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Trapping of particles in nonlinear resonances in the presence of space charge and synchrotron motion

may be a source of beam halo generation and beam loss in high intensity synchrotrons, in particular for

extended storage times at the injection plateau as planned for the SIS100 synchrotron of the FAIR project.

Although extensive simulation studies have theoretically demonstrated this mechanism, experimental

evidence was so far limited to demonstration experiments at the CERN Proton Synchrotron (PS) in 2002–

2003 using an octupolar resonance. Here we describe new experiments at the SIS18 synchrotron at GSI,

where the resonance is driven by a sextupolar field error and horizontal static tune scans are taken across

the resonance stop band. The new data significantly extend the previous observations by a complete set of

measurements comparing beams with and without rf, both at low and high intensity. The correlation

between transverse beam loss and simultaneous bunch length shortening provides strong evidence that the

measured emittance and the loss in intensity are indeed caused by periodic resonance crossing, leading to

the main effect of scattering but also to a lesser extent to the trapping of particles due to the combined

effect of the nonlinear resonance and the space charge.
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I. INTRODUCTION

The dynamics of particle beams in circular accelerators
is naturally subject to the periodicity of the sequence of
elements composing an accelerator. The Nth harmonics of
a distribution of nonlinear errors of n0th order excites the
resonances nQx þmQy ¼ N, where Qx, Qy are the accel-

erator tunes, and nþm ¼ n0 [1]. Although resonances
should be avoided, it may happen that during machine
operations unwanted drifts of Qx, Qy might lead to a

resonance crossing as, for example, was found in the
Fermilab Booster [2–4]. The beam dynamics for time
varying tunes crossing a resonance is complex, and has
been addressed in several pioneering studies in Refs. [5–7].
When the machine tunes cross a stable resonance, the
dynamics of a particle have two distinct patterns [8]:
(1) If the tunes cross the resonance slow enough (adiabati-
cally), the resonance captures the particle and stays
‘‘locked’’ to it. The consequence is that a particle gains
large amplitudes (see also Ref. [9]). (2) If the tunes cross
the resonance fast enough, beam particles will receive a
small kick by the stable islands and each single particle
invariant will be ‘‘scattered.’’ The distinction between
trapping and scattering regimes can be made via an adia-
baticity parameter T ¼ ½@j ~xfðnÞj=@n�=ðQisl:��xÞ, where ~xf
is the position of the fixed points,Qisl: is the secondary tune
(island tune), and ��x the island size. This definition is
equivalent to that used in Ref. [6]. If T < 1 the crossing
regime is adiabatic and trapping can take place.
Experimental studies with low intensity beams on trapping
of particles in stable islands are reported in Refs. [10–15].
The notion of transverse trapping or scattering of particles

in bunched beams is possible because in synchrotrons the
longitudinal motion typically has a frequency much
smaller than those in the transverse plane, therefore the
longitudinal motion can be treated as a parameter. This
approximation is said of the frozen system as the tunes
experienced by a beam particle are instantaneous tunes.
Trapping and scattering phenomena become relevant for

a repeated crossing of the same resonance, which may
easily happen for a bunched beam when the chromaticity
is left uncompensated. However, it has recently been real-
ized that space charge also plays a similar role [16]. In a
stationary bunch created by a single rf harmonics the
longitudinal particle motion, via space charge, changes
the transverse tunes of the frozen system as happens with
the chromaticity. The relevant feature of the space charge is
that it creates a strong nonlinear transverse amplitude
dependent detuning, which drives the transverse islands
much further out in the phase space than the chromaticity
alone. Examples of trapping and scattering phenomena
induced by space charge are discussed in Ref. [17] where
a numerical study shows how the space charge affects T
along a bunch. When space charge is considerable (e.g.
�Qx;sc � 0:2), and a bunched beam is stored for a long time

(105 or more turns), a periodic resonance crossing in-
creases the transverse amplitude of particles when their
tunes are above closer to the resonance. If particles will
move within the accelerator acceptance, an emittance in-
crease appears (for small halo radii), otherwise a slow
progressive beam loss will characterize the storage. The
beam loss created by this mechanism is typically found for
tunes above the resonance periodically crossed. In the case
of simultaneous presence of space charge and chromaticity,
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the full scenario is even more complicated. As discussed in
Ref. [17] the beam loss region may be enlarged up to the
chromatic tune spread: In fact, the bunch particles have an
effective tune of Qx=y þ �x=yQx=y�p=p, with �x=y the nor-

malized horizontal/vertical machine chromaticity, and
�p=p the particle off momentum. Hence, in spite Qx, Qy

may be far from a resonance, several bunch particles are
brought periodically close to the resonance by the chroma-
ticity so that their transverse motion is periodically effected
by space charge and resonance. An important aspect of the
periodic resonance crossing for high intensity bunched
beams consists in the induced correlation between beam
loss and longitudinal beam size: When the accelerator is
tuned close to a resonance (and above it), only particles
with large synchrotron amplitude may cross the resonance
and therefore become trapped or scattered into a halo and
eventually be lost. The correlation between ‘‘beam loss’’
and ‘‘bunch shortening’’ is a strong indication that only
particles at large longitudinal amplitude will be lost.

The experimental verification of these high intensity
effects, when driven by a controlled 4th order resonance,
was carried out at the CERN PS in the years 2002–2003
[18]. The experiment was performed with uncompensated
chromaticity creating a ‘‘mixed’’ regime of periodic reso-
nance crossing induced by both the space charge and the
chromatic detuning. In spite of this complication, the PS
benchmarking experiment has proven that the measured
emittance growth and bunch shortening can be interpreted
in the frame of a trapping and scattering theory [19]. While
these basic mechanisms have been identified on the theo-
retical and numerical side, a thorough experimental inves-
tigation that includes the bunch shortening correlation and
the comparison with a coasting beam was still missing. In
the experiment described in this paper we attempt to fill
this gap. At GSI we have carried out in the SIS18 synchro-
tron an experimental campaign in which the long-term
space charge effect in the presence of a 3rd order resonance
(octupoles are not available) was studied. These studies
find direct application in the SIS100 synchrotron part of the
FAIR project [20–22]: In the main scenario of SIS100
operations, bunched beams of U28þ are stored for ’ 1 s
and beam control or containment of beam loss becomes
essential: Beam loss above the �5% level may trigger an
avalanche vacuum degradation process due to the high
U28þ desorption yield, which dramatically reduces beam
lifetime [23]. The plan of the paper is the following: In
Sec. II we discuss the experimental setup, i.e., the experi-
mental conditions in which all our measurements have
been performed as well as how we interpret the measure-
ments from the ionization profile monitor (IPM).
Section III presents a series of measurements apt to dis-
tinguish the several sources affecting the beam quality such
as chromaticity, dispersion, and the synchrotron motion.
The experimental results are presented and compared with
multiparticle simulations. In Sec. IV we discuss how these

findings may form a possible proof of principle for high
intensity driven trapping/scattering mechanisms acting
during long-term storage. Section V is devoted to the
conclusion, and in the Appendix we discuss how we mod-
eled the nonlinear lattice of SIS18 as well as the method-
ology for assigning error bars.

II. EXPERIMENTAL SETUP

A. Beam condition

In the experimental campaigns an ion beam of 40Ar18þ
was used. In Fig. 1 is shown an example of the beam
emittances measured at the exit of the linac (UNILAC),
here with �x ¼ 6:58 mmmrad, �y ¼ 3:49 mmmrad. The

emittances are computed here by using a cut phase space at
90% of the peak density, and these numbers refer to the 2�
emittance [i.e. to the equivalent Kapachinsky-Vladimirsky
(KV) edge]. The beam intensity in the UNILAC was set to
IU ¼ 0:8 mA, the injection energy in the SIS18 and other
beam and accelerator parameters are reported in Table I.
A schematic of SIS18 is shown in Fig. 2. For the purpose of

FIG. 1. Horizontal (a) and vertical (b) beam phase space
measured in the transfer channel between UNILAC and SIS18.
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observing a high intensity driven beam blowup, a beam
smaller than the SIS18 acceptances (Ax ’ 200 mmmrad,
Ay ’ 50 mmmrad) was created by setting the injection

chopper window to 10 �s over 160 �s for complete ac-
ceptance filling. After injection the beam was stored for
’ 1 s at injection energy, and then accelerated for
extraction.

At injection energy the revolution time is 4:6 �s and an
injection with a chopper window of 10 �s corresponds to
two turns equivalent to 2:1� 109 ions in SIS18. However,

because of the inefficiency of the multiturn injection, the
number of particles stored in the SIS18 did not exceed
�1:5� 109. The beam emittances have been computed
from the beam profiles measured with the IPM [24]. In
Fig. 3 we plot an example of the beam profiles for a low
intensity coasting beam measured right after multiturn
injection, and after storage of 1 s for the tunes Qx ¼
4:3605, Qy ¼ 3:245. These tunes are not those set into

the SIS18 control system, which are unavoidably affected
by systematic shifts, but the corrected tunes. We present
throughout this paper tunes already corrected and discuss
in Sec. III A the method used to correct the systematic tune
shift. The transverse emittances are calculated using the
measured distributions and beta functions. The measure-
ments from the IPM have to be interpreted carefully. In
fact, the machine acceptance at the position of the IPM
provides an area accessible to the beam within �35 mm
horizontally and �20 mm vertically. Consequently, an
apparent ion detection measured at y ¼ 40 mm in
Fig. 3(a) cannot be attributed to the ion beam. The reason
for this spurious signal is that the IPM spatial area of

FIG. 2. Layout of the SIS18 and location of the diagnostic
devices used.

TABLE I. Typical parameters of SIS18 and of the ion beam
used.

Parameter Value Units

Energy per nucleon 11.28 MeV=u
Ion mass number 40

Ion charge state 18

rf harmonics 4

rf voltage 4 kV

Total particles per bunch 3:125� 108

Gamma transition 5.01

Rigidity 1.077 Tm

SIS18 circumference 216.1 m

Average �x �8 m

Average �y �10 m

Revolution time 4.673 �s
Eta transition 0.9362

Synchrotron tune 6:915� 10�3

Bunching factor 0.3357

Rms momentum spread 1:3� 10�3

Bunch length 4� 560 ns

Maximum �p=p in the bucket 7:4� 10�3

Horizontal emittance at 2� 19 mmmrad

Vertical emittance at 2� 14 mmmrad

Horizontal peak tune shift �4� 10�2

Vertical peak tune shift �4:5� 10�2

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20 40 60
y [mm]

N
or

m
al

iz
ed

 d
en

si
ty

[1
] injection

1 second

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20 40 60
x [mm]

N
or

m
al

iz
ed

 d
en

si
ty

 [1
] injection

1 second

a)

b)

FIG. 3. Horizontal (a) and vertical (b) beam profile measure-
ment for the SIS18 tunes Qx ¼ 4:340, Qy ¼ 3:245.
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detection is larger than the accelerator acceptances. We
avoid this artifact by cutting profile data below 10% of
their maximum [blue line in Figs. 3(a) and 3(b)]. Clearly
this procedure reduces the effective rms size: For example,
for a Gaussian distribution this is a reduction of 9.3%
which causes an emittance reduction of 18%. In calculating
the emittances we take into account these corrections (see
Appendix B). From Fig. 3 we obtain then the rms beam
emittances �x;rms ’ 5 mmmrad, �y;rms ’ 5 mmmrad, with

edges (at 3�) corresponding to the emittances: �x;edge ¼
45 mmmrad, �y;edge ¼ 45 mmmrad. Therefore the tail of

this beam is not at the edge of the SIS18 horizontal/vertical
acceptance and possible beam blowup can occur without
beam loss. The emittance measurements are also affected
by an rms fluctuation of �5%, which we also take into
account (see Appendix B).

B. Intensity control

The possibility of creating beams of equal size at several
intensities is important for proof of principle measure-
ments. In order to keep the same initial beam profile at
injection in SIS18, the intensity was changed directly via
UNILAC. However, the linac-synchrotron injection
scheme based on the ‘‘multiturn injection’’ is unavoidably
affected by the change of the horizontal tune Qx. This
drawback cannot be avoided and makes a difference with
respect to the PS experiment [18], where the bunch to
bucket transfer kept the intensity virtually independent of
the machine tunes. The experimental results show that this
effect can be estimated for this experiment to fluctuate as
much as �15%, which also includes the intensity fluctua-
tion of the source.

III. THE MEASUREMENT CAMPAIGN

A. Low intensity coasting beam

The finding of the SIS18 resonances is the result of an
experimental campaign performed in 2004 (see
Refs. [25,26]). In Fig. 4 we show these results obtained
by scanning the machine tunes across the working diagram
and measuring beam loss (see scale for relative loss, blue
signifies no loss). The choice of the lattice resonance for the
high intensity trapping studies is based on Fig. 4. The best
option for studying the long-term high intensity effects is
given by the resonance 3Qx ¼ 13 which allows enough
surrounding space in the tune diagram to allocate some
space charge tune spread without intercepting any other
resonance. As pointed out in the Introduction, the simulta-
neous presence of chromatic effects and space charge cre-
ates a complex mixed dynamics, which in this experiment
we prefer to avoid in order to focus on purely space charge
driven incoherent effects. In fact, our coasting beam has
ð�p=pÞrms � 4:8� 10�4 which combined with a natural
chromaticity of �x ¼ ½@Qx=@ð�p=pÞ�=Qx ’ �1:5 gives
an unwanted rms tune spread of �3� 10�3. Therefore
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FIG. 4. Experimental resonance chart of SIS18. The colors
represent the normalized beam loss between two consecutive
data acquisitions (10 ms) during several tune scans each 1 s
long [25]. In these measurements the chromaticity was left
uncompensated.

FIG. 5. Low intensity coasting beam: Time evolution of beam
profile for (a) Qx ¼ 4:3185, Qy ¼ 3:245; (b) Qx ¼ 4:3325,

Qy ¼ 3:245.
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we required that in all measurements the chromaticity is
always to the best of our ability compensated, and as the
resonances measured in Fig. 4 were obtained with uncom-
pensated chromaticity, the effective stop band of the reso-
nance 3Qx ¼ 13was measured again. In order to reach this
goal, we have measured a coasting beam response in terms
of emittance growth and beam loss for several horizontal
tunes keeping Qy ¼ 3:245. In these measurements the in-

tensity is kept low so as to resolve the pure single particle
nonlinear effects by injecting �0:8� 109 ions. For each
working point we have stored the transverse profiles to
reconstruct the time evolution of the beam properties as
shown, for the example of a tune off the 3rd order resonance
at Qx ¼ 4:3185 in Fig. 5(a), and for a tune in the beam loss
stop band at Qx ¼ 4:3325 in Fig. 5(b). In both these pic-
tures and all those of the same type throughout this paper,
the red-pink region provides a reference for the beam edge
taken at 25% of the beam peak intensity. In Fig. 5(b) the
beam edge shows the dramatic effect of the 3rd order
resonance: In the first 100 ms of beam storage a substantial
beam loss takes place at the expense of the beam size.

Afterwards the beam size stabilizes as a result of the
complete scraping of all particles out of the 3rd order
separatrix. The figure of merit of what happens to the
beam is obtained defining an emittance ratio �x1=�x0, where
�x0 is the emittance of the beam at injection and �x1 is the
beam emittance after 1 s storage. The summary of all these
measurements is shown in Figs. 6(a) where a beam loss stop
band of �Qx ’ 0:012 due to the 3rd order resonance
3Qx0 ¼ 13 is found. The region of the 3rd order resonance
induced beam loss is marked by a red stripe as reference for
other measurements, which will be presented in this paper.
The red and the black curves show, respectively, the beam
survival and the emittance ratio after 1 s storage. The error
bar shown in Figs. 6(a) and 6(b) and all other pictures
throughout this paper are discussed in Appendix B.

1. Modeling the nonlinear dynamics in the
proximity of the 3rd order resonance

The measurement of the SIS18 nonlinear components is
difficult and is part of an undergoing effort. In fact, the data
acquisition of the beam position monitor (BPM) system
does not allow for a simultaneous data acquisition from
two BPMs. Therefore we cannot use a resonance driving
term method [27], and we pursue the goal of measuring the
nonlinear components with an alternative method based on
deforming the closed orbit [28,29]. Hence, the known
nonlinear optics of SIS18 includes only the six sextupoles
for chromatic correction since the natural errors are not
known. The presence of the six identical correction sextu-
poles alone cannot explain the experimental findings as
they drive the 6th harmonics and therefore do not excite the
resonance 3Qx ¼ 13. As the locations of the sextupolar
errors creating the 13th harmonics are not known, we make
the ansatz of a nonlinear model of SIS18 with only one
sextupolar error. It is shown in Appendix A that a Gaussian
beam of rms emittance ~�x in a linear lattice equipped with
one sextupole of integrated strength K2, creates the beam
loss stop band �Qx;sb (defined for a beam loss of 1%)

�Qx;sb ¼ 0:217
ffiffiffiffiffi
~�x

p
�3=2

x jK2j; (1)

where �x is the beta function at the location of this error
sextupole. We therefore add an error sextupole located in
proximity of a dipole, where �x ¼ 5 m, and apply Eq. (1)
to a beam of �x;rms ¼ 4:75 mmmrad requiring a beam loss

stop band of �Qx;sb ’ 0:012 as observed in the measure-

ments [Fig. 6(a)]. The integrated strength of this error
sextupole is then set to K2 ¼ �2:2 m�2.
The discussion in Appendix A for deriving Eq. (1) shows

that the pattern of beam loss created by one sextupole is
symmetric in Qx � 13=3 [see Figs. 21(c) and 21(d)].
However, in Fig. 6(a) the measured beam loss (red curve)
does not exhibit this symmetry, indicating the presence of
an extra detuning acting on resonant particles. Clearly, the
presence of relatively strong chromatic correction sextu-
poles contributes as a source of detuning, and the direction
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FIG. 6. Low intensity coasting beam: (a) Measured normalized
emittance increase and beam loss versus Qx. (b) Simulation of
beam loss and emittance increase: The stop band of beam loss
allows the calibration of the strength of the nonlinearities in the
lattice model.
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in which the detuning acts is essential for determining the
direction of the beam loss asymmetry. Thus, it becomes
necessary to take the sign of the error sextupole strengthK2

to be negative. Note that this procedure fixes K2 and its
sign, however, we found that this setting creates a too
strong amplitude dependent detuning: Simulations have
shown that the asymmetry in the beam loss pattern is too

strong with respect to that measured in Fig. 6(a). As the
strength of the chromatic correction and error sextupoles
are not free parameters, we counteract to the excessive
amplitude dependent detuning by using an octupole. We
find that a value K3 ¼ 25 m�3 of the octupole strength
fitted well the asymmetry of the beam loss in Fig. 6(a).
This integrated nonlinear component can be attributed

partly to the pseudo-octupoles created by the quadrupole
fringe field [30,31]. The focusing quadrupoles are each 1 m
long with a strength of KF ¼ 0:31 m�2. By taking the
approximations of Ref. [32] we find the strength of the
pseudo-octupoles to be K3;po ¼ �3:6 m�3. For the defo-

cusing quadrupoles we find K3;po ¼ �5:88 m�3. The

strength of these local kicks is smaller by a factor �5–8
than the single octupole used in the modeling. Therefore
these nonlinear kicks distributed over 24 quadrupoles (with
alternated signs) are not the source of the large octupolar
strength assumed in our model.
The effect of all the nonlinearities included in this SIS18

model are visualized in the Poincaré sections shown in
Fig. 7. We plot three cases: Fig. 7(a) shows a phase space
plot in Courant-Snyder (CS) coordinates for a working
point below the resonance at Qx ¼ 4:328. The character-
istic triangular shape of the stable orbits is obtained. Note
that the stable fixed points are located at infinity in the
absence of other source of nonlinearities. As a reference we
draw three circles in correspondence of 1�x, 2�x, and 3�x

of the beam distribution. From this picture it is visible that
a fraction of the beam lies outside of the separatrix, and
will therefore become lost. This is visible in Fig. 6(b) and a
small beam loss is also seen in the measurement in
Fig. 6(a). The effect of the nonlinearities driving the
resonance is shown in Fig. 7(b) for the working point
Qx ¼ 4:334. Note the small triangular separatrix and three
new stable islands with fixed points located at positions far
from the beam edge. These new islands appear as a con-
sequence of the nonlinear detuning created by the chro-
matic correction sextupoles and the extra octupole used to
match the model to the experimental beam loss. At this
working point there is a large particle loss, but also some of
the particles remain bounded in their motion in the new
stable islands, creating an rms emittance increase [as seen
in Fig. 6(b)]. The same effect is seen in Fig. 6(a).
In Fig. 7(c) the working point Qx ¼ 4:34 located above

the resonance is used. A vertical mirroring of the stability
region takes place because of the change of sign of the
distance of the bare tune from the resonance. The rounding
of the triangular shape indicates that this tune is away from
the third order resonance. Nothing dramatic is expected to
happen to emittance growth and beam loss ratio as is
evident from Figs. 6(a) and 6(b).

2. Multiparticle simulations

By constructing a computer model taking functionality
from the MICROMAP library [33], the effect of the lattice
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FIG. 7. Phase space portrait of the stable orbits for
(a) Qx ¼ 4:328, (b) Qx ¼ 4:334, and (c) Qx ¼ 4:34. The dy-
namics is determined only by the magnet nonlinearities. No
space charge is included.
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with its nonlinearities on the stored beam could be simu-
lated. Thus, the normalized beam loss and emittance after
1 s of storage time for the same working points as used in
the measurements were computed. In the simulations we
used 2000 macroparticles which are removed when they
exceed the machine acceptance. The space charge is com-
puted with a frozen model described in Ref. [34]. For all
investigations, the lattice was maintained with a chroma-
ticity which was compensated by a family of sextuples.

The results of the simulations in Fig. 6(b) show an
acceptable approximation to those measured in Fig. 6(a).
It is evident that the SIS18 nonlinear model does not
reproduce the peak in the emittance growth found at Qx ’
4:356 as it does not include the driving term of the under-
lying resonance. The modeling of this unknown resonance
is not possible with the information available at present. In
Fig. 6(a) the measured emittance growth at Qx ¼ 4:3365
exhibits an increase of 20% above the resonance (peak in
the stop band). This is interpreted again as an effect being
caused by amplitude dependent detuning which pushes
particles out of the stop band before being lost. The result-
ing emittance increase depends on the details of the syn-
chrotron, but especially on the trade-off between the
strength of the amplitude dependent detuning and free
space left in the beam pipe for the beam to blow up (or
ratio of the acceptance to beam emittance). In our simula-
tions in Fig. 6(b), we observe a similar effect. The peak in
the emittance increase is an unavoidable consequence of
neglecting natural nonlinearities of SIS18.

We will use this nonlinear model for the simulations of
the high intensity beam dynamics of SIS18 throughout this
paper. Given the high CPU time demand of these simula-
tions, we limit our study to the experiment settings avoid-
ing additional parameter scan studies.

3. Calibration of the SIS18 tunes

In SIS18 the tunes are inputs to the accelerator control
system, but the actual tunes experienced by a beam particle
differ from these set-point values. In fact, the resulting tune
depends on the ‘‘feed down’’ of nonlinear components due
to closed orbit deformations in addition to an intrinsic
calibration shift present in the SIS18 control system. As
in this paper we will compare experimental measurements
with simulations, we remove this ambiguity by calibrating
the tunes given to SIS18 with the simulation model. In fact,
when beam loss is maximum and asymptotic beam size
small, the main resonant process comes from the third
order resonance without additional contributions from
other effects. The SIS18 tune corresponding to this situ-

ation is found at ~Qx ¼ 4:2960, which cannot be taken as
the center of the 3rd order resonance. We correct this tune
by adding a shift of �Qx ¼ 0:0365, to overlap the maxi-
mum beam loss of the measurements [Fig. 6(a)] with the
tune corresponding to the maximum beam loss found in the
simulations [Fig. 6(b)]. This is the only correction applied

to all the measured data throughout this paper. The error
bar assigned to the tunes is 6� 10�4 as discussed in
Appendix B.

B. High intensity coasting beam

The experimental study of the high intensity effects on
the single particle nonlinear dynamics, i.e. trapping or
scattering of particles on stable islands, can be done mainly
by measuring global beam quantities, such as transverse
and longitudinal beam size and beam loss. However, these
observables can also vary because of the presence of other
effects invalidating the purpose of the measurements. We
therefore perform a preliminary study in order to establish
whether significant variations of these observables are
found. As a first step we studied the beam response in a
high intensity coasting beam.
We injected into SIS18 �3� 109 ions, which create a

peak incoherent space charge tune shift of �Qx;sc ¼
�0:025,�Qy;sc ¼ �0:03. These values have been obtained

for a Gaussian beam distribution with the formulas [35]

�Qx;sc ¼
��x

2
Racc

Kpeakffiffiffiffiffiffiffiffiffiffiffi
��x�x

q
ð

ffiffiffiffiffiffiffiffiffiffiffi
��x�x

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
��y�y

q
Þ

�Qy;sc ¼
��y

2
Racc

Kpeakffiffiffiffiffiffiffiffiffiffiffi
��y�y

q
ð

ffiffiffiffiffiffiffiffiffiffiffi
��x�x

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
��y�y

q
Þ
;

(2)

where ��x ¼ Racc=Qx0, ��y ¼ Racc=Qy0 are the average

horizontal/vertical beta functions, respectively, and Racc is
the accelerator radius. These formulas are valid for small
tune shift and long bunches, i.e. rx=rz � 1, which is the
case in our experimental condition. The factor Kpeak is the

peak perveance given by Kpeak ¼ qIpeak=ð2��0mc3�3�3Þ,
where q is the charge of the ion, Ipeak is the peak beam

current, �0 the vacuum permittivity, m is the ion mass, and
�, � are the relativistic factors. This formula, due to the
optics, underestimate shifts in the horizontal tune of 20%,
and in the vertical tune of 2%. Note that the Ipeak for a

coasting beam is obtained from the average intensity.
The high intensity current was chosen with the strategy

of creating ‘‘equivalent beams.’’ Ideally we require that
coasting beams at high intensity have the same space
charge tune spread of high intensity bunched beams
(Sec. III D) so we can compare the beam dynamics under
the same space charge condition for phenomena of peri-
odic resonance crossing. Clearly, this must take the bunch-
ing factor into account. This allowed us to determine an
intensity for the bunched beam of�1:2� 109 ions and the
closer ‘‘equivalent’’ intensity for the high intensity coast-
ing beam reached in the experiment is of �3� 109 ions.
The low intensity measurements should be instead with
zero intensity, but we have been forced to keep a minimum
beam intensity in order to avoid a too strong noise to signal
measurement condition. Again we keep the beam intensity
for the low intensity bunched beam lower than that for the
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low intensity coasting beam (see Table II for a summary of
beam intensities).

In Fig. 8(a) we show the results of these measurements.
This picture shows explicitly the detuning effect induced
by space charge: The maximum beam loss at Qx ¼ 4:3365
reduces the beam survival to 72%. This minimum is found
shifted to the right of that in Fig. 6(a), where it is located at
Qx ¼ 4:3325 and I=I0 ¼ 0:26. A similar pattern is found
for the peak value of the emittance ratio 1.29 which occurs
at Qx ¼ 4:3425, whereas in Fig. 6(a) it is located at Qx ¼
4:3365 with �x;1=�x;0 ¼ 1:2. The peak in emittance growth

is shifted by�Qx;s ’ 0:006. We do not expect that this shift

derives from a coherent resonance effect [36–38]. In fact,
in Fig. 8(b) the simulations are obtained using a frozen
model of the space charge force created by the beam [34],
which does not incorporate coherent effects. Therefore the
shift in the emittance growth curve is due to the incoherent
space charge effect, while the coherent character of the
interplay of the space charge with the 3rd order resonance
would be found closer to the stop band (at Qx ¼ 4:3365)

where the beam loss becomes substantial. In Fig. 8(b) the
simulations of this measurement reproduce with accept-
able accuracy the experimental results. The peak in the
emittance increase is again shifted by �Qx;s ’ 0:0075.
Note the amount of beam loss, which is less than in the
measurement. This discrepancy may be attributed to the
lack of self-consistency in simulations. It is interesting that
both simulations and measurements show that the presence
of space charge mitigates beam loss. The space charge
detuning plays a beneficial role in bringing particles out
of the 3rd order resonance. Only the particles which are at
large amplitudes cannot receive this effect and therefore
are lost in the resonance stop band. It is also remarkable
that any trace of the second stop band found in Fig. 6(a)
disappears. The explanation for this finding is beyond the
purpose of this paper as we do not possess enough infor-
mation on all resonances of the SIS18.
In order to visualize the effect of the space charge, we

plot in Fig. 9 the phase space portraits of the same working
points used in Fig. 7. Comparing Fig. 9(a) with Fig. 7(a) we
note immediately the effect of the detuning which enlarges
the stability region. Even more dramatic is this effect for
the working pointQx ¼ 4:334 [Fig. 9(b)] if compared with
Fig. 7(b); the stable region becomes very large in contrast
to the very small triangular domain of Fig. 7(b). In Fig. 9(c)
the space charge brings the 3rd order resonance in an
otherwise stable region of the phase space. The position
of the three stable islands is controlled by the strong space
charge detuning and the machine working point. These
islands, in spite of being in a stationary position, play a
role in the increasing of emittance.
In fact, part of the beam tails overlap with the islands and

are therefore subjected to the dynamics of the resonance
creating an emittance increase seen in Fig. 8(b) at Qx ¼
4:34. For larger working points, these stable islands are
located closer to the transverse origin creating a smaller
emittance increase [see in Fig. 8(b)] as their amplitude
decreases and the fixed points are closer to the origin.
The same argument is a possible explanation for the ex-
perimental findings of Fig. 8(a). In order to show this
clearer, we plot in Fig. 10 as a function of the working
point Qx, the further and closer distance of the separatrix
from the origin. The island edges are rescaled with respect
to the rms beam size. It is evident for Qx > 4:35 that the
outer edge of the island is located inside the beam, hence
causing a small or negligible emittance increase. In terms
of tune footprint, the comparison of the effect of the lattice
nonlinearities with respect to the case in which space
charge is added is also useful. Each tune-footprint picture
is obtained from a series of test particles placed in the area
�5:15�x < x < 5:15�x, and �5:83�y < y < 5:83�y, i.e.

�4 cm< x, y < 4 cm on a grid of 4012 points. All the
other coordinates are taken zero (hence all particles are
taken to be at z ¼ 0 in the bunch frame). In Fig. 11 on the
left are shown the tune footprints driven by the lattice
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FIG. 8. High intensity coasting beam: (a) Normalized emit-
tance increase and beam loss versus Qx. (b) Simulation of beam
loss and emittance increase versus Qx. For this simulation the
beam intensity has been taken so as to create a maximum tune
shift of �Qx ’ �0:025.
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nonlinearity. The detuning is minimum for particles at
small transverse amplitudes which are located very close
to the bare tune. For particles at large amplitudes the
detuning is positive and in Fig. 11(c) it is visible as a
vertical line in correspondence to the resonance 3Qx ¼
13. The particles with tunes locked on this line are those
that are on the three islands in Fig. 7(b). In the pictures on
the right column of Fig. 11 we plot the tune footprints in
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FIG. 9. Phase space portrait of the stable orbits for
(a) Qx ¼ 4:328, (b) Qx ¼ 4:334, and (c) Qx ¼ 4:34. In the
particle dynamics are included, the magnet nonlinearities and
the beam space charge.

0

1

2

3

4

5

4.33 4.35 4.37
Qx

√
ε⎯

x⎯
,⎯ m⎯

a⎯
x⎯
 /⎯

ε⎯
x⎯
0⎯

FIG. 10. Position of the 3rd order island edges in units of rms
beam size as a function of the working point Qx. The green line
is located at the edge of the beam.

FIG. 11. Tune footprints: In pictures (a), (b) the tune is Qx ¼
4:328, in (c), (d) the tune is Qx ¼ 4:334, in (e), (f) the tune is
Qx ¼ 4:34. The pictures on the left provide the tune footprint
from the pure nonlinear lattice. The pictures on the right include
also the effect of the space charge. Note that space charge has a
dominant effect over the detuning of the lattice nonlinearities.
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the presence of space charge and lattice nonlinearities for
the reference intensity of N ¼ 2:5� 108 ions per bunch.
The negative detuning of the space charge overcomes the
positive detuning of the lattice nonlinearities. This dra-
matic effect is visible in Fig. 11(d), where all particles
are brought away from the resonance or are otherwise
brought into the resonance as is the case in Fig. 11(f).
The resonant particles of Fig. 11(f) are those populating
the three islands of Fig. 9(c).

C. Low intensity bunched beam

The study of high intensity effects on a bunched beam
requires the control of the off-energy related effects as well
as the creation of a well controlled stable bunched beam.
Stable bunches have been created by means of a special rf
cycle which is applied in addition to the standard SIS18 rf
cycle; 100 ms after the beam is injected the coasting beam
is adiabatically bunched in 10 ms corresponding to 14
(linear) synchrotron periods. Afterwards the bunched
beam is stored for 1 s (rf parameters in Table I). The
resulting linear synchrotron tuneQs yields one synchrotron
oscillation in 144 turns. Longitudinal tune and the expected
rms momentum spread are reported in Table I. After the
storage is ended the beam is debunched in 100 ms and
afterwards the standard SIS18 rf cycle takes over forming
again a bunch, which is then accelerated and extracted at an
energy of 400 MeV=u. The presence of uncompensated
chromaticity during the storage of a bunched beam is, for
our purposes, unacceptable. In the presence of a natural
normalized chromaticity of �x ’ �1:5 an rms tune spread
of �Qch

x;rms ¼ �8:3� 10�3 would be found, and a particle

with off momentum �p=p would be subjected to a tune
variation function of the turns n as �Qch

x ¼ Qx�xð�p=pÞ�
cosð2�QsnÞ. This effect interferes with the dynamics of
resonance crossing induced by space charge. For this rea-
son in our measurements the chromaticity is compensated
via the SIS18 control system. However, no further mea-
surements were performed to control the effectiveness of
the chromatic correction and the presence of some residual
chromaticity should not be excluded.

In order to distinguish the relevance of this type of effect
from the pure space charge driven beam blowup we per-
form measurements, with weak space charge, to assess the
effect arising from the pure residual chromaticity and by
the presence of the dispersion. For this measurement the
SIS18 was filled with �0:4� 109 ions. Figure 12 shows
the horizontal beam evolution for two different horizontal
tunes. Note in Fig. 12(a), obtained at Qx ¼ 4:3185, the
small beam size increase attributed to the larger momen-
tum spread following bunch formation. At the end of the
storage time when the debunching takes place (in 100 ms,
i.e., 140 synchrotron periods), the extra beam size is re-
moved because the debunching processes are to a good
approximation adiabatic. The same process is better vis-
ible, because of the higher intensity, in Fig. 15(a). If 	ðxÞ is

the horizontal beam profile in the absence of momentum
spread, and the beam size x is measured at 	ðxÞ=	max ¼ 

[the red edge in Fig. 12(a)], then a momentum spread of
ð�p=pÞrms changes the beam edge according to

�x

x
’ � lnð
Þ

�
Dxð�p=pÞrms

x

�
2
: (3)

Because the dispersion at the position of the IPM is Dx ¼
1:6 m,D0

x ¼ 0:2 mrad, and
 ¼ 0:25, we find�x=x ’ 4%,
i.e. an increase of beam edge of�x� 0:5 mm. Figure 12(a)
shows instead a beam size increase of ’ 1:5 mm. The
discrepancy of the measurement with the predictions of
Eq. (3) is attributed to the discretization of the beam profile
measurement; in fact the anode wires present in the multi-
channel plate of the IPM have a pitch of 2.1 mm (thickness
of the wires 1.5 mm and distances between wires 0.6 mm),
which sets the effective resolution of the device for the
beam edge measurements. Figure 12(b) shows the horizon-
tal beam evolution in the resonance stop band at Qx ¼
4:3325. The effect of the resonance is fully visible. In the
first 10 ms the increase of the beam profile is possible
because of a small beam loss rate. After 0.2 s the large
beam loss almost saturates while the beam size slowly
decreases, keeping a larger size than in Fig. 5(b).

FIG. 12. Low intensity bunched beam: (a) Beam evolution at
Qx ¼ 4:3185. (b) Beam evolution at Qx ¼ 4:3325.
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An adequate assessment of the long-term emittance
growth should be clearly done by measuring beam profiles
before/after the adiabatic bunching/debunching, respec-
tively, thereby avoiding artifacts due to the dispersion
and the increased �p=p. The summary of the beam re-
sponse for this sequence of measurements is shown in
Fig. 13(a). In this picture we find that the peak emittance
�x;1=�x;0 ¼ 1:22 on the right of the 3rd order stop band at

Qx ¼ 4:3385 has still an unchanged amplitude with respect
to the value found in Fig. 6(a) (�x;1=�x;0 ¼ 1:20) and

Fig. 8(a) (�x;1=�x;0 ¼ 1:29).
The peak beam loss, I=I0 ¼ 0:31 at Qx ¼ 4:3325, prac-

tically remains as in Fig. 6(a) although the beam loss stop
band has slightly widened. This result can be attributed to a
residual chromaticity still present after chromaticity com-
pensation. In Fig. 13(b) we show the simulation results for
the modeling of these measurements. We find that simula-
tions of the beam loss predict well the experimental find-
ings within the stop band. The large emittance growth on
the right of the resonance does not exceed the same peak
found in the simulation of Fig. 6(b).

From these measurements we conclude that the residual
chromaticity in this experiment is not significant enough to
introduce extra effects in the periodic resonance crossing.
The stop band is slightly enlarged, but the emittance in-
crease is not affected. In Fig. 13(a) we present in addition
the rms bunch length ratio as a function of the working
point (green curve). The longitudinal profile measurements
were recorded by a LeCroy oscilloscope (’’WaveRunner
6000A’’) for digitizing and storing the BPM data.
For every tune about 4000 bunch profiles were recorded

along the storage of 1 s. The calculation of the bunch rms
size at a given time t is made by averaging the longitudinal
profiles of the 30 neighboring profiles. Given the large
number of measured profiles in 1 s, 30 consecutive profiles
make up 1% of the total, which are not significantly
affected by beam variation. A detailed discussion on the
error bar assigned to the rms bunch length is included in
Appendix B. The green curve in Fig. 13(a) shows that at
the location of the 3rd order beam loss stop band the rms
bunch length becomes shorter. This may be a result of
a reduction of the dynamic aperture and of a small
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FIG. 13. Low intensity bunched beam: (a) Normalized emit-
tance increase, bunch length, and beam loss versus Qx. (b)
Simulation of beam loss, bunch length, and emittance increase.
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FIG. 14. High intensity bunched beam: (a) Measured
transverse-longitudinal beam response to the long-term storage
as a function of the working points around the third order
resonance. (b) Simulation of the same case.
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enlargement of beam size due to the momentum spread: In
fact, the phase space plots of Fig. 7 show that the region of
stable motion decreases for tunes close the 3rd order
resonance, (i.e. the dynamic aperture collapses on the
resonance). At the same time, the beam size is slightly
increased because of the �p=p and residual chromaticity,
hence particles with large �p=pmight be lost then perturb-
ing the longitudinal beam profile. This feature is approxi-
mately observed in Fig. 13(b). Note the apparent bunch
lengthening because particles are transported from the
longitudinal core to the longitudinal tails of the beam.

D. High intensity bunched beam

All previous measurements had the purpose to assess:
(1) the single particle 3rd order stop band (Sec. III A);
(2) the effect of space charge on the coasting beam
(Sec. III B); (3) the effect of the residual chromaticity on
low intensity bunched beams (Sec. III C). We now present
the study of the effect of high intensity on a bunched beam.

The high intensity bunches used in these measurements
are characterized by a bunching factor and momentum

spread as in Table I. The SIS18 was filled with
�1:2� 109 ions which yields an average peak space
charge tune shift (directly measured from the IPM data)
of �Qx;sc ’ �0:04, and �Qy;sc ’ �0:045. With this beam

we repeat the same systematics around the 3rd order
resonance as for the previous measurements in Sec. III C
and collect the experimental findings in Fig. 14(a).
From this measurement it is evident that on the right of

the 3rd order resonance, at Qx ¼ 4:3425, in ‘‘absence’’ of
beam loss, an emittance growth of �x;1=�x;0 ¼ 1:79 is

found while leaving the longitudinal bunch length unaf-
fected. In Fig. 14(b) we show the simulation of this se-
quence of measurements. The curve of the beam loss has a
pattern very close to the experimental value, but maximum
beam loss is less than the measured value. The emittance
increase exhibits instead a more pronounced growth than
the measurements. We interpret this as a limit of our
modeling of the nonlinear SIS18 lattice and lack of space
charge self-consistency.
The effect of the high intensity on beam blowup is better

seen by comparing the time evolution of beam profiles for
certain relevant tunes. In Fig. 15(a) we show the beam
evolution for the working point Qx ¼ 4:3325, which pre-
viously exhibited the maximum beam loss [see Figs. 6(a)
and 13(a)], but now has good beam survival because of the
space charge detuning. Similarly, as for Fig. 12(a), the
beam edge measured at 25% of the maximum beam profile
intensity exhibits a pattern which reflects the adiabatic
bunching/debunching processes. The beam edges are bet-
ter resolved here than in Fig. 12(a) because of the higher
intensity. In Fig. 15(b) we show the beam evolution for
Qx ¼ 4:3425 corresponding to the maximum emittance
increase. The picture shows explicitly that after the de-
bunching the beam edges do not return to their initial value.
This effect is better shown in Fig. 16 where the horizontal

FIG. 15. High intensity bunched beam: (a) Waterfall x beam
evolution for Qx ¼ 4:3325, Qy ¼ 3:245. (b) Waterfall x beam

evolution for Qx ¼ 4:3425, Qy ¼ 3:245.
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beam distribution before bunching and after debunching is
compared.

The maximum beam loss is found at Qx ¼ 4:3385 for a
beam survival of I=I0 ¼ 0:23. For the measurement at
a tune a step before, that is at Qx ¼ 4:3365, a bunch
shortening of z=z0 ¼ 0:71 is measured. The details of the
longitudinal beam profile evolution are shown in Fig. 17
where in the picture on the top, for the tune Qx ¼ 4:3425,
i.e. relative to the maximum emittance growth, no relevant
effects take place on bunch length. In Fig. 17(b) at Qx ¼
4:3365we find that the edges of the bunch length shrinks in
0.9 s by up to 29%.

IV. DISCUSSION

In Fig. 14(a) we find a region of beam loss located above
the resonance. At Qx � 4:342 small beam loss and an
emittance growth is observed. This distinction between a
loss and an emittance growth regime was already observed
in the CERN PS experiment. While trapping was suggested
already in Ref. [18] as a possible explanation, we find that

the present findings offer a firm ground to discuss the
periodic resonance crossing due to the correlation between
‘‘coasting’’ and ‘‘bunched’’ as well as ‘‘low’’ and ‘‘high’’
intensity. This correlation is summarized in Table II.
The low intensity beams (bunched or coasting) exhibit

the same emittance growth and similar maximum beam
loss. Moreover, the tune at which the maximum beam loss
or the maximum emittance increase is found is not signifi-
cantly affected by the presence of the synchrotron motion.
These findings show that no relevant effects due to the
residual chromaticity are affecting the beam emittance
growth and maximum beam loss.
The case for the high intensity beams is different: The

maximum emittance growth is shifted to the right of the
third order resonance. The beam loss behaves differently
for the coasting beam with respect to the bunched beam.
The maximum beam loss for the coasting beam is much
less than for the bunched beam. The higher beam survival
of the coasting beam stems from the detuning induced by
space charge. The maximum emittance growth for coasting
beams is almost the same at high intensity as at low
intensity. Only when space charge and synchrotron motion
are simultaneously present a large emittance growth is
found. Although the maximum tune spread is not the
same for bunched and coasting beam, we conclude that
the experimental findings confirm that the emittance
growth found in Fig. 14(a) is the result of the combined
effect of high space charge and synchrotron motion, which
induces a periodic resonance crossing. For completeness
we report in Table III the comparison of the experimental
findings with simulations. From this table we find that the
ratio between the simulated and experimental maximum
emittance growth lies in the range [1.32, 1.45]: The high
intensity coasting beam has a maximum emittance growth
which is nearly the same in both experiment and simula-
tions. Therefore we conclude that the simulations are con-
sistent with the experimental findings and the differences
in the maximum emittance growth are somewhat due to the
results of the incomplete modeling of the nonlinear SIS18
lattice.
The comparison of the experimental long-term beam

loss with those predicted by simulations is more difficult.
The long-term beam survival differs of a factor 2 between
experiment and simulations in the case of the high intensity
bunched beam, while for the coasting beam low intensity
the survival in the simulations is half of that found in
measurements. A possible source of this discrepancy is in
modeling of the machine acceptance, made also difficult
by the presence of a distorted closed orbit (� 2–3 mm).
These uncertainties to the experimental conditions and the
complexity of the dynamics make the long-term emittance
growth and beam loss prediction difficult to be simulated
with high accuracy.
Another finding of the PS experiment was that for a high

intensity bunched beam, beam loss is accompanied by

FIG. 17. High intensity bunched beam: Longitudinal beam
evolution at Qx ¼ 4:3425 and Qx ¼ 4:3365. For the case Qx ¼
4:3365 the shortening of the beam tails is evident.
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bunch shortening [19]. This correlation was observed but
only for a few bunch profiles, each of them obtained for a
different beam ‘‘shot.’’ Figure 18(a) shows atQx ¼ 4:3365
the time evolution of one bunch during 1 s storage. The
quantities shown are the intensity ratio I=I0, horizontal
emittance ratio �x=�x0, and bunch length ratio z=z0. Note
the strong correlation maintained between beam loss (red
curve) and bunch length (green curve) during the whole
storage time. In Fig. 18(b) we show the simulation for the
same working point. The simulation starts when the bunch
is formed at t ¼ 0:1 s. During the first few turns particles
are brought out of the beam core and the rms emittance

shows this effect with an increase of up to 1.4. Later, after
beam loss becomes substantial, the emittance decreases
and its pattern closely follows that of the measurement.
The bunch length curve saturates in 0:1 s< t < 0:2 s
equivalent to 147 synchrotron oscillations, while in the
experiment it manifests in a different pattern.
This difference is not easy to explain, and it may be due

to a defect in modeling of the nonlinear lattice which gives
an acceptable fitting for the coasting beam loss [Fig. 6(a)],
but whose uncertainty becomes relevant and is emphasized
by the dynamics of the periodic resonance crossing. Also,
the self-consistency plays here an essential role. In fact the

TABLE III. In this table we compare the key quantities reported in Table II with the
correspondent values found from simulations. The numerical predictions on beam loss are
acceptably close to the measured value. Only the emittance growth from simulations for the case
of a bunched beam at high intensity exceeds significantly the measured one. This is attributed to
the limits of the numerical model of the SIS18 which is an approximation of the real
synchrotron. The uncertainties in these parameters are the same as those in Figs. 6, 8, 13, and 14.

Coasting beam Bunched beam

Experiment Simulation Experiment Simulation

Low intensity

�Qx;sc=y;sc �0:008=� 0:011 �0:01=� 0:015
ðI1=I0Þmin 0.26 0.14 0.31 0.36

ð�1=�0Þmax 1.20 1.70 1.21 1.60

z1=z0 0.79 0.78

High intensity

�Qx;sc=y;sc �0:025=� 0:03 �0:04=� 0:045
ðI1=I0Þmin 0.72 0.84 0.23 0.51

ð�1=�0Þmax 1.28 1.52 1.79 2.44

z1=z0 0.71 0.81

TABLE II. In this table are summarized the values of the essential quantities measured in each of the four measurement sets: Space
charge strength, maximum beam loss, maximum emittance increase, and bunch length at the end of the storage. These quantities are
grouped in rows according to the intensity of the beam (low/high intensity) and in columns according to whether the beam is bunched
or coast. The column Qx provides the horizontal tune at which those quantities are measured. In all measurements the vertical tune has
been kept constant at Qy0 ¼ 3:245. From this table it is shown that only when high intensity and synchrotron motion are

simultaneously present large emittance growth occurs as a result of the space charge induced periodic crossing of the third order
resonance. The uncertainties in these parameters are the same as those in Figs. 6, 8, 13, and 14.

Coasting beam Bunched beam

Qx Qx

Low intensity �0:8� 109 �0:4� 109

ð�p=pÞrms 4:8� 10�4 1:3� 10�3

�Qx;sc=y;sc �0:008=� 0:011 �0:01=� 0:015
ðI1=I0Þmin 0.26 4.3325 0.31 4.3325

ð�1=�0Þmax 1.20 4.3365 1.21 4.3385

z1=z0 0.79 4.3325

High intensity �3:0� 109 �1:2� 109

ð�p=pÞrms 4:8� 10�4 1:3� 10�3

�Qx;sc=y;sc �0:025=� 0:03 �0:04=� 0:045
ðI1=I0Þmin 0.72 4.3365 0.23 4.3385

ð�1=�0Þmax 1.28 4.3425 1.79 4.3425

z1=z0 0.71 4.3365
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final beam survival in the experiment is 33%1 while in the
simulation it is �52%. This difference can be attributed to
the missing self-consistency of the space charge calcula-
tion, which in the simulation fails to bring new particles to
cross the resonance. In fact, with frozen space charge
the bunch particles subjected to the periodic resonance
crossing are those populating the external ‘‘shell’’ of the
longitudinal phase space. Each of these particles is
characterized by a single particle tune Qx;part satisfying

the condition Qx;part ¼ Qx � �Qxð0Þ<Qx;res at z ¼ 0,

and Qx;part ¼ Qx � �QxðzmaxÞ>Qx;res at z ¼ zmax, where

�QxðzÞ is the space charge tune shift of the frozen
system for a specific bunch particle as a function of the
longitudinal position z. The inclusion of the beam loss on
the space charge algorithms shrinks the tune spread, and so

particles that before were always below the resonance, may
now reach the condition of periodic resonance crossing
because of the smaller tune spread. The transverse tune of
those bunch particles may now be Qx;part >Qx;res when

they are at the maximum longitudinal amplitude. This
argument suggests that a nonupdating of the space charge
with beam loss may be responsible for the weaker beam
loss and the flatness of the beam survival from 0.2 to 1 s in
Fig. 18(b). Further studies are required to validate this
interpretation of the experimental results.
The correlation between experimental beam loss and

bunch shrinkage is made clearer in Fig. 19 by plotting
bunch intensity versus bunch length. As pointed out in
Ref. [39], a correlation between beam loss and bunch length
shrinking is to be expected if the main mechanism leading
to beam loss includes a functional dependence on the
longitudinal excursion of particles—created here by space
charge. The findings of Fig. 19 retrieve the results found in
the PS experiment [39] and are consistent with the inter-
pretation that particles with large synchrotron amplitude
[see Fig. 17(b)] are lost because they are mainly scattered
by the stable islands. The dashed curves in Fig. 19 show
what type of correlation may be expected according to the
type of longitudinal beam distribution without including the
effect of the self-consistency. This comparison reveals that
initially the correlation bunch-intensity bunch length falls
much faster than is the case for any of the plotted distribu-
tions. In this small beam loss regime, the periodic crossing
of the resonance is mainly determined by the initial inco-
herent tune spread. Instead later, the correlation becomes
parallel to the KV-like longitudinal distribution (black
dashed curve). This pattern reveals a higher complexity
which stems from the re-adjustment of the beam distribu-
tion due to beam loss and self-consistency effects. It is
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FIG. 19. High intensity bunched beam: beam loss/bunch
length correlation. The two continuous thin lines represent the
error bar. The dashed curves represent the theoretical correlation
for several longitudinal particle distributions: Gaussian (green),
Waterbag (blue), and KV (black).
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FIG. 18. High intensity bunched beam at Qx ¼ 4:3365.
(a) Transverse-longitudinal beam response to the long-term
storage. (b) Simulation results for the same working point. The
error bars in these measurements (here not shown) are the same
as those in Fig. 14.

1Note that 33% is relative to Fig. 6(a), which is obtained for
Qx ¼ 4:3365, not to be confused with the values given in
Tables II and III, which refer to the different working pointQx ¼
4:3385.
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however surprising that, in spite of the lack of self-
consistency, the experimental curve is almost parallel to
the KV-like or waterbag-like theoretical curves.

Trapping or scattering?

It is relevant to address the question of whether the
dynamics here studied is of trapping or of scattering.
In order to answer to this question we computed the

parameter T, which is the ratio of the speed of migration
of the fixed points to the maximum speed of rotation of the
particle in the islands. We compute for several machine
tunesQx the location of the fixed points in the plane x� px

and the island tunesQx;isl. In these calculations we keep the

longitudinal motion frozen so that a particle coordinate z
remains constant. In Fig. 20(a) is shown the dependence of
the island tune on ðQx; zÞ. The picture shows that at fixed
machine tune Qx;isl is maximum at z ¼ 0 decreasing its

value for larger z until it reaches zero when the fixed points
are close to x ¼ px ¼ 0. For Qx ¼ 4:336 the fixed points
disappear for z � 1:2�z as they are located beyond the
physical or dynamical aperture here modeled. Figure 20(b)

shows the amplitude of the fixed points R̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2f þ p̂2

x;f

q
in

Courant-Snyder coordinates as a function of ðQx; zÞ. This
picture clearly shows that the larger amplitude of the fixed
points is at Qx ’ 4:34 and z ¼ 0. During the bunch storage
the synchrotron motion leads a bunch particle through
several positions z, and the instantaneous fixed points
span from a maximum value to zero. In Fig. 20(c) it
is shown T as a function of ðQx; zÞ. Note that T / Qs

is computed for the synchrotron tune of Qs ¼ 0:0069. If
T � 1 the island crossing happens in an adiabatic condi-
tion and the particle can remain trapped in it. This picture
shows that when the fixed points are close to the origin
T > 1 (red region) and that for z closer to the bunch center
and Qx close the 3rd order resonance T is smaller than 1
(yellow region near Qx ¼ 4:34, and z ¼ 0).
It is therefore expected that particles with small trans-

verse amplitudes are crossed by islands which cannot trap
but rather create a scattering.
When islands cross particles at large transverse ampli-

tudes, they are characterized by a smaller T enhancing the
probability of trapping. However, this process happens
only for particles that already are at large amplitudes.
The overall bunch dynamics is then characterized by par-
ticles which are subjected by a different level of scattering
almost reaching a trapping condition.

V. CONCLUSION

In this experiment we have studied the interplay between
the transverse space charge of a bunched beam and a 3rd
order lattice resonance. The nonlinear dynamics differ in
this case from that in the preceding CERN-PS experiment.
In the latter, an octupole driven 4th order resonance always
creates stable islands, even in the presence of very weak
space charge. When the space charge tune spread is larger
than the distance of the machine tune from the resonance, it
directly determines the position of the fixed points.
Alternatively, for a 3rd order resonance, in the absence

of space charge there are no stable islands but rather a
triangular separatrix which divides the phase space into
regions of stable and unstable beam dynamics. The non-
linear dynamics is here substantially affected by the space

FIG. 20. Main feature characterizing the periodic resonance
crossing: (a) Island tune vs z, and Qx. (b) Fixed point radius (in
CS) vs z, and Qx. (c) Adiabaticity parameter T vs z, and Qx. In
the white areas the fixed points do not exist.

G. FRANCHETTI et al. Phys. Rev. ST Accel. Beams 13, 114203 (2010)

114203-16



charge, which breaks the unstable region and creates three
stable islands and at the same time sets the location of the
fixed points (as shown in Figs. 7 and 9).

Therefore, in spite of the intrinsic differences between
3rd and 4th order resonances, space charge leads to similar
patterns in the beam response. This allows us to interpret
on a solid base that in both experiments (PS, and SIS18) the
underlying beam physics is the same. In particular, from
our experimental findings in which we compared several
beams, coasting and bunched, at different intensities, we
find a strong evidence that the measured global quantities
as emittance ratio and beam loss are interpretable mainly in
terms of scattering effects induced by space charge, pre-
viously demonstrated only via numerical and analytical
methods. Trapping effects are mitigated by a speed of the
synchrotron motion, which prevents an adiabatic regime of
beam particles within the 3rd order islands. The compari-
son of the code predictions with the experimental results
has given reasonably good agreement in spite of the limited
knowledge of the SIS18 synchrotron, which does not allow
a complete simulation of the real experimental conditions.
The issue of self-consistency in the presence of a large
relative beam loss, which feeds back to the beam distribu-
tion, will be addressed in future studies.

We add here that our experimental findings also
strengthen the understanding of the electron cloud inco-
herent effects [40,41] where the essential mechanism sug-
gesting a similarity with space charge is the correlation of
the amount of electron pinch with the extent of the bunch
that has passed through the electron cloud. The similarities
with the space charge are discussed in Ref. [42].
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APPENDIX A

We derive here the relation between beam loss for a low
intensity Gaussian beam and the distance of the machine
tune Qx from a 3rd order resonance excited by one sextu-
pole in a linear lattice. We start by observing that near the
3rd order resonance the separatrix assumes a triangular
shape with straight sides. The radial distance â (in
Courant-Snyder coordinates) of the fixed point ðâ; 0Þ is
given by [43]

â ¼ � 16�

�3=2
x K2

�Qx; (A1)

where �x is the beta function at the location of the sextu-
pole, K2 is its integrated strength, and �Qx is the distance
from the third order resonance. Note that â can be positive

or negative, which simply means that the triangular sepa-
ratrix may be mirrored on the x̂0 axis. The area Ax within
the separatrix is given by

Ax ¼ 3
ffiffiffi
3

p 64�2

�3
xK

2
2

�Q2
x: (A2)

Consider a 1D uniform beam of N0 particles and edge
emittance �x matched with the linear optics. The area of
the phase space occupied by the beam is ��x, that is the
particle density is 	 ¼ N0=ð��xÞ. When the distance from
the 3rd order resonance �Qx is small, the beam survival to
long-term storage is given by the number of particles found
inside the separatrix which is N ¼ 	Ax, equal to

N

N0
¼ 1

�x
3

ffiffiffi
3

p 64�

�3
xK

2
2

�Q2
x: (A3)

In case mechanical aperture limits are present, the depen-
dence of asymptotic beam loss on �Qx changes if the
radius of the fixed points â exceeds the radius of the
acceptance âm. The transition to this new beam loss regime
occurs when the fixed points touch the acceptance. When
this happens the beam survival is A=Am, where Am is the
phase space area of the linear acceptance, i.e. Am ¼ �â2m,

and A is the area within the 1D separatrix A ¼ ð3 ffiffiffi
3

p
=4Þâ2m.

The beam survival at this transition point is therefore

N

N0
¼ A

Am

¼ 3
ffiffiffi
3

p
4

1

�
¼ 41:3%: (A4)

We benchmark Eq. (A3) and the transition threshold in
Eq. (A4) via simulations. We take a model of the SIS18
lattice with acceptances Ax=y ¼ 151=87 mmmrad, and ap-

ply between two synchrotron periods one normal sextupole
of integrated strength K2 ¼ 0:05 m�2: At this position the
beta function is �x ¼ 12:71 m. We then inject a matched
KV beam of 104 macroparticles with emittances �x ¼
200 mmmrad, �y ¼ 0:01 mmmrad and track it for 104

turns. In Fig. 21(a) we show the beam survival versus
�Qx and find a good agreement between the theoretical
prediction of Eq. (A3) (red) and the numerical results
(black). Note the discrepancy of the prediction arising
when the fixed points exceed the mechanical aperture.
This happens when the beam survival is larger than 41%
as predicted by Eq. (A4).
The beam loss analysis for a Gaussian beam is more

complicated. We note first that, for a matched 1D Gaussian
beam with rms emittance ~�x, the survived particles when
removing the particles located at radius larger than r̂c is

given by the formula N=N0 ¼ 1� e�r̂2c=ð2~�xÞ. From the
geometry of the separatrix we distinguish between the
maximum radius of the fixed points â, and the radius
â0 ¼ â=2 of the circle inscribed into the triangle formed
by the separatrix. The beam survival for a cut at â and â0
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overestimates/underestimates the beam survival due to the
real separatrix, which is clearly in between the two ex-
tremes, that is

1� e�â02=ð2~�xÞ <
N

N0

< 1� e�â2=ð2~�xÞ: (A5)

Clearly, given the geometry of the problem the beam
survival depends only on the ratio â2=~�x, and from
Eq. (A5) we search for a solution of the form

N

N0
¼ 1� e�

P1
n¼1


nðâ2=~�xÞn : (A6)

The term 
1 is computed in the limit of small distances
from the resonance. In fact when �Qx is small, the sepa-
ratrix â is small and Eq. (A6) becomes

N

N0
¼ 
1

â2

~�x
: (A7)

The particle distribution within the small separatrix is now
almost uniform 	u and therefore we may compute the
surviving particles as N ¼ 	uAx. As the Gaussian distri-
bution is described by

	 ¼ N0

2�~�x
e�r̂2=ð2~�xÞ (A8)

for r̂ ! 0, we find 	u ¼ N0=ð2�~�xÞ; therefore the surviv-
ing particles are

N

N0
¼ 3

ffiffiffi
3

p
8�

â2

~�x
: (A9)

Comparing this formula with Eq. (A7), we find that


1 ¼ 3
ffiffiffi
3

p
8�

: (A10)

The other coefficients of the expansion in Eq. (A6) may be
computed via Monte Carlo integration. In Fig. 21(b) the
beam survival for several ratios â2=~�x is shown. The red
curve is obtained using Eq. (A6) with 
2 ¼ �3:2� 10�3,

3 ¼ 0:6� 10�4, 
4 ¼ �3:7� 10�7, and 
5 ¼ 10�9.
The good fit with the numerical findings shows that using
the first five terms of the expansion in Eq. (A6) is an
acceptable approximation for practical use.

We then benchmarked the predictions of Eq. (A6)
(here â is now expressed as function of �Qx) with multi-
particle simulations. The results are shown in Fig. 21(c)
for a Gaussian beam with rms emittance ~�x=y ¼
10=0:01 mmmrad (i.e., a 1D beam). The beam distribution
has 104 macroparticles and is tracked for 104 turns in
SIS18. The values of �x and the strength of the sextupole
are the same as for the KV simulation. Note that in this
simulation the relevant part of the beam tails is inside the
machine acceptance. Therefore the beam survival far from
the resonance is 100%.

We also checked the robustness of Eq. (A6) for a 2D
Gaussian beam by repeating the same simulation as for
the 1D Gaussian beam but now for the emittances ~�x=y ¼
10=7 mmmrad. The numerical results, shown in Fig. 21(d),
confirm the applicability of Eq. (A6) to a two-dimensional
beam. We therefore use Eq. (A6) to predict the beam loss
stop band �Qx;sb defined by an edge where beam loss is

1%. By imposing this condition in Eq. (A6) we find

�Qx;sb ¼ 0:217
ffiffiffiffiffi
~�x

p
�3=2

x jK2j: (A11)

This equation has been used in Sec. III A for setting the
sextupole strength to match the experimental beam loss
stop band.

Effect of an additional octupole

When several types of nonlinearities are simultaneously
present, their combined effect on the beam dynamics is
difficult to assess. However, the presence of an additional
octupole, to the sextupole, does not change the resonance
driving term, but rather creates another source of detuning.
We add here an extra octupole in the same location of the
sextupole. The fixed points are identified by the condition
that the total phase advance in three turns is 2�, that is,
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FIG. 21. (a) In black markers are plotting the tracking simu-
lation results for a uniform beam distribution. In red markers are
plotting the analytic results from Eq. (A3). At efficiency of 41%
the fixed points intercept the acceptance. From there on the
formula exhibits large discrepancy with respect to the numerical
findings. (b) Beam survival for a 1D Gaussian beam distribution
as a function of â2=~�x. (c) Beam survival for a 1D Gaussian
beam distribution as a function of �Qx (black), and theoretical
prediction (red). (d) Beam survival for a 2D Gaussian beam
distribution as function of �Qx (black), and theoretical predic-
tion for a 2D beam (red).
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1
2�

2
xK3â

2 þ �3=2
x K2âþ 16��Qx ¼ 0 (A12)

For a 1D KV distribution the beam survival will be then
expressed as

1

2
�2

xK3�x�
N

N0

� �3=2
x K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x�

N

N0

s
þ 16��Qx ¼ 0

(A13)

with � ¼ 4�=ð3 ffiffiffi
3

p Þ. The sign� should be chosen accord-
ing to whether the separatrix is inverted or not, that is,
according to the sign of â. We benchmarked this formula
and present the results in Fig. 22(a) where we consider a
sextupole with K2 ¼ 0:1 m�2 and an octupole with K3 ¼
�3 m�3. The case for the 1D Gaussian beam is shown in
Fig. 22(b) [for this picture and Fig. 22(c) we take K3 ¼
�1 m�3]. Here given�Qx, â is found from Eq. (A12), and
the beam survival is found from Eq. (A6). The beam
survival prediction is excellent. The robustness of these
predictions for the 2D Gaussian beam is shown in Fig. 22
(c), the emittances are again �x=y ¼ 10=7 mmmrad. Note

that in all these pictures the effect of the octupole is to
‘‘tilt’’ the beam survival curve which becomes asymmetric
with respect to the center of the resonance. This effect has
been used to create the proper asymmetry in the beam loss
in Fig. 6(b) with an octupole.

APPENDIX B

In this Appendix the procedures for assigning the error
bars are discussed. The error bars here represent 1 standard
deviation.

1. Error bar in the transverse rms size

We present here the analysis of the error bar attributed to
the rms size computed from the IPM data. In Fig. 23 we
plot a schematic of the IPM measurement discretization.
The device is equipped with 64 wires equally spaced by
�x ¼ 2:1 mm. The ith wire detects a signal proportional to
the beam density projection in the interval �xði� 1=2Þ<
x<�xðiþ 1=2Þ corresponding to the blue area in the
example of Fig. 23. The signal is then amplified and
digitized obtaining as output an integer number Ni asso-
ciated to the ith wire. Each data Ni will be subjected to an
error �Ni, which is the same for all wires. The effective
measured value is then Nm;i ¼ Ni þ �Ni. It should also be

taken into account that the position of the beam is typically
not centered on the geometrical center of the IPM: In
Fig. 23 this shift is indicated with �xp. In order to avoid

a spurious signal, we cut the data from wires with Ni less
than Nc ¼ �cNi;max with �c ¼ 0:1, i.e., the lower 10% of

the maximum of the beam distribution. The rms beam size

is computed from the measured data as ~x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihx2i � hxi2p
from the moments

hx2i ¼
P�

i ði�xÞ2Nm;iP�
i Nm;i

; (B1)

hxi ¼
P�

i ði�xÞNm;iP�
i Nm;i

; (B2)

where the symbol
P�

i refers to a sum of the cut data. Note
that these moments depend on �xp, Nc, �Ni, and that the

variation of �xp should be considered in the interval

0<�xp < �x since larger values are redundant. Based

on this IPM modeling, in order to assess the effect of the

FIG. 23. Schematic of the IPM acquisition, errors and selec-
tion of the measured data.
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FIG. 22. Case of one sextupole and one octupole: (a) Beam
survival for a 1D KV beam distribution as a function of �Qx

(black), and theoretical prediction (red). (b) Beam survival for a
1D Gaussian beam distribution as a function of �Qx (black), and
theoretical prediction (red). (c) Beam survival for a 2D Gaussian
beam distribution as a function of �Qx (black), and theoretical
prediction (red).
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discretization, we have performed a numerical study. The
key quantity is the number of wires per beam sigma B ¼
�x=�x (here �x is expressed in mm). Clearly we expect
large deviations when B< 1 as the beam is too small for
the resolution of the device. We consider several �xp,

0:06< �c < 0:15, for �Ni ¼ 0:02�maxfNig. In Fig. 24
(a) we show the calculated average rms size versus B, the
blue curve is obtained by an analytic fit which we find to be

h~xi
�x

¼ 1� �c0:9þ 0:041

B2
: (B3)

Figure 24(b) shows the standard deviation of the distribu-
tion of rms sizes. Again the blue curve is obtained by the
analytical fit

�~x

�x

¼ 0:043

B
þ 0:33�Ni: (B4)

The interpretation of the two analytical fits is as follows. In
Eq. (B3) the term 1� �c0:9 includes the effect of the cut
off �c, which reduces the effective rms bunch size. The last
term includes the effect of the discretization. In Eq. (B4)
the term 0:043=B represents the average effect deriving
from the shift of the beam distribution, which depends on
�xp. The last term includes the contribution of the error

bar associated to each wire.
The practical procedure in the experiment was to repeat

several times the measurement for the same working point.
In this process the fluctuations of the ion source also plays
a role because from shot to shot beam intensity as well as a
beam size variation is observed. We take these effects into
account by treating the data as follows: (1) Several mea-
surements are taken from the same working point. (2) For
each measurement we compute the rms size with Eqs. (B1)
and (B2), correct the systematic error with Eq. (B3), and
assign the error bar using Eq. (B4). These quantities are
then converted, for the jth measurement, into the emittance
�x;j, and emittance error bar ��x;j using the beta function at

the location of the IPM. (3) We then calculate the average
emittance �av;x, and the emittance error bar��av;x from the

collection of all �x;j, ��x;j for each repeated measurement

j with

�av;x ¼ h�xij; ��av;x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2xij � h�xi2j þ h��2xij

q
;

where h	ij is an average over the repeated measurements.

By doing so the error bar of the rms emittance is enlarged
as it includes the fluctuation of the ion source. (4) The error
on the emittance ratio is then computed via a standard
propagation of the error obtaining the error bars plotted
in all the pictures reporting measurements covered in this
paper.

2. Error bar in the longitudinal rms size

The calculation of the longitudinal rms beam size fol-
lows a similar procedure as described in the previous
section. The main difference lies in the fact that the number
of ‘‘wires’’ per beam sigma is now quite large (B ’ 100).
The error in the measurements is mainly determined by the
oscilloscope resolution which is 17.9 mV. Another source
of error is in the beam profile fluctuations which are visible
when looking at the beam profile time evolution. As the
number of longitudinal beam profiles during the storage
time of 1 s is �4000, we evaluate the error bar for each
density acquisition by taking 30 consecutive beam profiles.
From these profiles we obtain an average beam profile and
the variance is the error bar. In Fig. 25 we show an example
of the average beam profile and the error bar associated to
the longitudinal charge line density. In order to find the
average rms longitudinal length �z and the error bar ��z,
we have made a numerical study of the propagation of the
errors on the rms beam size. Similarly, applying the pro-
cedure adopted for the transverse data, we cut the longitu-
dinal data now to 20% as the error bar is now �5% of the
maximum of the profile (see Fig. 25) and compute the rms
size. This value is then corrected from the systematic error
using Eq. (B3) with B� 100. The procedure to assign the

FIG. 25. Example of average longitudinal beam profile ob-
tained from 30 consecutive profiles for the measurement atQx ¼
4:3365 with the bunched beam at high intensity.
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FIG. 24. Study of the systematic and random error for �c ¼
0:1, and �Ni ¼ 0:02�Ni;max. (a) Systematic shift of the rms size

of a Gaussian distribution. (b) The rms error of the rms size. Here
we identified �x;IPM with h~xi and ��x;IPM with �~x.
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error bar to the rms size follows the same procedure as for
obtaining Fig. 24(b).

3. Error bar in the beam intensity measurements

The measurement of the beam intensity is performed via
the IPM, which in conjunction with the beam profile data
stores also an uncalibrated signal S proportional to the
beam current I via I ¼ 
S. This signal is calibrated with
the signal measured from the current transformer which
has a negligible error bar. In fact for the dc transformer, one
can make the following error estimation: The error for the
analog signal is better than 2� 10�3 of the full-scale
value. In addition, there is an absolute error of about
5 �A due to offset drifts and accuracy of the analog
electronics. This is only important for the lower full-scale
ranges 300 �A and 1 mA. As the full scale in our mea-
surements is in the range 0–30 mA, only the analog error is
relevant which gives an error bar of �60 �A, the same
throughout all four campaigns, and is not included in the
pictures of the manuscript. The discretization, operated by
the IPM, of the signal S is taken to be �S ¼ 10 (arbitrary
units) which corresponds to a relative error ranging from
10% for low beam intensity to 2% for high beam intensity.
The average error bar plotted into the results of this paper is
obtained with the formula

Iav ¼ hIij; �Iav ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI2ij � hIi2j þ h�I2ij

q
: (B5)

The index j refers to the jth repeated measurement. Again,
this procedure allows one to take into account repeated
measurements enlarging the error bars.

4. Error bar in the machine tunes

From previous experience reported in Refs. [25,26], a
systematic tune shift affects the tune values set into the
SIS18 control system. As discussed in Sec. III A 3, we have
found the systematic shift in the tune by finding the loca-
tion of the 3rd order resonance. This shift has been used to
correct the systematic error created by the SIS18 control
system. The error in this procedure is due to the distance of
two consecutive tunes in Fig. 6(a), which is 2� 10�3. It is
straightforward to show that the standard deviation of the
set tune is 0.29 times the distance of discretization among
tunes. Therefore we assign to the tunes an error bar of
6� 10�4. As far as concerns the random component on the
tune, experiences from other studies in SIS18, as for the
nonlinear tune response matrix [29], allows one to assign a
standard deviation due machine fluctuation of �Qx ¼ 5�
10�5 over a measurement time of 6 hours.

Therefore we assign to our tunes an error bar of
6� 10�4, but we do not mark it in the pictures to improve
the readability.

5. Error bar in simulation results

As our simulations are madewith relatively few particles
(N0 ¼ 2000), we also assign error bars to the simulation
results. The estimation of these uncertainties does not
reflect the propagation of the initial discretization of the
particle distribution to the final distribution at the end of
the simulation, but rather provides an estimate of the
fluctuation originated by the few particles, which should
represent the physical distribution. We assign the error bar
as follows.
I=I0.—The number of particles at any time during the

tracking has a fluctuation

�

�
I

I0

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I

I0
�

�
I

I0

�
2

s
1ffiffiffiffiffiffi
N0

p : (B6)

�x=�x0.—The fluctuation of the rms emittance of a

Gaussian distribution is ��x=�x ¼ 1=
ffiffiffiffi
N

p
in good approxi-

mation for N > 20. Therefore

�ð�x=�x0Þ
�x=�x0

¼ 1ffiffiffiffiffiffi
N0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I=I0
I=I0

s
: (B7)

zx=z0.—The fluctuation of the rms size emittance of a

Gaussian distribution is �ðz=z0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z=�z0

p ¼
z0=ð2zÞ�ð�z=�z0Þ, where the quantity �ð�z=�z0Þ is the
same as for Eq. (B7).
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