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An algorithm for spectral reconstructions (unfolds) and spectrally integrated flux estimates from data

obtained by a five-channel, filtered x-ray-detector array (XRD) is described in detail and characterized.

This diagnostic is a broad-channel spectrometer, used primarily to measure time-dependent soft x-ray flux

emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories,

Albuquerque, New Mexico, USA), and serves as both a plasma probe and a gauge of accelerator

performance. The unfold method, suitable for online analysis, arises naturally from general assumptions

about the x-ray source and spectral properties of the channel responses; a priori constraints control the ill-

posed nature of the inversion. The unfolded spectrum is not assumed to be Planckian. This study is divided

into two consecutive papers. This paper considers three major issues: (a) Formulation of the unfold

method.—The mathematical background, assumptions, and procedures leading to the algorithm are

described: the spectral reconstruction SunfoldðE; tÞ—five histogram x-ray bins j over the x-ray interval,

137 � E � 2300 eV at each time step t—depends on the shape and overlap of the calibrated channel

responses and on the maximum electrical power delivered to the plasma. The x-ray flux F unfold is

estimated as
R
SunfoldðE; tÞdE. (b) Validation with simulations.—Tests of the unfold algorithm with known

static and time-varying spectra are described. These spectra included—but were not limited to—Planckian

spectra SbbðE; TÞ (25 � T � 250 eV), from which noise-free channel data were simulated and unfolded.

For Planckian simulations with 125 � T � 250 eV and typical responses, the binwise unfold values Sj
and the corresponding binwise averages hSbbij agreed to �20%, except where Sbb � maxfSbbg.
Occasionally, unfold values Sj & 0 (artifacts) were encountered. The algorithm recovered * 90% of

the x-ray flux over the wider range, 75 � T � 250 eV. For lower T, the test and unfolded spectra

increasingly diverged as larger fractions of SbbðE; TÞ fell below the detection threshold (� 137 eV) of the

diagnostic. (c) Comparison with other analyses and diagnostics.—The results of the histogram algorithm

are compared with other analyses, including a test with data acquired by the DANTE filtered-XRD array

at the NOVA laser facility. Overall, the histogram algorithm is found to be most useful for x-ray flux

estimates, as opposed to spectral details. The following companion paper [D. L. Fehl et al., Phys. Rev. ST

Accel. Beams 13, 120403 (2010)] considers (a) uncertainties in Sunfold and F unfold induced by both data

noise and calibrational errors in the response functions; and (b) generalization of the algorithm to arbitrary

spectra. These techniques apply to other diagnostics with analogous channel responses and supported by

unfold algorithms of invertible matrix form.
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I. INTRODUCTION

High-temperature plasma, created in the laboratory, has
been a topic of keen interest in physics for over 50 years
[1–4]. Particularly tantalizing are hot, optically dense plas-
mas, in which radiation transport may be studied close at
hand and which may approach stellar conditions [5–9].
Such plasmas have been produced on short time scales
(& 10 ns) by intense, focused laser beams [10–12], parti-
cle beams [13,14], and most recently by z pinches of
tungsten-wire arrays [15–18]. Besides their intrinsic inter-
est to physics, these plasmas also emit copious amounts of
soft x rays (� 50 eV–3 keV), finding application as

sources for opacity measurements [9], drivers for inertial
confinement fusion (ICF) [19–23], vulnerability testing of
materials [24,25], and equation-of-state research [26,27].
Obtaining information about the time-dependent x-ray

spectrum [28] emitted by such sources is an important
diagnostic goal. The spectral shape gives clues to particle
interactions and to processes of x-ray production
and propagation in the plasma. The spectrally integrated
x-ray flux [28] assesses the radiated x-ray power from the
plasma as well as the average energy of particles within it.
A measurement of x-ray flux also permits one to ascribe a
radiation (brightness) temperature to plasmas and hohl-
raums. In addition, some operational behavior of the
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plasma generator may be assessed via x-ray emission
measurements.

Time-resolved, absolute, soft x-ray flux diagnostics form
the context of this article. Such measurements are not
trivial to make, especially in the severe environment that
accompanies pulsed-power-generated z-pinch plasmas,
where the pulse widths (FWHM) are short (� 6 ns)
[15,16], and the x-ray irradiance is intense [15,29]
(� 106 W cm�2 at 24 m from the source [30]). Under
these conditions, the detectors run in current mode. Soft
x-ray spectra pose additional problems for flux measure-
ments because photon detection in the sub-to-few keV
range occurs via the photoelectric effect, which varies
strongly and discontinuously with x-ray energy. Hence,
unless a single, soft-x-ray detector is made totally absorb-
ing or its sensitivity is somehow flattened, it will not isolate
spectrally integrated flux from spectral shape. Some single-
detector-based diagnostics have, in fact, addressed flux
measurements in this way [31–34].

Encoding [35] is another method of addressing detector
sensitivity variations within flux measurements. In this
technique, the incident x-ray spectrum is spread out over
an array ofN detectors so that each detector samples x rays
over a limited, but prescribed, spectral interval. The coding
process associates partial flux in a spectral interval with
one or more detectors, called channels. In principle, if the
incident spectrum does not vary significantly within these
x-ray intervals, variations in detector sensitivity become
less troublesome than for a single, bare detector used over a
wider energy range. If the mapping can be inverted, the
integrated x-ray flux may be estimated from the channel
data. Wavelength dispersive techniques [25,36–39] are
widely used examples of this method.

The particular subject of this article is a variant of the
N-detector encoding method for measuring x-ray flux. In
this technique, each detector in an array views the x-ray
source through its own separate filter. These filter-
detector pairs (i ¼ 1; . . . ; N) view the source at nearly
the same solid angle. The attenuation of the filter and the
sensitivity of detector then define an overall spectral
response function RiðEÞ for each such channel, which
can be designed to isolate a specific portion(s) of an
incident spectrum and can be absolutely calibrated ex-
perimentally—though, by spectroscopic standards, the
resolution obtained is poor (E=�E � 1), and the
filtered-detector responses often overlap. Figure 1 illus-
trates five response functions, used in this article, that
define several superposed regions of x-ray sensitivity (or,
so-called, ‘‘spectral cuts’’) between 100 eV and 5 keV.
Similarly shaped responses have been reported for a
variety of detectors combined as simple arrays with up-
stream filters and in differing spectral ranges [40–45].
Improvements to this basic design for soft x rays have
been achieved by inserting additional x-ray components,
upstream of the detectors [46–48].

Yet, encoding a spectrum is only half the problem.
Decoding channel data for spectral information is also
challenging. Why this should be so may also be inferred
from Fig. 1. (a) The responses RiðEÞ available from x-ray
filtration only coarsely divide the spectral range and are
relatively insensitive to spectral details on a finer scale;
hence, the data coding is ambiguous for spectra that may
differ in relatively narrow details. (b) The RiðEÞ’s are
energy dependent and still spectrally bias the channel
data—though to a lesser extent than a bare detector.
(c) Overlap of the responses raises the issue that some of
the channel data may be redundant, also degrading spectral
discrimination. (d) Added to these issues are channel-wise
perturbations due to signal noise and calibrational uncer-
tainties, neither of which need directly relate to the x rays
under study. All these effects complicate, even frustrate,
attempted reconstructions (or unfolds) of a spectrum inci-
dent on such filtered-detector-array diagnostics.
The specific focus of this article is an absolutely cali-

brated, filtered, photoelectric-x-ray-detector (XRD) array,
routinely fielded at the Z accelerator [15–18] (Sandia
National Laboratories, Albuquerque, NM, USA). The prin-
cipal task of this instrument, hereafter called the Z
diagnostic, is to estimate spectrally integrated flux of con-
tinuum x rays emitted by z-pinch plasmas and hohlraums.
The information obtained is used to study the plasmas
produced by the Z accelerator and to optimize
x-ray production [17].
This article describes and characterizes the unfold al-

gorithm for the Z diagnostic. Although many unfold tech-
niques [49,50] may potentially be harnessed for inverting
channel data from this diagnostic, we show here that its

FIG. 1. A representative set of response functions,
R1ðEÞ; . . . ; R5ðEÞ, as a function of incident x-ray energy E, for
the filtered-XRD Z diagnostic. The sharp features correspond to
characteristic x-ray absorption edges in the upstream filters and
the XRD photocathodes. At low x-ray energies the responses
together form three energy-selective, sensitivity bands (spectral
‘‘cuts’’) which, however, overlap at higher x-ray energies
and decrease by roughly another order of magnitude as
E ! �30 keV [Ref. [64]].
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response functions together with reasonable assumptions
about the x-ray source permit a straightforward unfold
algorithm with sufficient detail [51,52] to make the
assigned flux estimate—especially at peak emitted x-ray
power. The algorithm is, in fact, semiclassical (an N � N,

directly inverted, product-moment method with a priori
constraints, histogram basis functions, and collocated data
[49,53,54]) and can be implemented on a real-time basis.
Previous publications [14,29,55–57] have sketched this
algorithm, but no justification or detailed testing of the
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FIG. 2. Stability and reproducibility of the channel responses. The three curves in each frame are curve fits to calibrational x-ray data
(not shown). Each frame includes (a) the reference calibration RiðEÞ for the Z diagnostic (solid curve), (b) a subsequent calibration
RiaðEÞ after several months’ service, and (c) a calibration RibðEÞ with different physical components (gray dots). Differences between
Ri and Ria indicate a drift in the diagnostic between calibrations. The jump in the sensitivity of Ria at 1839 eV, not visible in Ri, is due
to Si adsorbed onto the XRD’s from the vacuum system. A comparison of Ri and Rib shows how closely R1; . . . ; R5 can be reproduced
with different XRD’s and filters. The unfold interval, ½�E� ¼ ½137; 2300� eV, is indicated in each frame.
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method has been reported. Thus, the purpose of this article
is (a) to give a complete account of the algorithm (formu-
lation, simulations, experimental comparisons, and error
analysis), (b) to show how and why this particular algo-
rithm responds to arbitrary spectral functions, and (c) to
point out major pitfalls associated with this and other
spectral inversions for similar diagnostics. Since this algo-
rithm is not a panacea, alternative methods are noted. The
intended audience comprises those who field filtered-
detector diagnostics, those who use the results of such
diagnostics in pulsed-beam plasma experiments, and those
considering the use of these techniques. (A separate pro-
cedure for estimating x-ray flux from such arrays without
unfolding has been reported by Fehl et al. [29].)

This article is divided into two companion papers
(denoted as parts 1 and 2), of which this first part considers
the formulation and testing of the unfold algorithm. Here,
Sec. II presents a detection model for the Z diagnostic (in
terms of its response functions), describes the expected
spectral properties of x rays emitted by z-pinch plasmas
at the Z accelerator, and identifies potential difficulties in
reconstructing such spectra from Z-diagnostic data.
Section III derives the Z unfold algorithm. Major emphasis
is placed on evaluating the spectral behavior (domain,
condition, and resolution) of the channel-wise responses
by applying numerical tools that, we believe, are largely
untapped by the pulsed-beam plasma community. These
appraisals, together with the a priori spectral information
and the goal of estimating x-ray flux, lead in first order to
an exactly determined reconstruction in matrix form.
(Alternative choices are noted.) Section IV evaluates in-
trinsic distorting effects of the algorithm for a range of
prescribed spectra by simulating Z-diagnostic data and
then unfolding these data. Both Planckian and non-
Planckian sources are considered over a range of spectra
not previously published for such diagnostics. Section V
compares the results of the Z algorithm to other unfold and
flux-estimation techniques with both simulated [29] and
experimental data [58]; included are previously unpub-
lished unfolds of data acquired by the DANTE filtered-
XRD diagnostic [46,47] at the NOVA Laser Facility
[59,60]. Concluding remarks and a summary follow these
major sections.

Part 2 of this article examines broader issues for the
Z-unfold algorithm and incorporates analysis not previ-
ously reported for the Z diagnostic nor, we believe, for
similar filtered-detector arrays applied to pulsed-beam
plasma x-ray sources. Following a summary of the defining
unfold equations in the Introduction, Sec. II examines error
propagation and the stability of the unfold in the face of
systematic and random perturbations, due to signal noise
and calibrational uncertainties. To determine how the Z
diagnostic and its unfold method responds to arbitrary
spectral sources, Sec. III generalizes the algorithm by
eliminating explicit reference to simulated channel data,

a step which leads to spectral sensitivity functions
[35,50,61] (called here, passband functions) for each pa-
rameter of Sunfold and the flux estimate. These tools quan-
titatively explain properties of the algorithm noted in part 1
and its limitations. A summary and concluding remarks
follow in Sec. IV.
Both parts of this article include appendices and infor-

mational end notes. References to part 2 of this article are
prefixed with ‘‘Pt. 2:’’ (e.g., ‘‘cf. Pt. 2: Fig. 2’’); references
to this part contain no prefix (e.g., ‘‘cf. Fig. 2’’).

II. MATHEMATICAL BACKGROUND AND
ASSUMPTIONS

(Mathematical notation and definitions pertaining to this
article appear in Pt. 2: Table I.)

A. General diagnostic model

We begin with a formal model for encoding a time-
varying x-ray spectrum SðE; tÞ into experimental channel
data DiðtÞ for an N-channel, filtered-detector array. Under
controlled conditions, DiðtÞ can be written as

DiðtÞ ¼
Z EMAX

0
RiðEÞSðE; tÞdEþ "iðtÞ

¼ diðtÞ þ "iðtÞ ði ¼ 1; . . .NÞ; (1)

where E is the x-ray energy. The variable t denotes time as
an index for corresponding spectra and data. For computa-
tional purposes, it is convenient to define DiðtÞ [Asr�1] as
the recorded signal voltage Vi½V� in the ith XRD channel,
divided by the characteristic impedance z0½�� of the re-
cording system and by the solid angle, with a correction for
off-normal observation (Appendix A). In the following,
DiðtÞ is sometimes treated as the ith component of an
N-dimensional, experimental data vector DðtÞ.
Two contributions [62,63] to the experimental data

DiðtÞ are accounted for in Eq. (1). The first, denoted
diðtÞ ¼

R
RiðEÞSðE; tÞdE, represents noise-free signal

from filtered x rays. Each response function RiðEÞ quanti-
fies the detector current per unit x-ray power (AW�1) and
is known from experimental calibrations (e.g., Fig. 1). The
spectrum SðE; tÞ is the differential energy flux (typically,
W sr�1 eV�1), viewed normal to the source. (Alternate
units, W sr�1 eV�1 cm�2, may be used for known source
area.) Physically admissible functions, RiðEÞ and SðE; tÞ,
are non-negative (cf. Secs. II B and II E for further restric-
tions.) The integral in Eq. (1) is taken over x-ray energies
up to some cutoff EMAX, above which the responses are
deemed insensitive to x rays or the differential spectrum
disregarded. On the basis of Fig. 1, one might choose, e.g.,
EMAX * 5 keV [64,65]. However, approximating SðE; tÞ
over a smaller interval may prove adequate for many
experiments (cf. Sec. III A). [The same notation, diðtÞ,
applies if SðE; tÞ is replaced by less restrictive spectral
functions, fðE; tÞ.]
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The second contributor to DiðtÞ in Eq. (1) is "iðtÞ, which
represents channel-dependent processes that perturb the
underlying x-ray signal diðtÞ and includes geometrical
errors, signal noise, and calibrational uncertainties. "i,
unlike di, may assume negative values. Any unfolding
algorithm of Eq. (1) must, therefore, cope with perturbed
channel data DiðtÞ, since the noise-free x-ray data diðtÞ are
not known (cf. Pt. 2: Sec. II).

Overall, Eq. (1) is linear in both contributions. Thus,
e.g., if S1 and S2 are simultaneously imposed spectra and �
is a scalar, then di½S1 þ �S2� ¼ di½S1� þ �di½S2� obtains.
This condition places x-ray flux limitations on the Z
diagnostic [62] (cf. Appendix B).

B. Known properties of Ri, expectations for S,
and typical data Di in z-pinch experiments

Chandler [56,66] has described the construction, cali-
bration, and fielding of the Z diagnostic, which is based on
earlier designs [67,68]. This x-ray probe comprises an
array of five, independently filtered, carbon XRD’s. Such
detectors are generally fast and have a large, linear dy-
namic range. The designed spectral range of the Z diag-
nostic is�100 eV–2 keV. Similar, but more sophisticated,
diagnostics have been reported, specifically, by Kornblum
[46] and Kauffman [47] (‘‘DANTE’’, 15 channels between
�100–3 keV) and by Bourgade [48] (‘‘DMX’’, 18 chan-
nels between �50 eV–20 keV).

The absolute calibration of the Z diagnostic depends on
characterizations of the XRD’s and upstream filters. Each
response function RiðEÞ is modeled as the product of two
separate and independent measurements:

RiðEÞ � �iðEÞ�iðEÞ: (2)

Here, �iðEÞ is the spectral current sensitivity of the ith
XRD to incident x-ray power, and�iðEÞ is the net spectral
transmission of the corresponding upstream filter—some-
times composite. Both functions are based on least-squares
fits to calibrational data (cf. Appendix B).

Figures 2(a)–2(e) illustrate the stability and reproduc-
ibility of channel responses nominally used for the Z
diagnostic. Three calibrational fit curves are shown for
each channel. The solid lines, labeled R1ðEÞ; . . . ; R5ðEÞ,
represent �iðEÞ�iðEÞ for a particular set of new filters and
carbon XRDs. These curves (on a linear scale) are the same
as shown in Fig. 1 and are used here and elsewhere [29,55]
as reference responses. The dashed curves, denoted
R1a; . . . ; R5a, were obtained for the same XRD’s after
extended service at the Z accelerator in vacuum environ-
ments of �10 �Torr. One notes a calibrational drift,
RiðEÞ ! RiaðEÞ, especially in channels 1 and 5. The gray
dotted curves, R1b; . . . ; R5b, show how closely the refer-
ence responses can be matched with replacement parts. For
unfolding purposes, it is more important to have accurate
channel calibrations than to duplicate the specific

functions, R1ðEÞ; . . . ; R5ðEÞ, exactly [cf. Fig. 10(a) and
Pt. 2: Sec. II B].
The five-channel filtered-XRD array is one of several

diagnostics applied to z-pinch plasmas at the Z accelerator
[15–18,25,30,32–34,38,39]. This pulsed-power generator
delivers up to 20� 106 A and 3� 106 J to a load composed
of hundreds of coaxial wires (typically tungsten, total mass
�1 mg) [9,15–17,23,69,70]. Over a time scale of�100 ns,
thewires vaporize, implode, and stagnate on axis, creating a
roughly cylindrical, x-ray-emitting plasma (� 2 mm di-
ameter, length 1–2 cm, and lifetime of 5.5–10 ns,
FWHM). The current-generated B-field confines, com-
presses, and heats the z pinch. X-ray framing camera pic-
tures depict a spatially complex and time-dependent
brightness pattern [15,70,71]. Haines [71] has reviewed
progress in understanding the dynamics of such plasmas.
The spectrum SðE; tÞ of photons emitted by a z-pinch

plasma depends on the atomic energy levels and density of
the ions, their degree of ionization, and the materials
surrounding the plasma [6]. The pinch parameters above
suggest that at stagnation, tungsten z-pinch plasmas may
qualify as both hot (ion and electron temperatures, Ti, Te >
100 eV) and dense (> 1018 ions=cm3) where local-ther-
modynamic-equilibrium conditions prevail. Hence, one
expects SðE; tÞ versus E to be largely continuous, but
generally punctuated by both emission and absorption
features [5–7,25,72]. In the absence of thermal gradients
within the tungsten plasma and its environment, SðE; tÞ is
often approximated by a time-varying, blackbody
(Planckian) spectrum [9], with possibly a non-Planckian
high-energy exponential tail [25,37]. An upper-bound
brightness temperature [37] for a z pinch at the Z accel-
erator may then be estimated by modeling the plasma as a

FIG. 3. XRD voltage signals ViðtÞ for Z-shot 165
(R1b; . . . ; R5b, Fig. 2). In this experiment the signal-to-data-
conversion factor, � ¼ DiðtÞ=ViðtÞ, was independent of channel
(cf. Appendix A). The signals do not necessarily peak together.
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cylindrically symmetric, blackbody radiator (1:26 cm2

of surface area, as above) in equilibrium with the
average incoming electrical power (550� 1012 W ¼
3 MJ=5:5 ns). This analysis yields a blackbody tempera-
ture of �250 eV, where �95% of the total radiated x-ray
power is delivered in photons of energy E & 1 keV. Based
on several x-ray diagnostics, the peak measured x-ray
power at Z has been more modest (* 200� 1012 W
with x-ray yields * 2� 106 J into 4� sr) and represents
a lower brightness temperature [9,15,18,25]. (The Z accel-
erator was updated and renamed ZR in 2007.)

In this article, we focus our attention on continuum
spectra from a z pinch, assuming (a) that the emitted
spectrum SðE; tÞ may be—but need not be—Planckian;
(b) that the high-energy tail of this spectrum is at least
asymptotically bounded by a 250-eV Planckian, just esti-
mated; and (c) that negligible radiated flux is associated
with line spectra [7] (cf. Sec. IV and Pt. 2: Sec. III).

RawXRD voltage signals ViðtÞ for Z-shot 165 (a typical,
bare, tungsten, z-pinch experiment) are shown in Fig. 3. At
peak, the noise-to-signal ratio (NSR) was�1% in channels
1–4 and�5% in channel 5. Within�3 ns of peak signal, a
(NSR) & 10% is still a reasonable bound for all the
channels. The corresponding reduced channel data,
D1ðtÞ; . . . ; D5ðtÞ, in Eq. (1) are similar to these traces
because the channel-wise solid angles were identical.
From such time-dependent measurements DiðtÞ we wish

to invert Eq. (1), extracting enough information about
SðE; tÞ to estimate the spectrally integrated, time-
dependent x-ray flux [28]. There are, in fact, several mea-
sures of interest, of which we define

F ðtÞ �
Z EMAX

0
SðE; tÞdE (3)

and

TABLE I. A priori information concerning source x-ray spectra and response functions for the filtered-XRD diagnostic at the Z
accelerator.

Assumption Description Specific effects Section cited

1 Eq. (1) connects data, spectra, and noise

at each time t.
Data is linear with the spectral components

and without threshold or saturation effects.

Error sources are systematic or random.

Pt. 1: II A, Pt. 2: II

2 RiðEÞ and SðE; tÞ are real and square

integrable over their espective domains:

i.e.,
R
R2
i ðEÞdE is finite over ½0; EMAX�,

as is
RR
S2ðE; tÞdEdt over ½0; EMAX� �

½0; tEND�, where tEND marks the termina-

tion of data.

Ri and SðE; tÞ at fixed t belong to the real

Hilbert space L2 of square-integrable, real

functions, defined on ½0; EMAX�. Linear

functionals and operators may be defined

on this space, but certain unbounded behav-

ior is excluded. The total energy deposited

in the diagnostic during irradiation is finite.

Pt. 1: II D, Pt. 1: III C,

Pt. 1: IV, Pt. 2: III

3 Ri,S 	 0 for i ¼ 1; . . . ; N Noise-free data are non-negative. Any

negative-valued real data must, therefore,

come from the noise terms, "i, in Eq. (1).

Pt. 1: IV, Pt. 2: III

4 SðEÞ extendsa over the Ri’s but not sig-

nificantly beyond

An effective unfold interval ½�E� ¼
½ELO; EHI� ¼ ½137; 2300� eV is identified,

outside of which Sunfold � 0.

Pt. 1: III A. Pt. 2: III

5 SðEÞ is broad and nearly continuousb

over the Ri’s

½�E� can be partitioned by the response

functions and histograms may be used to

approximate Sunfold.

Pt. 1: III D

6 Depending on the spectral temperature,

Planckian spectra are feasible, but insuf-

ficient to represent all admissible, con-

tinuum source spectrac

Test cases for Eq. (1) and the unfold proce-

dure are provided.

Pt. 1: III A, IV

7 250 eV is the maximum brightness tem-

perature expected

Bounds the unfold interval ½�E� at high

x-ray energies

Pt. 1: II B, Pt. 1: III A

8 Perturbations "i may be described as the

sum of independent perturbations in the

data and the responses.

Error propagation Pt. 2: II

aS is thus assumed not to be concentrated over the tail regions of the responses. In principle, one could field multiple diagnostics with
differing responses so that this expectation would be true of some response set.
bS is thus without appreciable structure compared to the response functions.
cHence Planckian spectra will here be considered as reasonable approximations but not as constraints on Sunfold.
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F ½�E�ðtÞ �
Z EHI

ELO

SðE; tÞdE; (4)

where F represents the total incident x-ray flux of S
(for EMAX sufficiently large) and F ½�E� is the flux of

S in a yet-to-be-specified subinterval, ½�E� � ½ELO; EHI�,
of ½0; EMAX� [cf. Eq. (1)]. Both these measures are func-
tionals of S (Pt. 2: Table I), as is a third x-ray flux measure,
F unfold, defined below in Eq. (15).

C. Inversion difficulties and mitigation for Fredholm
integral equations of the first kind

With the noise terms "i ignored, the mathematical model
postulated in Eq. (1) at each time step may be rearranged asZ b

a
RiðxÞfðxÞdx ¼ yi ði ¼ 1; . . . ; NÞ; (5)

known as an inhomogeneous, discrete, Fredholm integral
equation of the first kind [49,53,54,63,73–76]; the order of
variables emphasizes that the yi’s and Ri’s are given and f
is sought. In general, these quantities have no physical
significance, although we evocatively refer to the Ri’s as
responses and the yi’s as channel data. However, we call
the f’s spectral functions, not spectra S (which are further
constrained by Table I).

Equation (5) has been much studied [35,49–54,61–
63,73–93]. Viewed as a linear mapping M from an
infinite-dimensional space of real functions fðxÞ into an
N-dimensional space of real data vectors ðy1; . . . ; yNÞ
[cf. Pt. 2: Sec. III], it associates each f with one data
vector, as long as the integrals in Eq. (5) exist. However,
due to the disparity in dimension between these functions
and vectors,M is perforce a many-to-one mapping; that is,
many distinct f’s are associated with at least some vectors
ðy1; . . . ; yNÞ [84]. Hence, there is no necessary association
of arbitrary ðy1; . . . ; yNÞ with a unique f and thus no
general inverse mapping M�1. In the mathematical litera-
ture, inverse problems suffering from nonuniqueness
(among other maladies) are diagnosed as ill posed
[49,52,63,80].

If the nature of M in Eqs. (5) and (1) is ignored and an
inversion fðxÞ is nevertheless attempted for given data, a
number of redoubtable mathematical pathologies may be
encountered [49,52,63]. These difficulties include issues
already noted (Sec. I) plus the following: (1) Since only
Ri-weighted moments of fðxÞ appear in Eq. (5)—not fðxÞ
itself—fine details in fðxÞ can be obliterated (e.g. averaged
out or distorted) in ðy1; . . . ; yNÞ [49]. (2) The many-to-one
nature of M implies the existence of nontrivial functions
f0ðxÞ [61,62,94] satisfyingZ b

a
RiðxÞf0ðxÞdE � 0 (6)

for all i ¼ 1; . . . ; N; we call these null functions (or invis-
ible functions [51]). If the RiðxÞ’s in Eqs. (5) and (6) are all
non-negative, such null functions must either oscillate in

sign or be zero valued. It follows from Eqs. (5) and (6) that
if fðxÞ is mapped into vector ðy1; . . . ; yNÞ, then so is fðxÞ þ
�f0ðxÞ for arbitrarily large scalars �. What is more, f0ðxÞ
need have no relation at all to fðxÞ. Thus, even exact
knowledge of the functions RiðxÞ and the vectors
ðy1; . . . ; yNÞ in Eq. (5) is insufficient to distinguish fðxÞ
from fðxÞ þ �f0ðxÞ in an inversion process [49]. Left
unaddressed, this pathology can lead to distinct inversions,

(say) fð1ÞunfoldðxÞ and fð2ÞunfoldðxÞ from different unfold algo-

rithms, that bear no resemblance to one another, nor to
fðxÞ, and yet identically satisfy Eq. (5) [49,95]. (3) A
complementary pathology obtains if some inconsistency
exists among the data, responses, and spectral functions.
There may then be unrealistic associations, or no associa-
tions at all [94], between a given data vector ðy1; . . . ; yNÞ
and any fðxÞ. Major causes of inconsistency include the
following: (a) A prescribed parametric form of fðxÞmay be
incorrect; e.g., Planckian spectra might be erroneously
assumed for data actually generated by line spectra.
(b) The responses RiðxÞ substituted in Eq. (5) may not be
the functions that generate ðy1; . . . ; yNÞ. (c) Some RiðxÞ’s
may be redundant; thus, ofN pieces of data measured, only
Mð<NÞ represent independent information about fðxÞ,
and arbitrary ðy1; . . . ; yNÞ cannot be directly addressed by
M [50,51,61,62]. (4) Even marginally independent RiðxÞ’s
[49,51,62,63] may still overwhelm a spectral inversion by
uncontrollably amplifying computational and experimen-
tal noise. (The associated inversion matrices are then
termed ill conditioned [49,62,63,82,96,97]).
In summary, unfold algorithms for Eqs. (5) and (1) by

themselves are bedeviled by uncontrolled null spectra,
inconsistencies, instabilities, and sensitivity to error.
Numerical tests have been devised to quantify the potential
of a given unfold problem for such pathological behavior
(cf. Sec. III, Appendix D, and [82,83,96,97]).
Partial recovery of fðxÞ in Eq. (5) may, however, be

possible if one can inject some trustworthy information
about fðxÞ into the problem—in addition to the measured
data and the response functions. Such information is called
a priori information and translates into constraints
[49,51,53,62,63,80,83] on an approximate reconstruction,
funfoldðxÞ, of fðxÞ. The goal is to suppress the pathologies
just noted, while recovering fðxÞ in sufficient detail for
some diagnostic purpose.
A priori information [51] may derive from theoretical

considerations or other cofielded diagnostics and encom-
passes many forms of constraint. For example, such extra
information might prescribe some particular parametric
expression for funfoldðxÞ, imply numerical bounds on
funfoldðxÞ and its derivatives, or suggest a least-squares
minimization criterion to ‘‘resolve [52]’’ Eqs. (1) and (5)
—as opposed to an exact solution. In fact, we have already
presented an energy argument (Sec. II B) which bounds the
brightness temperature for bare z pinches on the Z accel-
erator to & 250 eV. This information is used below
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(Sec. III A) to shorten the domain of Sunfold relative to the
larger energy interval ½0; EMAX�, suggested by Fig. 1. More
sophisticated constraints may be imposed by simulta-
neously fitting the measured data while optimizing some
other spectral function, an approach (called regularization)
that generally leads to a tradeoff between spectral resolu-
tion and overall uncertainties in the reconstruction
[49,50,62,74,80,81]. This article is not a general review
of unfolding techniques, which constitute a major field of
mathematical study; the interested reader may consult
[35,49–54,61–63,77–82,85–89].

D. Blackbody spectra as parametric spectral
functions for z-pinch plasmas

As noted above, the focus of this article is the x-ray flux,R
SðE; tÞdE, incident on the Z diagnostic, and we wish to

impose as little a priori information about SðE; tÞ as
necessary.

One possible course is to prescribe a blackbody
(Planckian) spectrum SbbðE; TÞ [5,7,37,98] of the form

SbbðE; TÞ ¼ KE3ðeE=T � 1Þ�1; (7)

for SunfoldðE; tÞ. (Here, T is a time-dependent parameter
and K ¼ 2c�2h�3 � 5 kWsr�1 cm�2 eV�4 for E and T in
eV.) Then, in principle, a comparison of simulated noise-
free data ½d1ðTÞ; . . . ; dNðTÞ�,

diðTÞ ¼
Z EMAX

0
RiðEÞSbbðE; TÞdE; (8)

with measured data, ½D1ðtÞ; . . . ; DNðtÞ�, estimates TðtÞ
[99]. (This approach is useful when the parametrization
of SðE; tÞ is well known and the fit parameters are few
[92,99–103].)

Figure 4 makes such a comparison for the Z diagnostic.
The broken lines represent simulated data, diðTÞ, generated
from Planckian spectra, SbbðE; 150 � T � 225 eVÞ, and
the responses, R1b; . . . ; R5b, in Fig. 2. The solid dots Di

are peak data taken during Z-shot 165 (Fig. 3) with
this calibration and have been uniformly scaled to force
D1 � d1ð200 eVÞ. (Normalization is used here because the
Z diagnostic is not spatially resolving, cf. Pt. 2: Sec. II C,
where plasma dimensions from imaging diagnostics are
included.)

It is clear from Fig. 4 that theDi are, in fact, most similar
in shape to the scaled diðT ¼ 200 eVÞ. But, one also notes
distinct disagreement at channel 3, the response function of
which appears to be both stable and reproducible (Fig. 2).
If this calibration of R3b is accepted, then one may infer
that the actual peak spectrum in this shot differed from a
simple Planckian spectrum, SbbðE; TÞ. Spatial variations in
opacity and temperature, for example, can produce non-
Planckian spectra.

E. A priori assumptions about SðE; tÞ adopted here

Given the comparison in Fig. 4, it seems prudent to be
less explicit about the parametric form of spectra emitted
by z-pinch plasmas. Table I summarizes the general a
priori assumptions about spectra considered here. The
effect of each assumption on S is identified in the table,
together with pertinent notes. To reiterate, spectra that at
least approximately follow these assumptions are denoted
by S, with reconstruction Sunfold (Secs. II, III, IV, and V);
the corresponding notations, f and funfold, are used for
more general spectral functions (Pt. 2).

III. DEVELOPMENT OF THE UNFOLD
ALGORITHM FOR THE Z DIAGNOSTIC

This section illustrates the general strategy [49,51] used
to attack the inversion problem posed in Eqs. (1) and (5) for
the Z diagnostic. Unfolding techniques are generally prob-
lem dependent [49–52,80,81], and several algorithms may
be valid. The initial step in this plan probed the response
functions for the actual spectral information encoded: an
effective energy domain was determined for S; channel
redundancy was assessed; and the spectral resolution of the
responses was estimated. This information, combined with
further physical constraints on S, then suggested a feasible
reconstruction Sunfold for the desired estimate of x-ray flux.
Equation (1) was then reformulated as an N � N problem
and inverted numerically. The assumed constraints
(Table I) were found sufficient to control the inherent ill
posedness of the inversion process. An upper bound to

FIG. 4. Comparison of simulated Planckian data with scaled
peak experimental data from Z-shot 165. The simulated profiles,
diðTÞ vs i, were constructed from responses R1b; . . . ; R5b (Fig. 2)
and Planckian spectra SbbðE; 150 � T � 250 eVÞ. The experi-
mental profiles, Di vs i, were obtained in two ways: the solid
points correspond to peak values of ViðtÞ in Fig. 3, while the
open circles derive from interpolated values of Vi when V1ðtÞ
peaks. The two Di-vs-i profiles have been independently scaled
to coincide with channel 1 of dið200 eVÞ vs i.
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error propagation was estimated. The final unfold algo-
rithm is given in Eqs. (20) and (21). (The principal equa-
tions are also summarized in Pt. 2: Sec. I.)

A. Defining an effective unfold x-ray
energy domain: ½�E�

Since Eq. (1) integrates RiðEÞSðEÞ over a wide enough
domain to account for nearly all soft-x-ray interactions in
the Z diagnostic (Fig. 1), one might think that a recon-
struction, SunfoldðEÞ, must cover the same interval, e.g.,
½0; EMAX * 5 keV� in Fig. 1. However, often a smaller
unfold domain, ½�E� � ½ELO; EHI� 
 ½0; EMAX�, is appro-
priate for Sunfold if the responses mostly detect x rays over a
narrower energy range and if typical spectra are ignorable
for E � EMAX—a process analogous to cropping a photo-
graphic image. In fact, contracting the unfold domain
limits some pathological unfold behaviors. For example,
if all the Ri ! 0 in some local x-ray region, then SunfoldðEÞ
is untied to channel data Di in that region [cf. Eq. (6)] and
can assume arbitrary values, unless further constrained.
[A corresponding abnormality can occur if SunfoldðEÞ is
unconstrained where one expects SðEÞ ! 0]. Sometimes
these pitfalls can be avoided by limiting SunfoldðEÞ to a
subinterval ½ELO; EHI� of ½0; EMAX�. (Effects of misjudging
½�E� are noted in Sec. IV and Pt. 2: Sec. III.)

Since neither the Ri’s of the Z diagnostic nor the ex-
pected SðEÞ define precise thresholds, ELO and EHI, for the
unfold interval ½�E�, it is reasonable to look for integral
criteria. For this we chose a sequence of Planckian spectra
SbbðE; 60 eV � T � 250 eVÞ and simulated x-ray data
with each. We then required ELO and EHI to be chosen so
that within ½ELO; EHI� each SbbðE; TÞ accounted at least for
a prescribed fraction (1� �) of the total channel data due
to ½0; EMAX�. We chose � ¼ 5%, so that ½ELO; EHI� is
analogous to a 95% statistical tolerance interval of width
�E ¼ EHI � ELO [104,105]. One finds that ELO and EHI

can be chosen independently, and that neither depends on
the spectral shape within ½�E� (Appendix C). The result,

½ELO; EHI� � ½137 eV; 2300 eV� � ½�E�; (9)

satisfies our fractional-data requirement for all the selected
Planckian spectra.

Figure 5 places ½�E� within the context of 60-eV and
250-eV, Planckian spectra. The dashed curves are normal-

ized: SbbðE; TÞ � SbbðE; TÞ½
REMAX

0 SbbðE0; TÞdE0��1. The

solid lines indicate cumulative integrals, IðE; TÞ ¼R
E
0 SbbðE0; TÞdE0, representing the fractional flux for E �

EMAX. (For convenience in this example, numerical inte-
gration was actually terminated at 1.2 and 5 keV for T ¼
60 and 250 eV, respectively; extended computation altered
the result by <0:1%.) One sees that �25% of the flux of
SbbðE; 60 eVÞ lies below ELOð137 eVÞ and is largely un-
detected in the Z diagnostic (Appendix E, Fig. 13). At

high energy, only �2% of SbbðE; 250 eVÞ lies above
EHIð2300 eVÞ.

B. Assessing the independence of the RiðEÞ’s
The N response functions for the Z diagnostic were next

probed for linear dependence (Pt. 2: Table I). One can show
that if (say) N �M of these are dependent [i.e., RkðEÞ ¼P

M
i¼1 �k;iRiðEÞ,M< k � N], then the corresponding x-ray

data di are redundant and exhibit a channel-wise pattern:
ðd1; . . . ; dM;�M

i¼1�Mþ1;idi; . . . ;�
M
i¼1�N;idiÞ (Appendix D).

But, the measured data (Di ¼ di þ "i) need not follow this
pattern because they include perturbations "i that may be
unrelated to the responses. Thus, in general, there is no
spectrum SðEÞ that uniquely and exactly satisfies Eq. (1)
for such dependent responses ([50,51,61,62], Appendix D).
On the other hand, if the responses are linearly indepen-
dent, one can demonstrate at least one exact solution to
Eq. (1) for arbitrary measured Di (Appendix D, Sec. III E).
The absence or presence of linear dependence thus sug-
gests whether an exact solution or a solution based on some
other criteria (e.g., least squares [14,49]) is appropriate.
The response set fRiðEÞgNi¼1 was tested for dependence

over domain ½a; b� by examining the Gram matrix G½a; b�
for singularity [52,53,62,106–112], where

ðG½a; b�Þij ¼ Gij �
Z b

a
RiðEÞRjðEÞdE: (10)

G is a real, symmetric, non-negative, N � N matrix
for the RiðEÞ’s considered here. For example,
G½137 eV; 2300 eV� for responses R1; . . . ; R5 in Fig. 1 is

FIG. 5. Normalized spectral shapes and cumulative shape in-
tegrals for Planckian spectra of temperatures T ¼ 60 eV and
250 eV. The dashed curves (left axis) are normalized Planckian
shape functions, SbbðE; TÞ. The solid curves [right axis] show the
corresponding cumulative integrals, I½E; T� ¼ R

E
0 SbbðE0; TÞdE0

for E � EMAX, where I½EMAX; T� � 1. The unfold interval,
½�E� ¼ ½ELO; EHI� ¼ ½137 eV; 2300 eV� is indicated. (Both or-
dinate axes share the same numerical scale, but different units.)

CHARACTERIZATION AND . . . . I. FORMULATION AND . . . Phys. Rev. ST Accel. Beams 13, 120402 (2010)

120402-9



G ½137 eV; 2300 eV� ¼
�
321

pA2 eV

W2

�

�

25 4 8 20 3
� 11 1 3 1
� � 12 9 1
� � � 19 3
� � � � 1

0
BBBBB@

1
CCCCCA;

(11)

where, for clarity, a common scalar has been factored out
and symmetric elements are not displayed. (The other
responses in Fig. 2 and wider integration intervals yield
similar results.)

G was then factored by the method of singular-value
decomposition (SVD) [49,51,61,74,75,82,83,96,97] to ex-
tract (Appendix D) the N singular values, g1 	 g2 	
� � � 	 gN 	 0 [49,54,76,82,84,96,97,106,113], for which
j detðGÞj ¼ �N

i¼1gi [114].G is exactly singular if any gk �
0. No null values were found for these Gram matrices.

In numerical contexts, singular values gk ffi 0 indicate
approximate singularity (i.e., ill conditioning) ofG and can
still be troublesome for computational stability and error
propagation (cf. Sec. IVA). Two simple tests were applied.
For the first, ðgk=g1Þ vs k was plotted and scrutinized for a
sharp drop afterM<N terms: by convention a discontinu-
ity of the order of computational round-off error (& 3�
10�7 for a 5� 5 matrix in single precision (Appendix D,
[74,82]) indicates ill conditioning. Alternatively, the
condition number [49,51,74,75,82,83,96,97], condðGÞ ¼

ðgN=g1Þ�1, indicates ill conditioning for large values
(* 3� 106 [74], Appendix D).
Figure 6 shows ðgk=g1Þ vs k for the Gram matrices G

[137 eV, 2300 eV] andG [30 eV, 30 keV], noted above. No
large drops are visible; in fact, the smallest ratios of
singular values are 0:0086ðffi 1=116Þ and 0:0146ðffi
1=68Þ, respectively. Hence, at worst, condðGÞ is �116,
well below the threshold for ill conditioning.
The above analysis, therefore, shows that the responses

of the Z diagnostic in Figs. 1 and 2 are linearly independent
over a wide domain of x-ray energies.

C. Estimating the spectral resolution of the Ri’s

Although linearly independent, the response functions
of the Z diagnostic nevertheless overlap considerably.
Thus, our third assessment probed for x-ray discriminating
regions, defined collectively, which may span the unfold
interval ½�E�. The result is relevant for approximating S.
A useful method of defining resolution is the Backus-

Gilbert (BG) technique [115–117]. This approach has been
extensively examined [49,50,53,61–63,74,82,112] and is
not duplicated here. It (a) determines linear combinations
of the given Ri’s that represent narrower ‘‘hybrid’’ re-
sponses than the Ri’s alone and (b) associates the defined
‘‘widths’’ of these hybrids with spectral resolution regions
or bins. The BG method requires independent Ri’s in ½�E�
but assumes no spectral shape for S.
A detailed BG analysis of responses R1; . . . ; R5 in Fig. 1

has been reported in Ref. [55]. Table II shows the five
resolution bins thus obtained. As suggested by Fig. 1,
BG supports three, low x-ray-energy bins, defined by
ELOð137 eVÞ and the characteristic x-ray edges (284,
513, and 1020 eV) but also adds two high-energy bins
below the upper x-ray limit EHIð2300 eVÞ. For this set of
(N ¼ 5) response functions, ½�E� can thus be effectively
subdivided into (M ¼ N) contiguous resolution bins.
Table II lists other binwise characteristics of this partition;
the N bin widths �Ej will sometimes be regarded as

components of a fixed vector, �E.

FIG. 6. Ratios of singular values (SV’s) for the Gram matrix G
and response matrix R. The points labeled A (blue) and B (red)
are the SV ratios, gk=g1, of G evaluated over intervals, [30 eV,
30 keV] and [137 eV, 2300 eV], respectively, while points C are
the SV ratios, rk=r1, of R for [137 eV, 2300 eV]. The legend
notes the largest SV’s, g1 and r1, for each set of points. (The
solid lines are least-squares fits to guide the eye.) The condition
number, condðGÞ ¼ g1=g5, ranges from 68—116, depending on
the evaluation interval; and condðRÞ ¼ r1=r5 is �11.

TABLE II. Resolution bins for response functions R1; . . . ; R5

(Fig. 1) as estimated by the Backus-Gilbert method [115–117].
The jth bin is variously denoted as ½Ej; Ej þ 1� and ½�Ej� in the

text; its length is �Ej ¼ Ejþ1 � Ej. The average x-ray energy in

the jth bin is denoted as �Ej ¼ ðEjþ1 þ EjÞ=2. The spectral

resolution, �Ej=�Ej, is also noted.

Bin j ! 1 2 3 4 5

Ej (eV) 137 284 513 1020 1500

Ejþ1 (eV) 284 513 1020 1500 2300
�Ej (eV) 211 399 767 1260 1900

�Ej (eV) 147 229 507 480 800
�Ej=�Ej 1.4 1.7 1.5 2.6 2.4
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D. Defining an approximation Sunfold to the spectral
source S and the unfolded flux F unfold

Solutions to integral-differential equations are often ob-
tained as infinite-series expansions [73]. Although dimen-
sional incompatibility precludes such an approach to Eqs.
(1) and (5), it is reasonable to consider a finite expansion,

SunfoldðEÞ �
XM
j¼1

SjBjðEÞ; (12)

as an approximation to SðEÞ, where the Bj’s are basis

functions. The coefficients Sj are to be determined from

the data vector (D1; . . . ; DN) plus available a priori infor-
mation about the source SðEÞ. Such projection or Galerkin
methods are well documented [50,52,54,75,80–82,85,112].
(For convenience, we have suppressed the time variable t.)

Supported by the previous subsection, we chose M ¼
N ¼ 5 expansion terms. Moreover, to estimate x-ray flux
we were not particularly interested in the spectral details
within resolution bins �Ej, and so we chose first-order B-

splines as basis functions Bj [118]:

BjðEÞ ¼
�
1 if Ej � E< Ejþ1

0 otherwise;
(13)

where the Ej’s are listed in Table II. These Bj’s are or-

thogonal (but non-normalized) and zero outside ½�E�.
The function SunfoldðEÞ in Eq. (12) is thus a histogram

approximation to SðEÞ, which is consistent with the dem-
onstrated independence of the Ri’s and their spectral reso-
lution, a priori assumptions about SðEÞ, and the effective
domain ½�E�. This representation also suppresses null
solutions S0ðEÞ of Eq. (1) of finer detail than �Ej,

and constitutes an elementary form of regularization
[49,50,80,81,85,113]. But, more importantly, SunfoldðEÞ in-
cludes only enough functional detail to estimate the
x-ray flux in ½�Ej� if SðEÞ is well behaved. To see this,

suppose SðEÞ can be represented in ½�Ej� by a Taylor

expansion about its midpoint �Ej: in general, Sð �EjÞ and all

its derivatives are needed. The flux in ½�Ej�, however,
requires only even derivatives (Appendix E):

Z Ejþ1

Ej

SðEÞdE ffi Sð �EjÞ�Ej

�
1þ 1

24

S00ð �EjÞð�EjÞ2
Sð �EjÞ

þO½ð�EjÞ4�
Sð �EjÞ

�
; (14)

where Sð �EjÞ � 0. Hence, a zeroth order estimate ofR
SðEÞdE corresponds to the histogram approximation

SunfoldðEÞ from Eqs. (12) and (13) (cf. Sec. III H).
Different response functions and constraints may sug-

gest other representations [49,50] of SunfoldðEÞ. For ex-
ample, a set of orthogonal polynomials defined on ½�E�
or even a sequence of Planckian functions [Eq. (7)] with
prescribed temperatures may qualify [14,49]. Knauer [119]

and others [103,120] have successfully used higher-order
B-splines for filtered-detector arrays.
Given SunfoldðEÞ, the unfold flux estimate F unfold was

defined as

F unfold �
Z EMAX

0
SunfoldðEÞdE ¼

Z EMAX

0

XN
j¼1

SjBjðEÞdE

¼ XN¼5

j¼1

Sj�Ej (15)

to be compared with F and F ½�E� [Eqs. (3) and (4)].

Equation (15) also applies to time-dependent quantities
and general spectral functions fðEÞ.
Some spectral shapes SðEÞ are, however, ill approxi-

mated by the basis functions of Eq. (13). In particular,
sources SðEÞ showing (a) dominant structure or
(b) significant values outside ½�E� prove problematic
(cf. Pt. 2: Sec. III B 2). A quantitative measure of how
closely these Bj’s approximate arbitrary SðEÞ is noted in

[121] and in Figs. 8 and 9.

E. Reformulating Eq. (1) with SunfoldðEÞ
The approximation Sunfold was inserted into the channel-

data model to convert Eq. (1) into a matrix equation [49].
It is simplest to substitute Sunfold into the left-hand side of
Eq. (1) and require exact equality with the measured
channel data Di:Z EHI

ELO

RiðEÞSunfoldðE; tÞdE ¼ DiðtÞ

¼
Z EMAX

0
RiðEÞSðE; tÞdE

þ "iðtÞ: (16)

This requirement (called a collocation assumption
[52,54,75,113]) makes Sunfold account not only for the x-
ray data of the unknown source S but also for the pertur-
bations "i. Via Eqs. (12) and (13), Eq. (16) reduces to

XN
j¼1

RijSjðtÞ ¼ diðtÞ þ "iðtÞ ¼ DiðtÞ; (17)

where

Rij ¼
Z EHI

ELO

RiðEÞBjðEÞdE: (18)

Equation (17) is equivalent to the matrix equation

RSðtÞ � DðtÞ; (19)

where R is the N � N response matrix of elements Rij

[Eq. (18)], and SðtÞ and DðtÞ are time-dependent,
N-dimensional vectors with the components, SjðtÞ and

DiðtÞ, respectively. We refer to the Sj’s as unfold

coefficients.
Several points are important here. First, it has not yet

been demonstrated that Eq. (19) is, in fact, invertible or that
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the unfolded spectrum is numerically stable or physically
sensible. Second, there are two energy intervals used in
Eqs. (16)–(19): ½�E� ¼ ½ELO; EHI�, which defines the Rij’s

and outside of which SunfoldðE; tÞ is assumed zero; and
½0; EMAX� over which the RiðEÞ’s and SðE; tÞ may be non-
zero. Lastly, Eq. (16) can be more generally treated as a
weighted, regularized least-squares problem with further
constraints ([14,49,51–53,61,79,82,83], Sec. IVA).

F. Inversion of the reformulated unfold problem

Equation (19) can be inverted if matrix R is nonsingular
[Eq. (18)]. The vector S of unfold coefficients is then
solved as

S ðtÞ ¼ R�1DðtÞ; (20)

or componentwise as

SjðtÞ ¼
XN
i¼1

ðR�1ÞjiDiðtÞ: (21)

The spectral reconstruction then becomes

SunfoldðE; tÞ ¼
XN
j¼1

�XN
i¼1

ðR�1ÞjiDiðtÞ
�
BjðEÞ; (22)

which we henceforth call the unfold or histogram unfold
algorithm, unless otherwise noted. If R is nonsingular,
SunfoldðE; tÞ in this form exists for arbitrary data and is
unique.

The unfold x-ray flux F unfoldðtÞ is then directly esti-
mated from channel data DiðtÞ. Substitution of Eq. (22)
into Eq. (15) yields two equivalent expressions:

F unfoldðtÞ ¼
XN
j¼1

XN
i¼1

½ðR�1ÞjiDiðtÞ��Ej

¼ XN
i¼1

XN
j¼1

½�EjðR�1Þji�DiðtÞ: (23)

This algorithm turns, however, on the condition of
matrix R. Using the basis functions BjðEÞ [Eq. (13)] and
the responses of Fig. 1 in Eq. (18), one computes

R ¼
�
389

�AeV

W

�
�

1:0 0:0 1:8 3:3 3:0
0:0 2:0 0:0 0:5 1:1
0:0 0:1 3:4 0:2 0:6
0:0 0:0 2:0 3:1 2:6
0:0 0:0 0:0 0:4 1:2

0
BBBBB@

1
CCCCCA (24)

for the Z diagnostic (and similarly for response sets fRiag
and fRibg in Fig. 2). The condition of R is appraised like G
[Eq. (11)], and Fig. 6 includes the singular-value ratios,
rk=r1, which indicate no ill conditioning or singularity
[82]. The condðRÞ is �11, i.e., �10 times smaller than
condðGÞ and due to the independence of the Ri’s and our
choice of basis functions Bj [49,50,81,82,85,122]. SVD

factoring of R yields R�1:

R�1 ¼
�
2571

W

A

1

eV

�

�

1:0 0:0 0:1 �1:0 �0:3

0:0 0:5 0:0 0:0 �0:4

0:0 0:0 0:3 0:0 �0:2

0:0 0:0 �0:2 0:4 �0:8

0:0 0:0 0:1 �0:1 1:1

0
BBBBBBBB@

1
CCCCCCCCA
: (25)

G. Upper-bound estimates of unfold uncertainty

Part 2 of this article details the sensitivity of the spectral
unfold S to data and response-function uncertainties, �D
and �R, respectively. But, an upper-bound measure
to the propagated perturbation �S can be estimated from
the condðRÞ. For example, for perturbations �D, one can
show generally [49,62,75,96,97,123] that k�Sk=kSk �
condðRÞk�Dk=kDk, where kDk ¼ ðPN

i¼1 D
2
i Þ1=2. [A simi-

lar relation connects �S with condðRÞ and �R.] Now, for
the Z diagnostic, condðRÞ ’ 11. Hence, when only round-
off errors apply (Appendix D), k�Sk=kSk is negligible,
and Sunfold is essentially noise free ("i ¼ 0, as in Sec. IV
below). However, should perturbations, �D or �R, rise to
the 10% (or more) level, condðRÞ could significantly distort
Sunfold. This issue is rejoined in Pt. 2: Sec. II.

H. Physical interpretation of the unfold coefficients Sj

for well-behaved spectral source functions

Equations (20)–(23) comprise the entire algorithm for
reconstructing the x-ray spectrum and x-ray flux for the Z
diagnostic. It is, lastly, worth checking to see if this algo-
rithm is consistent with the well-behaved spectra assumed
in Table I. This examination clarifies how the obtained
unfold coefficients Sj relate to SðEÞ.
We assume that the data in Eq. (1) are noise free, that

SðEÞ is negligible outside ½�E�, and that SðEÞ and the
RiðEÞ’s can be expanded within each bin ½�Ej� about its
midpoint �Ej. The integral on the right-hand side of Eq. (1)

can be separated intoN terms [49], each integrated over the
expansions of RiðEÞ and SðEÞ. di (Appendix E) may then
be expressed in terms of �Ej and midpoint values of Ri, S

(and derivatives, R0
i, S

0, R00
i , S

00, etc.):

di ¼
XN
j¼1

RijhSij
�
1þ ð�EjÞ2

12

R0
iS

0

RiS
� ð�EjÞ4

242

��
R00
i

Ri

�
2

þ
�
S00

S

�
2 þ � � �

�
þO½ð�EjÞ6�

�
; (26)

where hSij ¼ ð�EjÞ�1
REjþ1

Ej
SðEÞdE and Rij ¼

REjþ1

Ej

RiðEÞdE [cf. Eq. (18)]. The expression in square
brackets includes unlisted cross-product terms. If R�1

exists, Eq. (26) can be substituted in the unfold algorithm
[Eq. (20) or (21)] and yields Sj ¼ hSij in zeroth order.
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The first correction mixes in relative slopes, and the second
includes binwise peaking of Ri and S. These are all terms
that the a priori assumptions in Table I [124] are intended
to suppress. We thus infer that Sj ffi hSij for generally well-
behaved spectra but that serious disagreement may
occur otherwise. Also, for S well behaved, F unfold ¼P

N
j¼1 Sj�Ej ffi

P
N
j¼1hSij�Ej ¼ F ½�E�, which is the goal

of the Z diagnostic. Both conjectures are tested in Sec. IV
and explained in Pt. 2: Sec. III.

IV. RESULTS: INTERNAL CONSISTENCY TESTS
WITH NOISE-FREE SIMULATIONS

The unfold algorithm [Eqs. (20)–(25)] was quantita-
tively tested by first simulating [51] noise-free ["�0]

data, DðtÞ¼dðtÞ¼ ½REMAX

0 R1ðEÞSðE;tÞdE; . . . ;
REMAX

0 RNðEÞ
SðE;tÞdE�, from prescribed x-ray spectra SðE; tÞ and the
responses (Figs. 1 and 2), and then unfolding DðtÞ. The
reconstruction, SunfoldðE; tÞ, was then compared with
the histogram average, SAVEðE; tÞ, of SðE; tÞ over the
same bins ½�Ej� (cf. Sec. III H). Thus,

SunfoldðE; tÞ �
XN
j¼1

SjBjðEÞ

� XN
j¼1

�XN
i¼1

ðR�1Þji

�
Z EMAX

0
RiðE0ÞSðE0; tÞdE0

�
BjðEÞ; (27)

and

SAVEðE; tÞ �
XN
j¼1

hSijBjðEÞ

� XN
j¼1

�
ð�EjÞ�1

Z Ejþ1

Ej

SðE0; tÞdE0
�
BjðEÞ; (28)

where t is indicated for time-varying simulations. For
these comparisons (a) no arbitrary normalizations were
employed; (b) the same response functions were used for
simulation and unfolding; (c) on physical grounds,
Planckian spectra SbbðE; TÞ were primarily (but not
exclusively) chosen for SðE; tÞ. Corresponding flux inte-

grals were calculated: F unfoldðtÞ ¼
REHI

ELO
SunfoldðE; tÞdE,

F ½�E� ¼
REHI

ELO
SAVEðE; tÞdE, and F ðtÞ ¼ F ½�E� þRELO

0 SðE; tÞdEþ REMAX

EHI
SðE; tÞdE [Eqs. (15), (4), and (3)].

Following experimental interests, we defined binwise
and integral figures of merit for assessing the algorithm.
Thus, for example, (a) Sj � hSij was defined as the absolute
unfold distortion; (b) ½Sj � hSij�=hSij as the relative unfold
distortion; and (c) Sj=hSij as the spectral recovery. Similar

measures were defined for F unfold, F ½�E�, and F . These

measures are generalized in Pt. 2: Sec. III. {Other measures
of closeness, e.g., �i½Di �

R
RiðEÞSunfoldðEÞdE�2 and

R½SðEÞ � SunfoldðEÞ�2dE, are particularly germane to
statistical and functional analyses but are not discussed
here.}
Also defined were separate characterizations of the

simulating spectra S. One of these was a crude, binwise
measure of the spectral shape, hSij=SP, where SP ¼
maxfSðEÞg in ½0; EMAX�; this ratio helped to appraise
Sj=hSij, especially when hSij=SP ffi 0. A second measure

[121] gauged how well (in an rms sense) the chosen Bj’s

could approximate S.
The simulations fell into two classes. The first pre-

scribed time-fixed spectra SðEÞ: binwise spectral- and
flux-recovery measures were examined. The second class
simulated time-varying spectra SðE; tÞ: flux recovery and
temporal features (e.g., pulse widths) were studied.

A. Time-independent, noise-free data

The first simulation tested the unfold algorithm against
the specific constraints of Table I. A non-Planckian SðEÞ
(Fig. 7) was chosen that was broad compared to the RiðEÞ’s,
continuous, and non-negative inside the unfold domain
½�E�—but zero outside. Figure 7 compares SðEÞ with
SAVEðEÞ and SunfoldðEÞ. One sees that, although SunfoldðEÞ
cannot resolve the detailed behavior of SðEÞ, it still displays
the correct qualitative shape; and the unfold coefficients Sj
compare quantitatively well with hSij over most of ½�E�.
The flux measures F unfold and F agree within 4%. (Here,
F ½�E� � F due to the defined domain of S.)

FIG. 7. Comparison of a non-Planckian, test spectrum SðEÞ
with SAVEðEÞ and SunfoldðEÞ. Here, SðEÞ satisfies Table I, and
SAVEðEÞ is constructed from hSij. [SAVEðEÞ is the best least-

squares approximation to SðEÞ by the given basis functions
BjðEÞ; its rms measure [121] of closeness is 0.43 on a 0–1 scale,

where 0 signifies exact agreement.] SunfoldðEÞ is the unfold for
data simulations with SðEÞ and fR1; . . . ; R5g (Fig. 1); its relative
distortion, ðSj=hSij � 1Þ, ranges from a few percent near the

spectral peak to �36% in the lowest x-ray energy bin, which
contains relatively little flux.
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A series of ten Planckian spectra, SbbðE; 25 eV � T �
252 eVÞ, was also chosen to test the unfold algorithm.
These simulating spectra largely satisfy the constraints of
Table I, although SbbðE; TÞ progressively violates assump-
tions #4 and #5 with decreasing T. Figures 8(a)–8(d) com-
pare SbbðE; TÞ, SAVEðE; TÞ, and SunfoldðE; TÞ for T ¼ 250,
175, 100, and 25 eV.Table III lists recoveries,Sj=hSbbij, and
spectral source ratios, hSbbij=ðSbbÞP.

The results in Fig. 8 and Table III illustrate several
features of the unfold algorithm. First, within ½�E�
Sunfold reproduces the general shape and magnitude of all
the Planckian spectra considered, as above. Second, the
spectral recovery Sj=hSbbij * 80% for 125 eV � T �
250 eV, except where hSij=SP ffi 0; spectral recovery is,

however, less successful at lower spectral temperatures
because SbbðE; TÞ progressively falls below the detection
cutoff at ELOð137 eVÞ and is thus less well approximated
by the basis functions. (The rms closeness measures [121]
are noted in the figure captions.) A third trend is the occa-
sional appearance of unfold coefficients Sj < 0, a phe-

nomenon also correlated with bins nearly devoid of
spectrum {e.g., S4 for T ¼ 100 eV [Fig. 8(c)], where

hSbbi4=ðSbbÞP ffi 0:01g. Such behavior has been noted else-
where [125] for a different diagnostic and can be under-
stood for arbitrary spectral functions by the methods of
Pt. 2: Sec. III. Thus, in these noise-free tests, the Z diag-
nostic and its unfold algorithm perform reasonably well
within the designed x-ray regime.
The x-ray flux estimate F unfold was compared with

both the total flux F and the flux F ½�E� of each

simulating SbbðE; TÞ. Figure 9(a) plots F ðTÞ,
F ½�E�ðTÞ, and F unfoldðTÞ versus T. The solid blue

dots denote F , for which T4 scaling is verified (dashed
curve) [5,7,37,98]. The solid red squares plot F ½�E�, for
which x rays of energy outside ½�E� are not counted
[Eq. (4)]. Lastly, the solid green dots give F unfold [Eq.
(23)]. Figure 9(a) shows fair agreement between F ½�E�
and F unfold at low spectral temperatures, where
ðF ½�E� �F unfoldÞ is attributable to a lack of approxi-

mation of SbbðE; TÞ by the BjðEÞ’s [cf. Fig. 8(d)]; the

larger discrepancies, ðF �F ½�E�Þ and ðF �F unfoldÞ,
for the same temperatures are principally due to low-
energy x rays counted in F , but not in F ½�E� or F unfold

[cf. Table IV]. With increasing T, however, agreement

FIG. 8. Comparison of four Planckian test spectra SbbðE; TÞ of noted spectral temperatures, bin-averaged spectra SAVEðEÞ, and
unfolded spectra SunfoldðEÞ. Here, SAVEðEÞ reasonably approximates Sbb for T ¼ 250, 175, and 100 eV (rms closeness measures 0.18,
0.23, 0.33, respectively) but poorly approximates SbbðE; 25 eVÞ [rms closeness �0:98]. Unfolded spectra SunfoldðEÞ from correspond-
ing data simulations show general binwise agreement with SAVEðEÞ down to T ¼ 100 eV (c), where a negative unfold value is obtained
in bin ½�E4�. There is also significant disagreement between SAVEðEÞ and SunfoldðEÞ for SbbðE; 25 eVÞ (cf. Table III).
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among the three flux measures improves as SbbðE; TÞ
expands across the response functions (Fig. 1).

The flux-recovery ratios, F unfoldðTÞ=F ½�E�ðTÞ and

F unfoldðTÞ=F ðTÞ, are plotted in Fig. 9(b). On this scale,
one sees that F unfold recovers at least 90% of F ½�E� for
T 	 100 eV. In fact, for 200 eV � T � 250 eV, the re-
covery slightly exceeds 100% because high-energy x rays
spilling over the upper cutoff EHIð2300 eVÞ are still de-
tected by the response functions [cf. Eq. (27), Figs. 2 and 8
and Pt. 2: Sec. III C]. The sharp falloff in recovery for
T < 100 eV corresponds to the spectral disagreements
noted in Fig. 9(a). Together these curves suggest that the
most realistic goal for the Z diagnostic (as designed) is to
recover F ½�E�, rather than F—unless lower-energy chan-

nel responses are included.
These tests also raise two other important issues: (a) How

representative of SðEÞ are unfolds obtained from different
sets of response functions? And, (b) how does one deal with
negative unfold coefficients Sj? To address the first point,

separate data sets were simulated from SbbðE; 200 eVÞ and
two response-function sets, R1; . . . ; R5 and R1a; . . . ; R5a

(Fig. 2). Reconstructed spectra unfolded with the same
responses that simulated each data set (e.g., via R�1 for
R1; . . . ; R5, and R�1

a for R1a; . . . ; R5a) were called consis-
tent unfolds. In Fig. 10(a) these unfolded spectra are nearly
indistinguishable, both in agreement with SbbðE; 200 eVÞ

(cf. Table III). Hence, separately calibrated diagnostics
viewing the same spectrum are expected to agree at least
in first order [126]. Figure 10(a) also shows the result of
unfolding inconsistently: i.e., data simulated from
R1a; . . . ; R5a were unfolded with R�1 (instead of R�1

a ).
This case is examined further in Pt. 2: Sec. II B.
The second issue concerns unfold coefficients, Sj < 0,

which occasionally appeared in Planckian test simulations
(Table III, Fig. 8) and against which we have not explicitly
protected the unfold algorithm (Sec. III E). In fact, the
effect of a non-negativity constraint, Sjþ 	 0, was tested

with the method of Lawson and Hanson [83], which iter-
atively inverts Eq. (19) as a least-squares problem and is
incorporated in the UFO unfold code [127]. The spectrum
SbbðE; 100 eVÞ was selected for this test because it
produced a pronounced negative unfold component in
Fig. 8(c). Figure 10(b) compares unfolds with (Sunfoldþ)
and without (Sunfold) this constraint, and it is clear that the
additional constraint merely zeros out the troublesome
negative value of S4 in Sunfold, while readjusting the other
Sjþ’s. More importantly, F unfoldþ (with the constraint)

disagrees with F unfold by no more than �2%. In our
experience, such unfold behavior is typical for such spec-
tra, and we have thus favored the simplicity of an exact
solution for the Z diagnostic over a non-negativity con-
straint (cf. Pt. 2: Secs. III B and III C).

TABLE III. Ratio of the unfold coefficient to the average of simulating Planckian spectrum Sj=hSij in each unfold bin j for various
simulating blackbody spectra, parametrized by temperature T in eV; upper entries highlighted in bold font show the bins in which Sj
agrees with hSij to within�20%. (The spectral fractional distortion, cited in the text, is Sj=hSij � 1.) Also shown are the bin intervals

Ej to Ejþ1 and widths �Ej in eV. The ratio hSij=SP of the binwise average to the peak of the simulating spectrum is given in

parentheses at each temperature and bin to indicate the approximate shape of Sbb in ½�E�.
Ratio ! S1=hSi1ðhSi1=SpÞ S2=hSi2ðhSi2=SpÞ S3=hSi3ðhSi3=SpÞ S4=hSi4ðhSi4=SpÞ S5=hSi5ðhSi5=SpÞ
Bin½�Ej� ! TðeVÞ # 137–284 eV 284–513 eV 513–1020 eV 1020–1500 eV 1500–2300 eV

25 0.43 0.34 �22 109 1038

(0.14) (0.00) (0.00) (0.00) (0.00)

50 0:84 0.67 0.19 �70 1038

(0.77) (0.16) (0.00) (0.00) (0.00)

75 1:01 0:83 0.58 �30 1038

(0.95) (0.54) (0.06) (0.00) (0.00)

100 1:10 0:93 0.73 �3:5 81

(0.87) (0.82) (0.20) (0.01) (0.00)

125 1:14 0:98 0:82 �0:2 6.9

(0.75) (0.95) (0.39) (0.04) (0.00)

150 1:17 1:02 0:88 0.63 1.24

(0.62) (0.96) (0.58) (0.11) (0.01)

175 1:18 1:04 0:93 0:91 0.66

(0.52) (0.92) (0.74) (0.21) (0.03)

200 1:19 1:06 0:96 1:02 0.69

(0.44) (0.86) (0.84) (0.34) (0.06)

225 0:84 0:94 1:02 0:94 1.26

(0.37) (0.78) (0.91) (0.47) (0.11)

250 1:20 1:08 1:00 1:09 0:89
(0.32) (0.72) (0.95) (0.59) (0.18)
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B. Time-dependent, noise-free data

The temperature dependence ofF unfold=F ½�E� [Fig. 9(b)
and Table IV] implies that the flux recovery F unfold=F ½�E�
varies with time for pulsed spectra SðE; tÞ and thus, in
principle, affects the power-pulse width and x-ray fluences.
To quantify this connection, we again focus on Planckian
sources SbbðE; TÞ, now with prescribed time dependences
TðtÞ in temperature.
For this analysis, two temperature histories, T150ðtÞ and

T225ðtÞ, were synthesized from an experimental XRD sig-
nal. These histories had the following form:

T150ðtÞ ¼ ð150 eVÞ
T225ðtÞ ¼ ð225 eVÞ

)
��ðtÞ; (29)

where �ðtÞ is an arbitrary, peak-normalized function
of time [128]. T150ðtÞ and T225ðtÞ are plotted in Fig. 11(a)

FIG. 9. Comparison of x-ray flux measures, F ðTÞ, F ½�E�ðTÞ,
andF unfoldðTÞ, for the Planckian test spectraSbbðE; 25 eV � T �
250 eVÞ above. Part (a) shows each measure on an absolute scale.
The dashed straight line associated with F ðTÞ is a least-squares,
power-law fit that verifies T4 scaling. (Other broken lines are
meant to guide the eye.) Part (b) shows flux-recovery ratios,
F unfoldðTÞ=F ½�E�ðTÞ and F unfoldðTÞ=F ðTÞ. For T 	 100 eV,

F unfoldðTÞ recovers F ½�E� and F within 20% (cf. Table IV).

TABLE IV. Ratio of unfolded flux F unfold to the two measures,
F and F ½�E� of incident flux in a series of blackbody spectra,

parametrized by temperature T. The simulations use response
functions R1; . . . ; R5 (Fig. 1). Values Sj < 0 are included in

F unfold (cf. Table III and Sec. VI).

T (eV) F unfold=F F ½�E�=F F unfold=F ½�E�
25 0.08 0.19 0.42

50 0.52 0.66 0.79

75 0.75 0.85 0.88

100 0.84 0.92 0.91

125 0.89 0.96 0.93

150 0.92 0.97 0.95

175 0.95 0.98 0.97

200 0.98 0.99 0.99

225 0.99 0.98 1.01

250 1.00 0.97 1.03

FIG. 10. Dependence of Sunfold on the response functions and
on a non-negativity constraint. In Fig. 10(a), the solid (green)
and dashed (black) curves represent reconstructed spectra that
have been consistently simulated and unfolded. The dotted (red)
histogram was obtained when data are simulated and unfolded
inconsistently. Figure 10(b) shows the effect of applying a non-
negativity constraint to the simulation and unfold of
SbbðE; 100 eVÞ in Fig. 8(c).
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. The power range, ðTmax=TminÞ4, for these histories is�50
and 200, respectively.

Data simulations for Sbb½E; T150ðtÞ� and Sbb½E; T225ðtÞ�,
coupled to responses, R1a; . . . ; R5a (Fig. 2), were obtained
as above [Eq. (22)], and the resulting time-dependent data
were unfolded consistently with the inverse matrix R�1

a .
Flux estimates, F ½�E�ðtÞ and F unfoldðtÞ, were computed

from Eqs. (4) and (23), respectively.
Figure 11(b) shows the source flux, F ½�E�ðtÞ, and the

flux-recovery ratio, F unfoldðtÞ=F ½�E�ðtÞ, for T150ðtÞ and

T225ðtÞ in these simulations. Several points are of interest.
(a) As expected from Sec. IVA, the flux recovery obtained
from these responses agrees well with Fig. 9(b), based on
R1; . . . ; R5 (Fig. 2). (b) Because F unfoldðtÞ=F ½�E�ðtÞ is not

constant, the temporal shapes of F ½�E�ðtÞ and F unfoldðtÞ
differ slightly: F unfoldðtÞ is narrower (FWHM) by
�2%–6% [for T150ðtÞ and T225ðtÞ, respectively].

V. DISCUSSION: COMPARISONS
WITH INDEPENDENTALGORITHMS

AND DIAGNOSTICS

Thus far, the utility of the flux estimate F unfold rests on
self-consistency tests with prescribed spectra. But, further
verification of this inversion technique requires indepen-
dent testing. Here, we compare the histogram results
(a) with an x-ray-flux estimate derived without unfolding
and applied to experimental z-pinch data; (b) with un-
folded z-pinch spectra obtained by the code, SHAMPC;
and (c) with laser-produced spectra unfolded by the
UNSPEC code using DANTE data.

We have previously reported a method of estimating
x-ray flux from filtered-XRD-channel data that does not
involve spectral unfolding [29]. This estimate, denoted
F LS, results from a numerical ‘‘equalization’’ of the re-
sponse functions:

F LS �
Z EMAX

0

�XN
i¼1

aiRiðEÞ
�
SðEÞdE � XN

i¼1

aidi: (30)

The coefficients ai are chosen to minimize the function,R½PN
i¼1 aiRiðEÞ � 1�2dE over ½�E�, subject to the con-

straint hPN
i¼1 aiRii ¼ 1. Coefficients for responses

R1; . . . ; R5 (Fig. 1) obtained in this constrained-least-
squares (LS) procedure are listed in Table V. For compari-
son, the unfold flux estimateF unfold [Eq. (23)] may also be
cast into this form by defining corresponding coefficients
ðaunfoldÞi as follows:

ðaunfoldÞi ¼
XN
j¼1

ð�EjÞðR�1Þji; (31)

which are also listed in Table V for the same response
functions (Fig. 1) and ½�E�. These two sets of coefficients
reveal striking similarities in sign, magnitude, and channel
dependence, although jðaunfoldÞij systematically exceeds
jaij, except for i ¼ 5. For Planckian spectra (100 eV �
T � 250 eV), F unfold=F ½�E� exceeds F LS=F ½�E� but the

FIG. 11. Time-dependent simulations. Part (a) shows two pre-
scribed temperature histories,T150ðtÞ andT225ðtÞ, with peak values
of 150 and 225 eV. Time-dependent Planckian spectra,
Sbb½E; T150ðtÞ� and Sbb½E; T225ðtÞ�, were generated from these
profiles; and, for each, the flux F ½�E�ðtÞ in the unfold interval

½�E� was calculated. Time-varying channel data were also simu-
lated and unfolded to produce a corresponding unfold flux esti-
mate F unfoldðtÞ. In part (b) the lower curves (right scale) depict
F ½�E�ðtÞ for the two histories; the upper curves (left scale) are the
corresponding unfold flux-recovery ratios, F unfoldðtÞ=F ½�E�ðtÞ.

TABLE V. Comparison of coefficients for flux passband func-
tions,

P
iaiRiðEÞ and

P
iðaunfoldÞiRiðEÞ, calculated by the LS

method (Ref. [29]) and the unfold method of this article, re-
spectively.

Response Ri ai (�A=W) ðaunfoldÞi (�A=W)

1 0.28 0.38

2 0.26 0.28

3 0.25 0.26

4 �0:06 �0:14
5 0.95 0.71
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disagreement is �10% [Ref. 29, Fig. 3]. We take this
comparison as independent support for the unfold algo-
rithm and our definition of F unfold. Data-noise propagation
is similar for F LS and F unfold [cf. [29] and Pt. 2: Sec. II,
Fig. 1(b)].

In a second test, experimental data from the Z diagnostic
were analyzed independently by two different unfold tech-
niques, thus addressing differences in the a priori assump-
tions (e.g., basis functions, prescribed constraints, etc.) of
both algorithms. The histogram unfold SunfoldðEÞ was ob-
tained in the usual way [Eqs. (22) and (23)], and a second
spectral estimate SshampcðEÞ was reconstructed by the

SHAMPC code, constrained to yield a smooth, non-negative

spectrum. Idzorek [58,129] has reported this comparison
for vacuum hohlraum experiments at the Z accelerator: at
peak radiated power, one finds reasonable agreement be-
tween SshampcðEÞ and SunfoldðEÞ, although SshampcðEÞ shows
some unphysical distortions of slope at the major charac-
teristic edges in the response functions.

A third test compares the histogram unfold method with
still another unfold algorithm, both applied to an x-ray
source and spectral diagnostic different from above. The
source in this comparison was a gold target, onto which
nine laser beams of the NOVA laser facility [59,60] fo-
cused an 18-kJ, 5ns-wide, square pulse of 3-! photons
(shot #26020710, 7 February 1996). Soft x rays (100 eV–
3 keV) were detected by the DANTE spectrometer [46,47],
a 15-channel calibrated XRD array that employs x-ray
mirrors, filters, and auxiliary background detectors. The
DANTE channel data were independently unfolded by the
UNSPEC [47,130] code (used routinely for this diagnostic)

and by the histogram unfold method presented here.
[UNSPEC employs an iterative unfold technique, as opposed
to the matrix inversion of Eq. (20).] For this comparison,
the matrix R and the unfold bins ½�Ej� of the histogram

unfold algorithm conformed to the DANTE response func-
tions. Moreover, since only the seven lowest-energy
DANTE channels were judged to contain signal above
noise in this experiment, the histogram unfold was based
solely on these N ¼ 7 signals and the corresponding re-
sponse functions; higher-energy responses and waveforms,
including background channels, were ignored. No normal-
izations, either between the unfold methods or with respect
to other measurements, were employed.

Figures 12(a) and 12(b) compare the results in this test.
Figure 12(a) shows the unfolded differential spectra,
SunspecðE; tpÞ and SunfoldðE; tpÞ, at peak emitted x-ray power

(tp ¼ 4:9 ns). Both techniques obtained a spectrum that

reaches a maximum between 200 and 300 eV but that also
includes a weak, non-Planckian feature near 1 keV. Sunspec
exceeded Sunfold by �5% at the spectral maximum and
by �25% in the adjacent energy bins. The corresponding
peak brightness temperature, computed from these two
spectra, was estimated to be 90.5 eV by UNSPEC and
88.3 eV by the histogram algorithm. Figure 12(b) shows

that such agreement in brightness temperature extended
throughout this experiment: both unfold methods yielded
similar temperature histories, rising monotonically during
laser heating and then falling after the laser was switched
off. The 5%-vertical bars attached to the upper (DANTE)
curve indicate that the two methods disagreed in brightness
temperature by no more than �3%; the associated dis-
agreement in estimated flux was, therefore, & 12%.

VI. SUMMARYAND CONCLUDING REMARKS

The first part of this article formulated an unfolding
algorithm to estimate x-ray flux information from contin-
uum x-ray spectra emitted by z pinches from anN-channel,
filtered-detector-array (Sec. I). The overall strategy was to
integrate a coarse reconstruction of the spectrum. A priori
constraints controlled the ill posedness of this inversion
problem and yielded a unique reconstruction (Sec. II).

FIG. 12. The results of two unfold methods applied to
DANTE data are compared. Data were taken at the NOVA
facility (shot 26020710) and were independently unfolded
with the UNSPEC code and the histogram unfold technique,
given here. No normalizations were used. Part (a) compares
the unfolded differential spectra, SunspecðE; tpÞ and SunfoldðE; tpÞ,
at peak emitted x-ray power (tp ¼ 4:9 ns). Part (b) gives the

time-dependent brightness temperature from these two methods.
Vertical bars attached to the UNSPEC curve represent
�5%-vernier bounds to guide the eye.
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These constraints were derived by studying the domain,
independence, and resolution of the responses as well as
expected general properties of the experimental spectra
(Sec. III, Table I): a Planckian representation of the recon-
struction was rejected due to a lack of channel-data fit
(Sec. II D). The resulting reconstruction was a histogram,
determined by an exact inversion of the data (Sec. III F).
Algorithm-induced distortions were studied for Planckian
ð25 eV � T � 250 eVÞ and non-Planckian spectra with
noise-free (simulated) data. Incident and unfolded flux
values agreed to within �10% for spectral temperatures
of 75 eV � T � 250 eV, a result which appeared ade-
quate for the assigned diagnostic goal with these spectra;
larger distortions at lower T were caused by undetected x
rays and deteriorating spectral approximation. Some re-
constructions showed minor negative behavior, which
could be zeroed out with an added non-negativity con-
straint; but, since the overall reconstructed shape and flux
were only marginally affected by this constraint [Fig. 10(b)
], non-negativity was not routinely imposed. Variant re-
sponse functions were examined (Sec. IVA). Time-
dependent data simulations indicated slight temporal nar-
rowing of the unfolded flux with incident x-ray flux
(Sec. IVB). Detailed comparisons were made to other
published techniques and other diagnostics with experi-
mental data (Sec. V).

The following remarks are, however, in order: (1) The
first-order algorithm used here is adequate for a flux esti-
mate from Z-diagnostic data because (a) the dominant
experimental spectra are piecewise continuous and of ap-
proximately known energy bounds; (b) the responses are
independent and together spectrally resolving for a coarse
energy partition; and (c) only a similarly coarse spectral
reconstruction is needed. (2) But, this approach is not a
cure-all, especially for significantly different and nearly
singular response-function sets. (Spectacular failures and
alternate procedures have been well documented
[49,50,53,131].) Nor will merely adding more overlapping
response channels automatically improve the reconstruc-
tion in this technique since numerical instabilities and error
amplification thereby tend to increase [82]. More ad-
vanced, regulated methods were cited in Sec. II C.
(3) Yet, even if the histogram reconstruction here is unac-
ceptable in a pointwise sense, it may still prove useful as a
constraint for more sophisticated regulated reconstructions
[132]. (4) When different unfold algorithms (applied to the
same data and response functions) yield differing results,
the disagreement is often rooted in the embedded a priori
rules for treating null spectra [Eq. (6)]. Since the response
functions are per se insensitive to null spectra (Sec. II C),
such conflict may be irresolvable without close evaluations
of the algorithms. (5) As noted in Sec. III G, the analysis
thus far has only cursorily estimated the magnifying effects
of uncertainties in the unfold algorithm used here.
Specifically, the measure condðRÞ sets only a broad-based

upper bound to error propagation: e.g., ðk�Sk kSk�1Þ�
ðk�Dk kDk�1Þ�1 � condðRÞ � 11, for errors �D in D.
This estimate is adequate for assessing unfold distortions
with noise-free data (Sec. IV). But, in experiments, one
desires error estimates for all the unfold components Sj and

the fluxF unfold. This issue is examined in part 2 (Sec. II) for
data noise and calibrational uncertainties. (6) Another yet-
to-be-resolved issue in this article is this: only selected
spectral functions (e.g., those satisfying the assumptions
of Table I) have been used to test algorithmic distortion. It
is not clear how the algorithm in general responds to
spectra that violate these assumptions. Nor, for that matter,
do the present simulations quantitatively explain and pre-
dict the noted properties of the unfold algorithm, especially
negative behavior. Part 2, Sec. III, resolves these and other
issues for arbitrary spectral functions without explicitly
constructing simulated data. A condition for applying this
generalized approach to other unfold procedures is noted.
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APPENDIX A: DATA CONVERSIONS
AND THE TOTAL EMITTED POWER

For convenience, the recorded voltage signals ViðtÞ are
converted into the channel data DiðtÞ of Eq. (1). For
example, the Z diagnostic presents a solid angle, �i½sr� ¼
Adetector;ir

�2, to the source, where Adetector;i [cm2] is the

defining area of the ith filtered-XRD channel and r is the
distance to the source; �i is offset from the normal to the
z-pinch axis by angle #. If the area of the source Asource

[cm2] is known, appropriate units of SðEÞ are
Wsr�1 cm�2 eV�1. But, if the source area is unknown
(e.g., for bare z pinches), Asource is absorbed into the
incident spectrum and the units are Wsr�1 eV�1. The
responses RiðEÞ represent the spectrally dependent current
produced per unit incident x-ray power [typically,
��AW�1] on an assembled filtered-detector channel.
During irradiation, the XRD currents enter a cable system
of impedance z0 [ohms] and are recorded (after cable
compensation and temporal alignment) as voltage signals
ViðtÞ. For bare z pinches,

ViðtÞ
z0

¼ �
Z EMAX

0
SðE; tÞ½�i cos#�RiðEÞdE; (A1)

CHARACTERIZATION AND . . . . I. FORMULATION AND . . . Phys. Rev. ST Accel. Beams 13, 120402 (2010)

120402-19



where � ¼ 10�6A=�A (units’ conversion). The cosine
term references the diagnostic to normal viewing of the z
pinch (# ¼ 11:8�). If one divides out the known experi-
mental constants in Eq. (A1), one obtains the channel data
for Eq. (1):

DiðtÞ ¼
Z EMAX

0
RiðEÞSðE; tÞdE ¼ �ViðtÞ; (A2)

where

�i ¼ 1

�z0�i cos#
½sr�1 ohm�1�: (A3)

Typically, z0¼50 ohms, Adetector;i�0:1 cm2, r¼2390 cm,

and �i � 1:73� 10�8 sr; hence, �i � 1:2� 1012 sr�1

ohm�1 and is consistent with S in units of Wsr�1 eV�1.
For z pinches enclosed in a hohlraum and viewed through a
source aperture, Asource is not implicit in S and yields the
data-conversion factor, �0

i ¼ �i=Asource. In this case, �
0
i and

S have units of sr�1 ohm�1 cm�2 and Wsr�1 cm�2 eV�1,
respectively [cf. SbbðE; TÞ in Eq. (7)].

For a bare z pinch, the total power Ptot [W] emitted into
4� sr can be inferred from a measurement of the x-ray flux
F unfold [Wsr�1] and a simple plasma model. If the pinch is
taken as a spatially uniform Lambertian emitter, then in-
tegrating over all emission angles one obtains

PtotðtÞ ¼ �2

f‘
F unfoldðtÞ; (A4)

where f‘ is the fraction of the z pinch observed by the Z
diagnostic. (A slotted aperture, partially masking the ver-
tical field of view of the Z diagnostic, is often fielded near
the pinch.) The constant �2 derives from the assumption of
Lambertian emission, which would be replaced by 4�
for an isotropic source. A cos# term does not appear in
Eq. (A4) because it has already been included in F unfold

through Eq. (A3).

APPENDIX B: CALIBRATION MODELS
FOR THE RESPONSE FUNCTIONS RiðEÞ

Electron photoemission studies between 100 eV
and 10 keV by Henke [133] show that in first order �iðEÞ
in Eq. (2) is proportional to the photoelectric mass absorp-
tion coefficient of atoms close to the photocathode surface.
Hence, in calibrations [56], the measured electrical current
produced by the XRD per unit incident x-ray power is fit to

�iðEÞ ¼
X
l

Ail�ilðEÞ; (B1)

where the absorption coefficients [64] �ilðEÞ½cm2 g�1� are
known, and the constants Ail [AW�1 g cm�2] result from a
least-squares (LS) fit procedure. The sum over l in Eq. (B1)
is taken over the various chemical species on the photo-
cathode: C dominates but H, O, and Si must be included as

surface contaminants. Uncertainties of �10%–15% are
typically ascribed to the Ail’s [56], which are correlated
statistically by the fitting process. It is assumed that the
photoelectric properties of the substrate are spatially uni-
form. Compton interactions modify this model for x-ray
energies in excess of �30 keV.
The attenuations �iðEÞ in Eq. (2) have been variously

characterized experimentally [56]. At soft x-ray energies
the spectral transmission model in the ith filter is taken as

ln½�iðEÞ� ¼ �X
m

�im�imðEÞ; (B2)

where �imðEÞ is the mass photoelectric coefficient [64] of
the mth chemical species (H, Be, C, Zn,. . .) in the filter(s)
[56], and �im is the corresponding areal thickness (g cm�2).
The uncertainty in �im is estimated to be�5% [56]. Again,
spatial uniformity of the filters is assumed, and Compton
corrections may be necessary for x rays in excess of a
30 keV, depending on the filter material. The form and
spectral range of the overall channel responses can be
adapted to different x-ray sources by adjusting the array
components. (A separate unfold analysis is then performed
for each configuration and calibration.)
Compatibility with Eq. (1) requires certain implicit,

x-ray flux restrictions [62] so that diðtÞ during irradiation
derives solely from SðE; tÞ. For example, (a) there is in-
sufficient flux to cause rapid changes in the responses Ri;
(b) x rays of various energies are detected independently;
and (c) the detectors are not driven into saturation.

APPENDIX C: DEFINING AN EFFECTIVE
UNFOLD DOMAIN ½�E�

This analysis begins by normalizing each spectrum
SbbðE; TÞ by its integral in ½0; EMAX� so that nonzero multi-
plicative scalars are excluded. The result, SbbðE; TÞ=REMAX

0 SbbðE0; TÞdE0, for each T is called the normalized

shape SbbðE; TÞ of SbbðE; TÞ, for E � EMAX. The corre-

sponding normalized data are thus simulated as di½T� ¼REMAX

0 RiðEÞSbbðE; TÞdE for each channel i.
One next considers the partial contribution,REHI

ELO
RiðE0ÞSbbðE0; TÞdE0, to di½T� for parameters, ELO

and EHI (0 � ELO � EHI � EMAX). Our criterion in
choosing them is that within ½ELO; EHI� SbbðE; TÞ must
contribute at least a prescribed fraction (1� �) of the
normalized channel data for all the specified spectral
shapes and responses:

REHI

ELO
RiðE0ÞSbbðE0; TÞdE0REMAX

0 RiðE0ÞSbbðE0; TÞdE0 	 ð1� �Þ; (C1)

where 0 � �< 1. We choose � ¼ 0:05; hence, partial
contributions from ½ELO; EHI� must account for at least
95% of the simulated data [104,105].
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Inequality (C1) can be rewritten more conveniently.
Defining the channel- and shape-specific cumulative inte-
grals, I iðE; TÞ �

R
E
0 RiðE0ÞSbbðE0; TÞdE0, one has

I iðELO; TÞ
di½T�

þ I iðEMAX; TÞ � I iðEHI; TÞ
di½T�

� �; (C2)

where di½T� ¼ I iðEMAX; TÞ. It is now clear (a) that ELO

and EHI can be determined independently (although not
necessarily uniquely) and (b) that the shape SbbðE; TÞ
within ½ELO; EHI� does not appear explicitly in this deter-
mination, only its asymptotic behavior below and above
ELO and EHI, respectively.

Finally, one examines graphically where I iðE; TÞ com-
plies with Eq. (C2) for all combinations of SbbðE; TÞ and
response functions RiðEÞ. This process is illustrated in
Fig. 13 for two extreme spectral shapes, SbbðE; 60 eVÞ
and SbbðE; 250 eVÞ, coupled to the least- and most-heavily
filtered channel responses, R1ðEÞ and R5ðEÞ, respectively.
The corresponding simulated channel data di½T� over
½0; EMAX� are indicated at the right of the frame. The lower
cutoff, ELO ffi 137 eV, is suggested by Fig. 2, where
R1ðE � 137 eVÞ � maxfR1g=100. From Fig. 13, one finds
that I iðELO � 137 eV; TÞ amounts to less than 0.1% of the
channel data across the combinations of channels and
spectra considered. Similarly, the choice EHI � 2300 eV
yields I iðEMAX; TÞ � I iðEHI; TÞ less than 5% of di½T�.
Hence, Eq. (C2) is satisfied. Thus, the lower unfold energy

threshold is set by filtration in R1, the upper by the high-
energy tails of R4, R5, and SbbðE; T ¼ 250 eVÞ.

APPENDIX D: INDEPENDENCE OF THE
RESPONSE FUNCTIONS, THE GRAM MATRIX,
SINGULAR-VALUE DECOMPOSITION, AND THE
EXISTENCE OF SOLUTIONS TO EQS. (1) OR (5)

The connection between linear independence of the
responses and the condition of the Gram matrix G
[Eq. (10)] follows from properties of the RiðEÞ’s
[52,53,62,106,107,111,112]. Linear independence of the
responses means that all linear combinations of the
RiðEÞ’s are nonzero [i.e.,

P
N
i¼1 �iRiðEÞ � 0], unless all

the scalars �i � 0 and except for a finite number of points.
Now, since the RiðEÞ’s are here defined to be non-negative
and not identically zero for the intervals of interest, inde-
pendence of the responses is equivalent toP

N
i¼1 �i

R
RjðEÞRiðEÞdE � P

N
i¼1 �iGji � 0 with the

same condition on the �i’s, where the roles of j, i may
be interchanged. But, this result means that rows (and
columns) of G must likewise be linearly independent
and, hence, that G must be nonsingular. The inverse of
this argument is also true.
To test the singularity of G, it is convenient to factor

G by the method of singular-value decomposition (SVD)

[49,51,61,74,75,82,83,96,97]. The result is G ¼ U~GVT,
where U and VT are orthogonal matrices [106,107] and
~G is diagonal with diagonal elements, g1; . . . ; gN . The
gi’s are the positive square roots of the eigenvalues of
the product matrix GTG and are called the singular
values of G. Since detðUÞ, detðVTÞ ¼ �1, it follows
that j detðGÞj ¼ g1g2 � � � gN [114]. Hence, in an analyti-
cal context, G is nonsingular—and the responses RiðEÞ
are strictly independent—if, and only if, no gk � 0
[106–110].
In a numerical context, however, one must consider that

G may be ‘‘nearly’’ or ‘‘effectively’’ singular [53,62,63].
That is, a numerical value detðGÞ � 0may be caused either
by one or more gk’s smaller than round-off error or by a
scalar � � 0, common to all the elements of G (i.e., Gij ¼
�G0

ij), giving j detðGÞj ¼ �Ng01g02 � � � g0N � 0 [106]. One

proposed metric for this judgment is to consider any gk �
Ng1"precision as effectively zero, where N is the dimension

of G, "precision is the floating-point precision, and g1 is the

largest singular value of G [82,97]. The issue of small
common scalars can then be eliminated by taking ratios
ðgk=g1Þ: hence, ðgk=g1Þ � N"precision implies singularity in

G. According to IEEE standards [97], "precision � 6� 10�8

(i.e., one part in 224) for single precision calculations;
hence, by the above criterion G (N ¼ 5) should be consid-
ered nearly singular if any ratio ðgk=g1Þ & 3� 10�7. This
criterion explains the method of looking for sharp drops in
ðgk=g1Þ vs k in Fig. 6. The condition number, also men-
tioned as a singularity test of G, is condðGÞ ¼ g1=gN ,

FIG. 13. Cumulative integrals of channel-wise spectrum-
response products over the interval ½0; EMAX� (cf. Fig. 5):
I i½E; T� ¼

R
E
0 RiðE0ÞSbbðE0; TÞdE0, where SbbðE; TÞ is the nor-

malized Planckian spectral shape for temperature T. The curves
shown represent combinations of i ¼ 1; 5 and T ¼ 60; 250 eV.
(Similar results are obtained for intermediate channels and
spectral temperatures but are not shown for clarity.) The right-
hand intercepts, I i½EMAX; T�, are normalized data values, di½T�,
which differ from unity because only Sbb is normalized here, not
RiðEÞSbbðEÞ. The vertical, dashed lines indicate the chosen
unfold interval ½�E� ¼ ½ELO; EHI� ¼ ½137 eV; 2300 eV�.
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where gN is the smallest singular value; G is said to be ill
conditioned if the condition number condðGÞ 	
ðN"precisionÞ�1 � ð3� 10�7Þ�1 ¼ 3� 106.

Using the above standard for single precision, one may
estimate the accumulated round-off error [Eq. (5)] for
simulating data di from, say, �1000 spectral- and

response-function points as between � ffiffiffiffiffiffiffiffiffiffiffi
4000

p � "precision
and �4000� "precision, or �4� 10�6–2� 10�4 [74].

To show the connection between independence in
fRiðEÞgNi¼1 and solutions to Eq. (5), assume first that the

Ri’s are linearly independent, choose arbitrary di, and
define fyðEÞ ¼ PN

i¼1 �iRiðEÞ [62,63], where the �i’s are

to be determined. Substitution of fy into Eq. (5) yields the
N simultaneous equations,

P
N
j¼1 Gij�j ¼ di, which have a

unique solution becauseG is nonsingular since the Ri’s are
independent. This demonstrates at least one solution to
Eq. (5). Conversely, assume that the Ri’s are dependent
[e.g., RkðEÞ ¼

P
M
i¼1 �k;iRiðEÞ forM< k � N] and choose

data components that differ in theM� N redundant terms,P
M
i¼1 �k;i

R
RiðEÞfðEÞdE, produced by all spectral func-

tions fðEÞ with these responses. Clearly, no exact solution
to Eq. (5) can now exist because no fðEÞ can reproduce the
chosen data.

APPENDIX E: DERIVATION OF EQS. (14) AND (26)

The derivations of Eqs. (14) and (26) are based on
assumed general behavior of SðEÞ and RiðEÞ in the jth
unfold bin, ½Ej; Ejþ1� ¼ ½�Ej�. (The reader will recall that
these bin boundaries were selected, in part, to isolate
known discontinuities in the Ri’s, cf. Table II.) We assume
that SðEÞ and RiðEÞ are sufficiently well behaved to be
expandable in Taylor series in each bin: e.g.,

SðEÞ ffi Sð �EjÞ þ S0ð �EjÞðE� �EjÞ þ 1

2!
S00ð �EjÞðE� �EjÞ2

þ 1

3!
S000ð �EjÞðE� �EjÞ3 þ � � � (E1)

and similarly for each RiðEÞ. Here �Ej denotes the midpoint

of ½�Ej�, �Ej is the bin width, and the sequence

S0ð �EjÞ; S00ð �EjÞ; . . . indicates increasing-order derivatives

of SðEÞ evaluated at �Ej. When Eq. (E1) is integrated over

½�Ej�, one obtainsZ Ejþ1

Ej

SðEÞdE ffi Sð �EjÞ�Ej þ 0þ 1

3
S00ð �EjÞ

�
�Ej

2

�
3

þ 0þ � � � ; (E2)

where the odd-order terms in Eq. (E1) integrate to zero, due
to our choice of expansion point �Ej. If Sð �EjÞ � 0, Sð �EjÞ�Ej

may be factored out of the series to give Eq. (14).
Similar assumptions and analysis apply to Eq. (26),

which is valid with the additional assumption that SðEÞ is
negligible outside ½�E�. The x-ray data generated in
Eq. (1) can then be written as

di�
Z
½�E�

RiðEÞSðEÞdE¼XN
j¼1

Z Ejþ1

Ej

RiðEÞSðEÞdE: (E3)

[The perturbation terms "i in Eq. (1) have been ignored.]
Focusing on the contribution of the jth bin to di, one writes

Z Ejþ1

Ej

RiðEÞSðEÞdE ¼ RijhSij
REjþ1

Ej
RiðEÞSðEÞdE
RijhSij ; (E4)

where Rij ¼
R
RiðEÞdE is integrated over ½�Ej�, hSij ¼

½�Ej��1
REjþ1

Ej
SðEÞdE is the average of SðEÞ in ½�Ej�, and

the product RijhSij is assumed to be nonzero. Expanding

SðEÞ, RiðEÞ, and SðEÞRiðEÞ about the midpoint �Ej in the jth

bin and then performing the integrals as above, one findsREjþ1

Ej
RiðEÞSðEÞdE
RijhSij

¼ 1þ ð�EjÞ2
24 fR00

i

Ri
þ 2

R0
i

Ri

S0
S þ S00

S þ � � �g
f1þ ð�EjÞ2

24

R00
i

Ri
þ � � �gf1þ ð�EjÞ2

24
S00
S þ � � �g

: (E5)

A further binomial expansion of the denominators pro-
duces Eq. (26). Instead of using hSij, one could also have

simply factored out Sð �EjÞ in Eq. (E4) as above with a

corresponding adjustment to the expansion in Eq. (26).
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