what is the cause and impact
of negative unfold coefficients [Pt. 1: Table III and Pt. 1:
Figs. 8(c) and 10(b)]?
Agreement of funfoldðEÞ and fAVEðEÞ.—The first issue is

addressed by generalizing the concept of absolute channel-
wise distortion between funfoldðEÞ and fAVEðEÞ (Pt. 1:
Sec. IV and Pt. 1: Figs. 7 and 8). We begin by isolating
the part�fBðEÞ of fðEÞ that cannot be approximated by the
set of basis functions fBkðEÞgNk¼1 in B:

�fBðEÞ�fðEÞ�fAVEðEÞ¼fðEÞ�XN
k¼1

hfikBkðEÞ: (34)

In a least-squares sense,
P

N
k¼1hfikBkðEÞ represents the best

unfold-histogram [44] approximation to fðEÞ. (In Pt. 1:
Sec. IV, the norm k�fBk described an rms measure of
approximation for Pt. 1: Figs. 7 and 8.) It follows that
because ð�fBjBkÞ � 0 [Eq. (34)] for all the Bk’s, �fBðEÞ
must be either orthogonal to B (i.e., reside outside B) or
zero-valued (except at a finite number of points).

ρ
ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

FIG. 3. Binwise passband functions, �A;jðEÞ and �U;jðEÞ, for
the averaging operatorA and the unfold operatorU ¼ M�1

BDM,

respectively. In both figures, the baselines are displaced for
clarity, dashed vertical lines denote the unfold interval ½�E�,
and arrowheads indicate the unfold bin boundaries. Part (a)
graphs averaging passband functions �A;jðEÞ, each of constant

value ð�EjÞ�1 within the jth unfold bin, but zero elsewhere

(Pt. 1: Table II). Part (b) shows the corresponding unfold
passband functions �U;jðEÞ, which exhibit x-ray absorption-

edge features in the responses (Pt. 1: Fig. 1) but not the high-
energy humps of R1, R2, R3 (Pt. 1: Figs. 1 and 2). The �U;jðEÞ’s
can be nonzero, and even negative valued, outside bin ½�Ej�.
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We previously defined absolute unfold distortion by
comparing the differences, Sj � hSij, for prescribed spec-

tra (Pt. 1: Sec. IV). This concept may be generalized as the
operational difference, Uf�Af, where

U f�Af ¼ funfoldðEÞ � fAVEðEÞ

� XN
J¼1

ð�U;j � �A;jjfÞBjðEÞ (35)

[Eqs. (30) and (32)]. It follows [45] that

fj � hfij ¼
Z EMAX

0
�U;jðEÞ�fBðEÞdE; (36)

which applies for arbitrary spectral functions. This result
quantifies the inference (Pt. 1: Sec. IV) that binwise dis-
tortion of the unfold algorithm depends on (a) the non-
constant portion �fB of fðEÞ in each bin ½�Ej� and (b) the
response functions [Eq. (33)]. The observed binwise dis-
tortions in Pt. 1: Fig. 8 are now understandable. For inci-
dent spectra well approximated by

PN
k¼1hfikBkðEÞ,

�fBðEÞ � 0 and thus fj ffi hfij [cf. Pt. 1: Figs. 8(a) and
8(b)]; conversely, the largest distortions occur when the
basis functions poorly approximate spectra [cf. Pt. 1:
Figs. 8(c) and (d), in which low-temperature spectra
show exponential decreases within ½�E� ].

Spectral functions in violation of the a priori
assumptions.—The unfold passband functions may be
used to predict how potential source spectra will be treated
by the unfold algorithm [Eq. (2)]. Of particular interest is
how the algorithm responds to spectra that violate its
assumptions. We consider here a pair of troublesome ex-
amples: spectra either distinctly narrower than the unfold
bins [�Ej] or considerably broader than the assumed un-

fold interval ½�E�.
Spectral emission lines f�ðEÞ were excluded from the

unfold algorithm (Pt. 1: Sec. III, and Table I). Yet, such
spectra must be confronted for z-pinch plasmas of low
atomic numbers, densities, and temperatures [46]. We
model here one emission line of width �E > 0, located at
E�;K, wholly within the single unfold bin ½�EK�:

f�ðEÞ �
�
F �ð�EÞ�1 for jE� E�;Kj 
 1

2 ð�EÞ
0 otherwise

(37)

where F � is the total x-ray flux in the line, bin K ¼ 1; . . . ,
or N, and jE�;K � EK�1j, jE�;K � EKj � 1

2 ð�EÞ> 0. The

line width (�E) is chosen sufficiently small thatR
f�ðEÞRiðEÞdE � F �RiðE�;KÞ over practical integration

intervals containing E�;K. For this model, the unfold co-

efficients f�;j come directly from Eq. (32) and hf�ij ¼
�j;Kð�EKÞ�1F �:

f�j � hf�ij þ ðF �Þ
�
�U;jðE�;KÞ �

�jK

�EK

�
: (38)

Equation (38) highlights two serious difficulties posed by
line spectra: (a) funfoldðEÞ can, in general, be nonzero (even

alternating in sign) in unfold bins that do not actually
contain the spectral line [cf. Fig. 3(b)]; and, more impor-
tantly, (b) the binwise distortion, f�j � hf�ij, is a strong

function of E�;K via �U;jðE�;KÞ. In particular, within ½�EK�
(which by assumption contains the line) the unfold does
not recover f�ðE�;KÞ or even f�ðE�;KÞð�EÞð�EKÞ�1, a

result of significance for superposed continua and emission
lines. Such difficulties with line spectra are common to all
diagnostics with broad, overlapping, and energy-dependent
response functions—especially, if E�;K is unknown.

Potential mitigating strategies include the removal of spec-
tral lines from the continuum with suitable background
channels [47], or the addition of an emission-line model
[15,48,49] to the basis functions—given E�;K from ancil-

lary measurements.
A second generic spectrum that violates the a priori

assumptions of the unfold algorithm is a function fwideðEÞ
that extends significantly beyond the assumed unfold inter-

val, ½�E� ¼ ½ELO; EHI�: i.e.,
REMAX

0 fwideðEÞdE � REHI

ELO

fwideðEÞdE. For simplicity, we model fwideðEÞ as a general
function outside ½�E�, but as a histogram within ½�E�:

fwideðEÞ �
8><
>:
fLðEÞ for 0
 E<ELOP

N
j¼1’jBjðEÞ for ELO 
 E<EHI

fHðEÞ for EHI 
 E<EMAX;
(39)

where fLðEÞ, fHðEÞ, ’j > 0. It follows from this definition

and Eq. (36) that

fwide;j ¼ hfwideij þ
Z ELO

0
�U;jðEÞfLðEÞdE

þ
Z EMAX

EHI

�U;jðEÞfHðEÞdE; (40)

where
REHI
ELO

�U;jðEÞ�fBðEÞdE in Eq. (36) vanishes [50].

According to Eq. (40), fwide;j differs from hfwideij due to

the behavior of fwideðEÞ outside the unfold interval. For
the responses here (Pt. 1: Fig. 2), fLðEÞ generally contrib-
utes little unfold distortion since �U;jð0 
 E< ELOÞ ’ 0

[Fig. 3(b)]. But, a high-energy tail fHðEÞ can have a marked
effect, particularly for the unfold in bins 4 and 5, because
both �U;4ðEÞ and �U;5ðEÞ show significant sensitivity out to

EMAX [Fig. 3(b)]. Since hfwidei4 ¼ ’4 and hfwidei5 ¼ ’5 in
this model, fHðEÞ makes fwide;4 <’4 and fwide;5 >’5, a

particularly noticeable distortion if ’4, ’5 ffi 0.
Negative unfold coefficients.—The last question posed

in this subsection can also be addressed with the passband
functions �U;jðEÞ in Fig. 3(b). The issue is this: How can

the unfold operatorU yield negative behavior in funfoldðEÞ
when the response and spectral functions, RiðEÞ and fðEÞ
are non-negative? Such behavior is routinely encountered
in the deconvolution of time series and image data, par-
ticularly when too ‘‘stiff’’ a compensation for nonideal
frequency response and optical blurring is applied: nega-
tive temporal undershoots (‘‘ringing’’) and spatial artifacts
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then occur [3,7,26,51,52]. From an abstract point of view,
analogous effects obtain with the unfold algorithm: the
inverse M�1

BD has too little flexibility to prevent negative

behavior in the reconstructed spectrum. Here we (a) predict
what negative unfold effects occur for arbitrary spectral
functions and (b) trace their cause. How such negative
behavior is treated in flux estimates F unfold is discussed
in the next subsection (Sec. III C).

According to Eqs. (32) and (33), the unfold coefficients

fj are the inner products, ð�U;jjfÞ ¼
REMAX

0 �U;jðEÞ�
fðEÞdE. Thus, given fðEÞ � 0, values fj < 0 appear only

if both �U;jðEÞ< 0 over some x-ray subinterval(s) of

½0; EMAX� and the shape of fðEÞ allows such negative
behavior to dominate

R
�U;jðEÞfðEÞdE. Now, because re-

gions of negative �U;jðEÞ do occur in Fig. 3(b), a spectral

candidate for producing fj < 0 will be either strongly

peaked where �U;jðEÞ< 0 or largely averaged out in

½0; EMAX� except where �U;jðEÞ< 0. Hence, negative un-

fold coefficients can be predicted simply by comparing
fðEÞ with the �U;jðEÞ’s. For example, Fig. 3(b) and

Planckian spectra SbbðE; TÞ (Pt. 1: Fig. 8 and Pt. 1:
Table III) show that (a) enough of the high-energy
exponential tail of SbbðE; T � 125 eVÞ extends above the
1020-eV discontinuity in �U;4ðEÞ to make S4 > 0, but that
(b) this tail more heavily weights �U;4ðEÞ< 0 for lower-T
spectra, thereby yielding S4 < 0. Nevertheless, since
the negative behavior of �U;jðEÞ in Fig. 3(b) is both rela-

tively shallow and spectrally confined, negative fj’s

are generally not a serious problem for the responses
and spectra studied (Pt. 1: Fig. 2 and Pt. 1: Table I).
The Cauchy-Schwarz inequality [16–18] bounds the

magnitude of these artifacts: jfjj
 ð�U;jj�U;jÞ1=2ðfjfÞ1=2.
(Exceptions often point to other problems: e.g., in spectral
approximation or calibration bias.)

What accounts for negative behavior of the unfold pass-
band functions in this algorithm is spectrally overlapping
responses. This conclusion follows from the non-negativity
and independence of the response functions RiðEÞ, our
choice of basis functions, and the definition of the
�U;jðEÞ’s [Eq. (33)]. That is, �U;jðEÞ yields negative values
only if at least some of the elements ðR�1Þji < 0. But, such

negative elements of R must occur because R is non-
negative and R�1R ¼ I [cf. Pt. 1: Eqs. (24) and (25)]. It
is thus the overlapping responses that produce the
Rij � 0’s that ultimately lead to negative behavior in

�U;jðEÞ.

C. Passband functions for the spectrally
integrated x-ray flux

Like the unfold coefficients fj, the two scalar measures

of integrated x-ray flux, F ½�E� [Eq. (6)] and F unfold

[Eq. (5)], may be expressed as inner products of arbitrary
fðEÞ with appropriate flux-passband functions, and
H½�E�ðEÞ and HunfoldðEÞ. (Again, "i � 0.)

The abstract tools for defining H½�E� and Hunfold are

conceptually simpler than the operators A and U above.
Required now are associations h½f� of fðEÞ with scalars.
Such mappings are called functionals over L2. In particular,
we are here interested in linear functionals, for which
h½f1ðEÞ þ �f2ðEÞ� ¼ h½f1ðEÞ� þ �h½f2ðEÞ�, where � is
an arbitrary scalar.
In accord with Eq. (6), we define h½�E�½f� to associate

fðEÞ with its integral value F ½�E� in the unfold interval.

Thus, by h½�E�: L2 ) R we mean

h ½�E�½f� � F ½�E� �
Z EHI

ELO

fðEÞdE ¼ ðH½�E�jfÞ; (41)

where

H½�E�ðEÞ �
XN
j¼1

BjðEÞ ¼
�
1 if ELO 
 E 
 EHI

0 otherwise;
(42)

and R is the field of real numbers. We call H½�E�ðEÞ in
Eq. (42) the incident flux-passband function for ½�E�.
The second functional mapping hunfold½f� agrees with

Eq. (5). That is, fðEÞ is associated with F unfold.
Schematically, hunfold: L2 ) L2ðvia UÞ ) R, where U is
the previously defined unfold operator, represented by the
passbands �U;jðEÞ [Eq. (33)]. Thus,

h unfold½f� � F unfold �
Z EHI

ELO

funfoldðEÞdE ¼ ðHunfoldjfÞ;
(43)

where

HunfoldðEÞ �
XN
j¼1

½�Ej��U;jðEÞ ¼
XN
j¼1

XN
i¼1

�EjðR�1ÞjiRiðEÞ;

(44)

which may be verified by substitution into Eq. (43)
[cf. Eqs. (5)]. We call HunfoldðEÞ the unfolded flux-
passband function.
Figure 4 compares H½�E�ðEÞ with HunfoldðEÞ. At x-ray

energies E above and below the unfold interval, ½�E� ¼
½ELO; EHI�, the flux-passband functions are similar: H½�E�
is zero by definition; Hunfold is effectively zero below ½�E�
by x-ray attenuation and decreases monotonically above
½�E�. But, inside ½�E�, H½�E�ðEÞ and HunfoldðEÞ are sig-

nificantly different: H½�E�ðEÞ is constant with value 1 but

HunfoldðEÞ oscillates about it. These oscillations again re-
sult from the characteristic x-ray edges in the responses
functions [Eq. (44)].
Yet, despite pointwise differences, H½�E�ðEÞ and

HunfoldðEÞ share certain integral properties (Appendix E).
Figure 5(a) shows the difference, �HðEÞ � HunfoldðEÞ �
H½�E�ðEÞ, from which it can be shown that the oscillations

of HunfoldðEÞ about H½�E�ðEÞ average out within ½�E�, so
that, in fact,
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hHunfoldi ¼ hH½�E�i ¼ 1: (45)

A similar result obtains for ðH½�E�jfÞ and ðHunfoldjfÞ if fðEÞ
is well approximated by the basis functions:

F unfold ¼ ðHunfoldjfÞ ’ ðH½�E�jfÞ ¼ F ½�E�: (46)

(These results are analogous to the integral properties
of unfold passband functions �U;j [Sec. III B].) �HðEÞ in

fact quantifies the disagreement, F unfold �F ½�E�
[Appendix E]:

F unfold �F ½�E� ¼ ð�HjfÞ
¼

Z EMAX

0
HunfoldðEÞ�fBðEÞdE (47)

[Eq. (34)]. {This result is analogous to the binwise unfold
distortions, fj � hfij [Eq. (36)].}
The flux-passband formalism may now be applied to

new questions about the unfold algorithm: (a) Can the
previously studied flux-recovery trends be understood
[cf. Pt. 1: Fig. 9(b)]? (b) What is the bias in F unfold for
the troublesome spectra previously defined [Eqs. (37) and
(39)]? And (c) what justifies the implicit use of negative
unfold coefficients in estimating F unfold?
The behavior of F unfoldF�1

½�E� vs T for Planckian spectra

SbbðE; TÞ (Pt. 1: Sec. IVA) can be understood directly from
ð�HjSbbÞ. The analysis is depicted in Figs. 5(a)–5(c),
where Fig. 5(a) shows the flux-passband difference func-
tion, �H ¼ Hunfold �H½�E�, and Figs. 5(b) and 5(c) plot

the product functions, �HðEÞSbbðE; 250 eVÞ and
�HðEÞSbbðE; 25 eVÞ, respectively. By Eq. (47),
ð�HjSbbÞ is F unfold �F ½�E�. In Fig. 5(b), �HSbb oscil-

lates about zero due to �HðEÞ, and multiple cycles are
visible because SbbðE; 250 eVÞ is broad relative to ½�E�
[cf. Pt. 1: Fig. 8(a)]. These oscillations average out in the
inner product: hence, ð�HjSbbÞ ’ 0 and F unfoldF�1

½�E� ’ 1.

By contrast, in Fig. 5(c), �HSbb yields primarily a
negative-going spike just above ELO (137 eV), due to the
limited penetration of SbbðE; 25 eVÞ into ½�E� [cf. Pt. 1:
Fig. 8(d)]. In this case there is no zero averaging and
ð�HjSbbÞ< 0: hence, F unfoldF�1

½�E� < 1. Both of these

results agree with Pt. 1: Fig. 9(b). The reason why the
recovery ratios tend to unity with increasing T is clear from
the right-hand side of Eq. (47): the basis-function approxi-
mation improves as such spectra spread out over ½�E� (i.e.,
�fBðEÞ ! 0); the same approximation degrades at low
spectral temperatures (i.e., j�fBðEÞj � 0).
Similar conclusions apply to the troublesome spectral

functions, f�ðEÞ and fwideðEÞ, defined above [Eqs. (37) and
(39)], which were excluded from the unfold assumptions as
poorly approximated by the BjðEÞ’s. f�ðEÞ was too local-

ized, while fwideðEÞ was too broad relative to ½�E�.
According to Eq. (47), the flux disagreement for the emis-
sion line model f�ðEÞ is F unfold �F ½�E� ¼ F ��
HunfoldðE�Þ �F �, which by Fig. 4 is again a strong func-
tion of line energy E� [cf. Eq. (38)]; this result also shows
that prominent emission-line flux need not simply average
in when combined with continuum spectra. In the same

way, applying Eq. (47) to fwideðEÞ, one finds F unfold �
F ½�E� ¼ RELO

0 HunfoldðEÞfLðEÞdE þ REMAX

EHI
HunfoldðEÞ�

fHðEÞdE, which makes F unfold exceed F ½�E� since

HunfoldðEÞ � 0 (Fig. 4). This result quantifies the flux error

FIG. 5. Products of �HðEÞ with various Planckian spectra.
Part (a) plots �HðEÞ alone, while (b) and (c) show the products,
�HðEÞSbbðE; 250 eVÞ and �HðEÞSbbðE; 25 eVÞ, respectively.

FIG. 4. Passband functions H½�E�ðEÞ and HunfoldðEÞ for the
incident flux F ½�E� and unfolded flux estimate F unfold, respec-

tively. The encircled numbers indicate roughly where specific
response functions (Pt. 1: Fig. 1) dominate HunfoldðEÞ.
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introduced by misjudging the unfold interval and corre-
sponds to Eq. (40).

A final issue for this analysis is our acceptance of
negative unfold coefficients in F unfold. Specifically, our
definition [Eq. (5)] counts all the coefficients fj in

funfoldðEÞ ¼
P

N
j¼1 fjBjðEÞ algebraically. The general for-

mulation of F unfold as ðHunfoldjfÞ in Eqs. (43) and (44), of
course, embodies the same procedure. Now, a philosoph-
ical objection to this approach insists that any fj < 0 is

unphysical, possibly unpredictable, and cannot be included
in an estimate of flux. In answer to this charge, it is well to
remember that a histogram reconstruction SunfoldðEÞ was
developed as an overall approximation to SðEÞ for con-
structing integrals in Eqs. (1) and (5); closeness to point-
wise values or even binwise averages is not guaranteed
(cf. Pt. 1: Sec. III H). The unfold passband functions
�U;jðEÞ developed above do, however, show that coeffi-

cients, fj < 0, are bounded artifacts of the algorithm

which are readily predictable [Fig. 3(b)] and which largely
appear in ½�E� where the source spectrum is relatively
small. But, more importantly, since the goal of the Z
diagnostic is to estimate

R
fðEÞdE in ½�E�, we have shown

above (a) that F unfold ’
R
fðEÞdE because the artifact-

causing functions �U;jðEÞ compensate for one another in

the flux-passband function HunfoldðEÞ [Fig. 4]; (b) that
disagreement between F unfold and

R
fðEÞdE is quantita-

tively understood and readily predictable for arbitrary
fðEÞ; (c) that this flux estimate is well supported by
simulations with physically relevant spectra (Pt. 1:
Sec. IV); and (d) that an added non-negativity constraint
need not, in fact, yield smaller bias than F unfold (Pt. 1:
Sec. IVA).

IV. SUMMARYAND CONCLUDING REMARKS

The purpose of this article (in two parts) has been to
characterize and evaluate an exactly determined, unfold
algorithm for measuring spectrally integrated x-ray flux
incident on a calibrated filtered-XRD array. Part 1 de-
scribed the formulation and testing of the algorithm. This
second part considers error propagation due to determinis-
tic perturbations (e.g., baseline bias and calibrational drift)
and random errors (e.g., data noise and calibrational un-
certainties). Significant sensitivity to response-function
shifts was found in agreement with Gorbics [15], a result
that argues for frequent calibrations of the detectors and
filters. The effects of data noise and calibrational uncer-
tainty were comparable in magnitude. It was also found
that the algorithm amplified the noise-to-signal ratio (NSR)
of input errors (noise and uncertainties) in estimating the
reconstructed spectrum Sunfold, but reduced the NSR for
F unfold. Comparisons of two independent filtered-XRD
arrays in repeated experiments support the estimated un-
certainty in F unfold. This second part also generalizes the
data-simulation/unfold process from part 1 to include

arbitrary input spectra by means of unfold and flux-
passband functions. These tools were used to understand
the behavior of simulations in part 1 and to assess the
effects of violations to the unfold assumptions (e.g., emis-
sion line spectra and continua that extend beyond the
nominal unfold domain). The passband functions explain
and bound negative unfold behavior and show a cancella-
tion of such effects in F unfold.
A few concluding remarks are worth emphasizing

with respect to this unfolding technique: (1) The first-order,
error-propagation method derived in Sec. II (Appendix A)
was designed to avoid an evaluation of�ðR�1Þ½� ð�RÞ�1�
in Eq. (2). But, just as more sophisticated regularization
methods of treating spectral inversion exist [3,9,10,15,25–
28,35,39–41,48,49,53], so too more advanced statistical-
inference tools weigh spectral distortion and bias against
overall variance in the fit [3,28,53–55]. (2) The key to
obtaining passband functions [Eqs. (31) and (33)] here is
the separable form [24] of the kernels, AðE;E0Þ and
UðE; E0Þ, and can be obtained for unfold algorithms reduc-
ible to matrix inversion [i.e., f ¼ K�1D, cf. Eq. (4), withK
well conditioned], including some least-squares-based al-
gorithms [9]. Twomey [56] has described such a reduction
for the iterated Landweber algorithm. (3) The passband
functions predict and bound the appearance of negative
unfold coefficients. Such coefficients result from overlap in
the response functions, our choice of basis functions, and a
priori assumptions. Higher-order basis functions [57–59]
yield smoother reconstructions yet may still produce nega-
tive unfold behavior, unless a non-negativity constraint is
imposed. Such a constraint need not decrease bias in the
unfolded flux estimate [Pt. 1: Fig. 10(b); Pt. 1: Sec. IVA].
(4) Emission lines and spectra significantly broader than
the assigned unfold interval are not well suited to the
unfold algorithm given here. This conclusion follows
from detailed studies of the passband functions, �U;jðEÞ
andH½�E�ðEÞ [Secs. III B 2 and III C]. Line spectra produce

unfold values remote to the location E� of each line and are
strongly dependent on E�: the passband functions also
predict bin-to-bin unfold oscillations for certain line spec-
tra, as previously noted [57,60], and complicated flux
averaging for continuum spectra with superposed promi-
nent emission lines. (Background channels mitigate these
effects [47,61,62] by subtracting out the nettlesome lines.)
Significantly broadened spectra distort the unfold recon-
struction at high x-ray energies: the passband functions
bound such distortions. All these problems are endemic to
x-ray diagnostics with overlapping, low-resolution re-
sponses and are particularly acute if the photon energies
involved are unknown. (5) We have employed the abstract
structure in Sec. III primarily for its conceptual and simu-
lation tools. This process was treated as noise free. {Error
propagation was considered separately so that the same
formulas can apply to both real and simulated data [cf.
Eq. (8) and Remark 6].} But, data noise and calibrational
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uncertainties can be incorporated into the abstract formal-
ism: the principal adjustment is to treat the "i’s in Eq. (1) as
an additional mapping M" of D into itself, inserted be-
tween M and M�1

BD. [Such a mapping is consistent with

both Eq. (8) and Monte Carlo analyses [6].] Under certain
error models this adjustment yields uncertainties ��U;jðEÞ
in the unfold passband functions [Eq. (33)]. Further details
are described in [63]. (6) We strongly advise potential users
of the Z diagnostic to study the passband functions, �U;jðEÞ
and H½�E�ðEÞ [Figs. 3(b) and 4], as a quick check for

compatibility between their anticipated experimental spec-
tra and the unfold algorithm reported here. Quantitative
distortions can be predicted from Eqs. (32) and (43). Such
tests may be particularly useful if fine-structure spectra are
anticipated. Settings for data recording can be predicted
from Eq. (1). Unfold variances may be estimated from
typical data noise and calibrational uncertainties by insert-
ing the reconstruction of Eqs. (32) and (33) into Eqs. (11),
(13), and (14) (Sec. II C); but, some of these equations may
need adjustment, depending on the error and calibrational
models chosen. (7) For those wishing to construct an
unfold algorithm for their own filtered-XRD array, the
following is a resume of the steps taken here: (a) The
algorithm was formulated to answer issues raised in
Pt. 1: Sec. III using representative response functions and
a priori spectral information. (b) The algorithm was tested
via simulations [Pt. 1: Sec. IV and Pt. 2: Sec. III, Eqs. (43)
or (5)] and comparisons with other unfold techniques
(Pt. 1: Sec. V). (c) During experiments, cable-compensated
channel-voltage signals ViðtÞ were collected, reduced to
channel data DiðtÞ (Pt. 1: Appendix A), and unfolded to
yield the nominal unfold coefficients SjðtÞ of SunfoldðtÞ and
a flux estimate F unfoldðtÞ [Eqs. (2) and (5), respectively];
up-to-date response-function calibrations were important.
(d) Overall uncertainty estimates, �ðSjÞ and �ðF unfoldÞ,
were added to the nominal SunfoldðtÞ and F unfoldðtÞ: specifi-
cally, after characterization [Eqs. (11) and (D1) and Pt. 1:
Appendix B], data noise and calibrational uncertainties
were separately propagated in first order [Eqs. (17), (18),
and (24)–(27), and Appendix D], then combined in quad-
rature [Sec. II C 3]. Dieck [64] discusses recommended
methods of combining uncertainties in bias corrections
with random error estimates. Some of these equations
will need adjustment for differing error and calibrational
models.
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APPENDIX A: DERIVATION OF �SAND �F unfold

IN EQS. (8) AND (9)

We consider first data perturbations �Di alone. Let a
fixed spectrum SðEÞ generate the noise-free data vector d
[Eq. (1)]. If the response matrix R is well conditioned, the
matrix equation,RS ¼ d, has a unique solution S [Eq. (4)].
Adding perturbations �Di to di changes the matrix equa-
tion to RðSþ �SÞ ¼ dþ�D ¼ D, where �S encom-
passes the change in unfold coefficients induced by �Di.
Subtracting RS ¼ d from this equation and inverting R,
one then finds �S ¼ R�1ð�DÞ.
Next, consider perturbations �Rij to the unfold-matrix

elements Rij of R. For convenience, let the matrix (Rþ
�R) correspond to responses, RiðEÞ þ �RiðEÞ, which in-
teract with the fixed spectrum SðEÞ to produce noise-free,
channel data d. A consistent unfold vector S is obtained by
inverting ðRþ �RÞS ¼ d. But, suppose that one unfolds d
with R�1, instead of ðRþ �RÞ�1 [both R and Rþ �R
assumed invertible]. This inconsistent procedure yields a
perturbed unfold, Sþ �S, defined by RðSþ �SÞ ¼ d.
Again, by subtraction, one isolates the perturbation �S
induced by the �Rij’s: thus, Rð�SÞ ¼ ð�RÞS and �S ¼
R�1½ð�RÞS�. Despite its formal complexity, ½ð�RÞS�i is
equivalent to

REMAX

0 �RiðEÞSðEÞdE when SðEÞ is approxi-
mated by SunfoldðEÞ, defined by unfold coefficients ðSÞj and
basis functions BjðEÞ.
In general, both of these generic perturbations indepen-

dently contribute to "i, and the arguments for each can be
combined to give Eq. (8) in the main text.
The effect of �S on the unfolded flux estimate is like-

wise found from the definition, F unfold � �E � S, where
the fixed components of�E are the unfold bin widths�Ej.

The same difference argument as above then yields
�F unfold ¼ �E � ð�SÞ, which on substitution gives
Eq. (9). None of these expressions refer to a particular
perturbation model (deterministic or random) for �D or
�R, examples of which are given in the main text.

APPENDIX B: DERIVATION OF Cð�SÞAND
�2ð�F unfoldÞ IN EQS. (11) AND (12)

Two general tools from probability theory apply to this
analysis. The first links Cð�SÞ to �Di and �Rij. That is, if

wðx1; . . . ; xMÞ and zðx1; . . . ; xMÞ denote two functions of
the random variables, x1; . . . ; xM, then the covariance
covðw; zÞ between w and z is given in first order [1] by

cov ðw; zÞ ffi XM
i¼1

XM
k¼1

�
@w

@xi

��
@z

@xk

�
covðxi; xkÞ; (B1)

where all values of the indices are included and the deriva-
tives are nonzero. Thus, from Eq. (8), one computes
covð�Sj;�SlÞ ¼

P
N
i¼1

P
N
k¼1ðR�1Þjicovð�Yi;�YkÞðR�1Þlk,

where �Ym ¼ �Dm þ ð½�R�SunfoldÞm for m ¼ 1; . . . ; N.
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This is Eq. (13) in the text and may be more compactly
written as Eq. (11).

The second useful probability theorem provides that if
y ¼ yðx1; . . . ; xMÞ is a function of random variables
x1; . . . ; xM, then to first order [1] one has

�2ðyÞ ¼ covðy; yÞ ffi XM
j¼1

XM
l¼1

�
@y

@xj

��
@y

@xl

�
covðxj; xlÞ; (B2)

where all indices are again included in the double sum and
the derivatives are nonzero. From Eq. (B2) and the defini-
tion of F unfold in Eq. (5), one thus obtains the estimate
�2ð�F unfoldÞ ¼ PN

j¼1

PN
l¼1ð�EjÞcovð�Sj;�SlÞð�ElÞ,

listed as Eq. (14), which can also be written as Eq. (12) in
the main text.

APPENDIX C: VARIANCES, �2ð�SjÞ
AND �2ð�F unfoldÞ, FOR A RANDOM

DATA-ERROR MODEL

The error model for random noise perturbations �Di

posed in this example assumes no correlation of noise
between channels i. The covariance matrixCð�DÞ, defined
by Eq. (15), is then diagonal with eigenvalues, �2i d

2
i , where

�i is the NSR, �ð�DiÞ=di.
SubstitutingCð�DÞ into Eq. (11) and ignoring response-

function perturbations, one finds the covariance matrix
Cð�SÞ for unfold perturbations �Sj:

C ð�SÞ ¼ ðR�1Þ
�2ð�D1Þ . . . 0

..

. . .
. ..

.

0 � � � �2ð�DNÞ

0
BB@

1
CCAðR�1ÞT;

(C1)

the j; lth element of which is Eq. (16) from which Eq. (17)
follows immediately.

The variance �2ð�F unfoldÞ is similarly estimated in this
data-error model. Thus, one substitutes Cð�SÞ from
Eq. (C1) into Eq. (12) to obtain

�2ð�F unfoldÞ ¼ �E �

8>>><
>>>:

2
6664ðR�1Þ

d21�
2
1 . . . 0

..

. . .
. ..

.

0 � � � d2N�
2
N

0
BBB@

1
CCCA

� ðR�1ÞT
3
7775�E

9>>>=
>>>;
; (C2)

which reduces to the triple sum,

�2ð�F unfoldÞ ¼
�XN
i¼1

XN
j¼1

XN
l¼1

�Ej�ElðR�1ÞjiðR�1Þlid2i �2i
�
;

(C3)

and eventually simplifies to Eq. (18).

APPENDIX D: VARIANCES, �2ð�SjÞ AND
�2ð�F unfoldÞ, FOR A RANDOM CALIBRATIONAL

ERROR MODEL

In the main text, Eqs. (21) and (22) translate fit-
parameter errors, �Ai and ��i, into errors �RiðEÞ in the
response functions. It is worth pointing out that this model
works for filters and XRD’s with multicomponents or
chemical compounds only if the stochiometry is known;
materials of unknown stochiometry require additional fit
parameters (not considered here), yielding similar but
more complicated results [cf. Pt. 1: Appendix B,
Eqs. (B1) and (B2)].
The main text defines the elements �Rim of �R in

Eq. (23). Statistical correlations, covð�Rij;�RklÞ, between
them are straightforwardly derived from Eq. (22) with the
help of Appendix B, Eq. (B1). The result is

cov ð�Rim;�RknÞ ¼ �ik

�
@ð�RimÞ
@ð�AiÞ

@ð�RinÞ
@ð�AiÞ �

2ð�AiÞ þ 0

þ 0þ @ð�RimÞ
@ð��iÞ

@ð�RinÞ
@ð��iÞ �2ð��iÞ

�
;

(D1)

where the zeros indicate terms that would correlate differ-
ing channels i � k and �Ai with ��i, contrary to the
assumptions of this error model. Performing the indicated
operations, one finds

cov ð�Rim;�RknÞ ¼ RimRin

�
�2ð�AiÞ

A2
i

þ h�i	i;fim

�h�i	i;fin �
2ð��iÞ
�2i

�
�ik: (D2)

The error model thus correlates only intrachannel matrix
elements, �Rim with �Rin, which share the same fit pa-
rameters, Ai and �i. [Compare Eq. (23) for averages of the
form h�i	i;fim.]
The next step is to calculate C½ð�RÞS� from these co-

variances, coupled to the nominal unfold coefficients Sj’s,

which for error propagation are treated as constants. Now,
ð�RÞS is a vector, the ith component of which is
ð½�R�SÞi ¼ PN

j¼1ð�RijÞSj. Hence, the i; kth element of

C½ð�RÞS� is covfð½�R�SÞi; ð½�R�SÞkg. To this, one again
applies Eq. (B1) with the assumed independence of chan-
nels and finds that C½ð�RÞS�, like Cð�DÞ in Eq. (5), is
diagonal:

C ð½�R�SÞik ¼ �ik

XN
m¼1

XN
n¼1

SmSn covð�Rim;�RinÞ: (D3)

The covariances covð�Rim;�RinÞ are known from
Eq. (D2): thus,
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Cð½�R�SÞik ¼ �ik

XN
m¼1

XN
n¼1

SmSnRimRin½
2
i þ h�i	i;fim

� h�i	i;fin�2i �; (D4)

in which the NSR’s (
i and �i) of the calibrational fit
parameters (Ai and �i, respectively) are included.

The error-propagation process concludes by evaluating
Cð�SÞ and �2ð�F unfoldÞ. Equations (24) and (25) follow
directly by substituting Cð½�R�SÞ into Eqs. (11) and (12),
respectively [or, equivalently, into Eqs. (13) and (14)]. In
these derivations we have also substituted di forP

N
m¼1 RimSm and

P
N
n¼1 RinSn.

APPENDIX E: INTEGRAL PROPERTIES OF
H½�E�ðEÞ AND HunfoldðEÞ

We begin by defining the difference function, �HðEÞ �
HunfoldðEÞ �H½�E�ðEÞ, constructed from the flux-passband

functions, HunfoldðEÞ and H½�E�ðEÞ [Eqs. (42) and (44)],

and plotted in Fig. 5(a). By direct computation, the un-
weighted average h�Hi of �HðEÞ over the unfold interval
½�E� is

h�Hi ¼ hHunfoldi � hH½�E�i

¼
REHI

ELO
ðPN

j¼1ð�EjÞ�U;jðEÞ � 1ÞdE
�E

¼ 0; (E1)

a result that is visually consistent with Fig. 5(a) and yields
Eq. (45).

Similarly, one forms the inner product of�HðEÞ with an
arbitrary spectral function f. That is,

ð�HjfÞ �
Z EMAX

0
�HðEÞfðEÞdE

¼ ðHunfoldjfÞ � ðH½�E�jfÞ: (E2)

These inner products may be regarded as generalized mo-
ments of H½�E�ðEÞ and Hunfold with fixed f. Equation (47)

now follows by substituting the orthogonal decomposition
of fðEÞ from Eq. (34) and applying the same argument that
led to Eq. (36). Thus, ð�HjfÞ ¼ ðHunfoldjPN

k¼1hfikBkÞ þ
ðHunfoldj�fBÞ � ðH½�E�jfÞ; but, the first and third terms

on the right-hand side cancel, leaving ð�HjfÞ ¼
ðHunfoldj�fBÞ ¼

REMAX

0 HunfoldðEÞ�fBðEÞdE. If, in addi-

tion, f is well approximated by the Bj’s, then �fBðEÞ �
0, ð�Hj�fBÞ � 0, and ðHunfoldjfÞ � ðH½�E�jfÞ, which is

Eq. (46).
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