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Lattice modeling and calibration with turn-by-turn orbit data
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A new method that explores turn-by-turn beam position monitor (BPM) data to calibrate lattice models
of accelerators is proposed. The turn-by-turn phase space coordinates at one location of the ring are first
established using data from two BPMs separated by a simple section with a known transfer matrix, such as

a drift space. The phase space coordinates are then tracked with the model to predict positions at other

BPMs, which can be compared to measurements. The model is adjusted to minimize the difference
between the measured and predicted orbit data. BPM gains and rolls are included as fitting variables. This
technique can be applied to either the entire or a section of the ring. We have tested the method

experimentally on a part of the SPEAR3 ring.
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I. INTRODUCTION

Lattice calibration is of crucial importance in the per-
formance of storage rings and synchrotrons. An ideal
lattice is often periodic and symmetric in order to minimize
the resonance driving terms, the peak beta function, and the
dispersion function. In reality, the lattice is often distorted
by imperfections of the magnets and human errors.
Calibration of the machine lattice to implement the design
optics with beam-based measurements can lead to in-
creased injection efficiency, beam lifetime, and reliability.

The most widely used lattice calibration technique is
based on the machine’s closed-orbit response matrix [1].
Model parameters, beam position monitor (BPM) gains,
and corrector gains are fitted to match the model orbit
response matrix to the measured counterpart. The differ-
ences between the fitted model and design model are then
used to adjust the machine to the ideal lattice.

Turn-by-turn BPM data taken while the beam executes
transverse oscillations also contains information of the
machine optics. Singular value decomposition [2] or inde-
pendent component analysis [3] techniques can be used to
derive the beta functions and betatron phase advances,
which in turn can be used to fit the machine models.

In the present paper we use turn-by-turn BPM data
directly to fit the lattice model without the intermediate
steps of deriving beta functions and phase advances. In our
view this is the natural approach for lattice calibration with
turn-by-turn data because there is no loss of information in
this process. The intermediate parameters, such as the beta
functions, themselves are not observables. In deriving
these parameters, one has to decompose the beam motion,
keeping only the betatron components while discarding the
higher order resonance motion resulting from nonlinear
dynamics. When the horizontal and vertical motions are
linearly coupled, it is difficult to represent and include the
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coupling effects in the fitting. BPM gain errors affect the
reliability of the beta function measurements, making
phase advances the main source of the fitting data.
However, when we compare measured turn-by-turn data
directly to tracked turn-by-turn data, all linear and non-
linear factors are included. BPM gains can be included in
the fitting to find a solution that is consistent with the beta
functions derived from the fitted model.

The nonlinear accelerator components such as sextu-
poles can readily be included as fitting parameters.
Compared to the nonlinear magnet calibration method
proposed in Ref. [4], the fitting method has many fewer
constraints on the locations of the BPMs and sextupoles
and is thus more practical.

We organize this paper as follows. Section II describes
the basic method for phase space coordinate measurements
and its application to transfer matrix measurements.
Section III lays out the fitting scheme. Section IV presents
an experimental application of the fitting method to a
section of a storage ring. Section V shows simulation
results for a full ring.

II. MEASUREMENT OF PHASE SPACE
VARIABLES AND TRANSFER MATRICES

The transverse phase space coordinates of an orbit can
be derived from BPM measurements at two locations if the
transfer matrix between those locations is known. In the
simplest case, if the two BPMs are separated by only a drift
space, the angle coordinates are

=@, —y)/L (1)

where x, , and y; , are the horizontal and vertical positions
measured at BPMs 1 and 2, respectively, with BPM 1
located upstream of BPM 2, and L is the length of the drift
space.

When turn-by-turn phase space coordinates at two loca-
tions are known, the transfer matrix between them can be

X, = (0 —x)/L, Yia
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readily obtained. We construct the matrix X which con-
tains the phase space coordinates at one location. The
dimension of X is 4 X N. Each column of X is a vector
containing the four phase space coordinates [x, x/, y, y']"
for each of the N consecutive turns. Then the transfer
matrix from location 1 to 2, M,, satisfies M, X; = X,.
A least-squares solution for M, is

M, = X, X[ (X, X))~ (2)

This is a useful method to estimate the transfer matrix.
However, the resulting matrix is usually nonsymplectic
because of errors in the data.

The symplectic transfer matrix can be obtained by a
fitting method that imposes symplecticity. Although sev-
eral methods may be used to parametrize M,; [5-7], we
have adopted the method of Sagan and Rubin in which M»;
is constructed with ten free parameters p;, i = 1,2,..., 10
as follows:
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and

y=+v1-lcl (6)

where ||C|| is the determinant of the matrix C. The merit
function to be minimized may be defined by

e & [Xa(in) — X6, )P
X (p) = ,:21 ngl = ,

with X, = M, X, (7)

where X(i, n) is the (i, n) element of matrix X, X repre-
sents the coordinates predicted by the model, and the o;
are the rms noise level for the corresponding phase space
coordinates. The nonsymplectic matrix Eq. (2) can be used
to generate the initial parameters required for the fitting.
This method can be used to obtain the fitted, symplectic
one-turn transfer matrix. In this case phase space coordi-
nate measurements at only one location are needed.
The data matrix for turns n = 2,3,..., N and that for

[KL]=

~ Ylxan) = xi(n) — (L) + Ly)xj(n)][x,(n) + Lyx|(n)]

n=12...,N— 1 serve as X, and X, respectively. It
is worth noting that this method for transfer matrix mea-
surement is completely model independent.

We have successfully tested this method with both
simulations and experiments for the SPEAR3 storage ring.

III. LATTICE CALIBRATION WITH
TURN-BY-TURN BPM DATA

Lattice calibration is the process of adjusting the magnet
strengths of an accelerator in order to gain the desired
linear and nonlinear behaviors as exhibited by the design
model. Usually data of beam-based measurements are used
to measure the deviations of the present lattice of the
machine from the design lattice. Then corrections are
applied to eliminate the deviations. For example, the orbit
response matrix method obtains the present lattice by fit-
ting the quadrupole strengths in the lattice model in order
to minimize the differences between the calculated and the
measured closed-orbit response matrices [1]. In the follow-
ing we describe a method to calibrate lattice models with
turn-by-turn BPM data. This method fits the lattice model
in a similar manner to the orbit response matrix method,
but uses the instantaneous beam orbit, instead of the static,
averaged orbit, as the input data. The advantage of this new
method is that data acquisition is much faster and has less
impact on the beam.

A. The one-quadrupole case

With the initial transverse phase space coordinates at the
entrance of an accelerator section and a lattice model, the
beam positions at downstream BPMs can be predicted by
tracking. Conversely, the lattice model can be calibrated
with initial phase space coordinates and downstream BPM
measurements. The idea can be illustrated with a simple
case depicted in Fig. 1, in which the accelerator section
consists of one thin quadrupole and two drift spaces.
Transverse phase space coordinates [xj, x|, y;, y{]" at
BPM 1 are related to readings of BPM 2 (x,, y,) through
elements of the transfer matrix between BPMs 1 and 2.
Explicitly, for the horizontal plane,

xy = (1 +[KL]Ly)x; + (Ly + Ly + [KL]L,L,)x}, (8)

where [KL] = ﬁ f dfx’ ds is the integrated gradient of the

quadrupole. The integrated gradient can be extracted from
multipass coordinate data with the least-squares fitting
method to yield

(€))

where the summation is over »n turns.

Ly Y [xi(n) + Lix|(n) '
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FIG. 1. Calibration of one quadrupole with three BPMs.

B. Application to a general transport line

In a more complicated case that involves multiple mag-
nets and BPMs, an explicit solution such as Eq. (9) may not
be available. However, fitting techniques can be employed
to obtain the magnet strengths by adjusting their values in
the model to minimize the differences between the mea-
sured and predicted beam positions.

We consider an accelerator section that is preceded by
two BPMs, labeled BPMs 0 and 1, which are separated by a
drift space. We assume these two BPMs are very well
characterized and calibrated so that there are no roll or
gain errors. The four-dimensional phase space coordinates
at both BPMs can then be obtained. The BPMs in the
accelerator section may have roll or gain errors. The ob-
served coordinates (x, y) at any BPM are related to actual
beam coordinates (%, ¥) by

(x) _ ( co§0 sind )(gx):c) (10)
y —sinf cosf )\ g,y
where 6 is the BPM roll and g, ,, are horizontal and vertical
gains, respectively. Given the phase space coordinate at
BPM 1, X = [x}, x|, y;, {17, the predicted observations
at downstream BPMs can be obtained by first tracking the
particle to these BPMs and then applying Eq. (10).
Suppose the accelerator section has M BPMs and

P magnets to be calibrated. The target function to be
minimized is defined as

= ﬁ Mf[(x,(n) - x[p: Xl(nﬂ)z

n—=1 i=2 Oxi
. — V. ’X 2
+ (yl(n) yl[p l(n)]) ]’ (11)
O-yl'
where N is the number of turns, i = 2, ..., M + 1 indexes

the BPMs to be calibrated, p is a vector of the fitting
parameters, o;,; are the horizontal and vertical noise
levels for BPM i, %, § are the predicted BPM readings
and x, y are the actual observed coordinates. The fitting
parameters include the strengths of the magnets to be
calibrated and the BPM roll and gains. Therefore the fitting
problem is to look for P + 3M parameters from M X N
data points. The multiple beam trajectory data has consid-
erable redundancy since they represent the same optics on
successive turns. Data from each BPM provides additional
sampling of the optics. The number of BPMs may need to
be equal to or larger than the number of fitting parameters
(magnets) to put on sufficient constraints.

The least-squares problem defined by Eq. (11) can be
solved with an iterative approach as follows. We define the
residual vector r as a column vector that contains every
term in Eq. (11) inside the squares such that x> = r’r. The
Jacobian matrix consists of the derivatives of the residual
vector with respect to the fitting parameters with its (i, j)
element being J;; = dr;/dp;. Atevery iteration the change
toward the next solution is found by solving JAp = —r, or
equivalently and more conveniently J*'JAp = —J'r. The
Levenberg-Marquadt method gains more robustness by
modifying this equation to [8]

JTJ+ A2)Ap = —Jr, (12)

where A is a constant to be adjusted after every iteration,
the popular choice for the matrix ¥ is a diagonal matrix
with the diagonal elements taken from the matrix J7J, 3 =
diag(J7J). Additional constraints to the fitting parameters
may be added to prevent large, unrealistic changes of the
quadrupole parameters in the solution [9].

C. Application to a synchrotron or storage ring

The fitting scheme described in the previous section is
directly applicable to a circular accelerator by viewing it as
a transport line. In addition, the fact that the beam comes
back and sees the same BPMs in a circular machine
provides some advantages. First, BPMs 0 and 1, the initial
BPMs can be placed at the end of the transport line so that
their positions on the next turn can be compared to the
predictions based on readings of the same BPMs from one
turn earlier. Second, in a storage ring a beam executing
betatron oscillations naturally scans the phase space, while
in a transport line the trajectories would concentrate
around one point in the phase space unless upstream cor-
rectors are used to steer the beam. Data that sample a wide
region in phase space is preferable in the fitting problem
since that reduces the redundancy in the data.

The predicted beam trajectory in Eq. (11) is based on
measured initial coordinates which inevitably have noise.
The noise is propagated downstream and causes errors in
the predicted trajectory. However, since the noise is ran-
dom, its relative importance decreases with increasing
number of samples.

IV. EXPERIMENTS ON THE SPEAR3
STORAGE RING

We conducted experiments on the SPEAR3 storage ring.
In the experiment we connected eight BPMs in and around
a standard cell to BPM electronics that has turn-by-turn
capability. The configuration is shown in Fig. 2. There is no
insertion device in the first straight section. The wiggler
between BPMs [11 6] and [12 1] was fully open during the
experiment so its effect on the beam was negligible.
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FIG. 2. The SPEAR3 cell for the experiment.

Horizontal motion was excited with an injection kicker.
Vertical motion was resonantly driven by a sinusoidal
signal on a stripline. This driving signal was stopped
when the kicker was fired [10]. Free motion in both planes
was then recorded. The one-turn matrix at BPM [12 1] was
measured using the method described in Sec. II using 200
turns of BPM data. This matrix was then diagonalized to
generate the transformation between the raw coordinates
and the normal mode coordinates [7]. The raw and normal
mode phase space coordinates at the BPM are shown in
Fig. 3. The horizontal and vertical motions are decoupled
in the normal modes.

The lattice model for the accelerator section between
BPM [11 1] to [12 1] was fitted with the turn-by-turn data
according to Eq. (11). The fitting parameters were five

X
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FIG. 3. The phase space plots for the raw data (top) and
decoupled modes (bottom) at BPM [12 1].

TABLE 1. Quadrupole parameters.
Quad Design LOCO Fitted rms Initial
QF1 1.823 1.824 1.810 0.001 1.883
QD1 —1.920 —1.922 —1.911 0.001 —1.890
QFC 1.683 1.683 1.694 0.002 1.653
QD2 —1.347 —1.331 —1.344 0.003 —1.347
QF2 1.691 1.686 1.691 0.002 1.691

quadrupoles, horizontal and vertical gains and rolls of six
BPMs. BPM data of 200 turns in both planes were used in
fitting. The rms noise of BPM readings was estimated to be
about 0.020 mm in each plane. To test the ability to recover
quadrupole errors, offsets were added to the initial quad-
rupole values. The merit function x> normalized by the
number of degrees of freedom dropped from roughly 150
to 20 after the calculation converges. The fitted quadrupole
strengths and statistical errors from five data sets are listed
in Table I along with their design and orbit response matrix
fit (LOCO) values. Since a correlation exists between
neighboring focusing quadrupole (QF) and defocusing
quadrupole (QD) magnets, there may be systematic errors
in the fitted solution. This is especially true for the second
pair of QD and QF magnets as only two BPMs are down-
stream of them. For these two magnets the initial values
were set to the design values without offsets.

The fitting results agree with the orbit response matrix
method reasonably well. We have verified that the quadru-
pole strengths can be measured directly from turn-by-turn
data. The result of the orbit response matrix method may be
more reliable in this case since it utilizes 60 BPMs (in-
cluding all turn-by-turn BPMs in this experiment) around
the entire ring. Therefore each quadrupole parameter is
constrained by more data samples at different locations.
However, if turn-by-turn data from the same number of
BPMs are used in a global fit, the results should be equally
reliable, as tested in simulation in the next section.

V. SIMULATION WITH A STORAGE RING

In SPEARS3 there are 57 BPMs used for normal opera-
tion. In our simulation we assume all BPMs are capable of
taking turn-by-turn data. The phase space coordinates at
BPM [11 1] are generated from tracking data of BPMs
[107]and [11 1] (which are chosen to be BPMs O and 1, as
in Sec. II).

The model parameters to be fitted are the strengths of
normal and skew quadrupole magnets. Magnets that share
a power supply are treated as having a single free parame-
ter. There are a total of 72 quadrupole parameters and 13
skew quadrupole parameters. Rolls and gains of the two
initial BPMs are not fitted. There are then a total of 85 +
55 X 3 = 250 fitting parameters.

Simulated data are obtained by first launching a particle
with initial horizontal and vertical offsets and then tracking
it for a number of turns with the tracking code AT [11]. A
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set of gain and roll errors are created for all BPMs except
the two initial BPMs. The gain errors are drawn from a
Gaussian distribution with a standard deviation of 5% and
the roll errors from a distribution with a standard deviation
of 12 mrad. The gains and rolls are applied to the tracking
data according to Eq. (10). Gaussian random errors with an
rms of 50 um are then added to horizontal and vertical
coordinates for all BPMs.

To test the algorithm we generate an uncalibrated lattice
by adding errors to the strengths of some magnets. Random
errors of 0.5% rms are added to all quadrupoles. The skew
quadrupoles are set to random values with an rms inte-
grated gradient of 0.001 m~'. Larger changes are made to
five quadrupole parameters and one skew quadrupole pa-
rameter to simulate human or hardware errors. The uncali-
brated lattice has an rms horizontal beta beat of 10% and an
rms vertical beta beat of 4.5% compared to the ideal lattice.
The initial horizontal and vertical offsets are both 2 mm at
a location where the horizontal and vertical beta functions
are 5 and 9 m, respectively. The maximum horizontal and
vertical beta functions in a standard double-bend achromat
(DBA) cell for SPEAR3 are 9 and 13.5 m, respectively.
Tracking data of 200 turns are used for fitting. The fitting
algorithm starts with the nominal lattice and recovers all
artificial errors. The results are shown in Figs. 4 and 5. The
fitted values and their error bars are the averages and
standard deviations of fitting results from ten random
BPM noise seeds. The first 25 quadrupole parameters are
QF magnets. The next 25 are QD magnets, followed by the

0.08 1 ——fitted

0.06 r ——target | 1
0.04 |
0.02 @

A K/K

-0.02 ¢
-0.04 t

quad parameter
0.06

—e—fitted

——target
0.04 | gl

0.02 1

AK (m7?)

0 2 4 6 8 10 12 14
skew quad parameter

FIG. 4. The fitted quadrupole (upper) and skew quadrupole
parameters (lower) are compared to the expected values.

T T T T T

BPM

FIG. 5. The fitted (blue) BPM gains and roll are compared to
the expected values (red).

central focusing quadrupole (QFC) parameter and
other quadrupoles in the matching sections. The fitted
parameters are found to agree with the expected values
very well. The QD parameters tend to have large error bars.
This is inherent to the lattice model and is also observed in
orbit response matrix fitting results. The rms beta beat
between the fitted lattice and the target lattice is 2%
horizontal and 0.9% vertical. The last two BPMs in
Fig. 5 are BPMs 0 and 1. Their gains and rolls are not
included in the fitting.

For all random seeds, the algorithm has largely con-
verged after two iterations, at this time the y? function
normalized by the number of data points is brought down
from an initial value of around 27 to 4. We force the
algorithm to halt when the additional reduction of y? after
one iteration is small in order to prevent the algorithm from
attempting to correct noise. Contributions to y? of individ-
ual fitting parameters, defined as the change of x> when a
parameter is set to its initial value while all others are at the
fitted values, are studied as in Ref. [9]. It is found that in the
test with the artificial errors given above the biggest con-
tributions are from the quadrupole and skew quadrupole
parameters. The total contribution to the normalized y? is
~1.6 for the horizontal BPM gains, ~0.8 for the vertical
BPM gains, ~0.2 for the BPM rolls, and ~22 for the
quadrupole and skew quadrupoles.

Nonlinear magnets can also be included in the fitting
model. SPEAR3 has only two families of sextupoles in one
DBA cell, the focusing sextupole (SF) and the defocusing
sextupole (SD) magnets. The SF magnets and SD magnets
in the standard cells are each powered in series by two
power supplies. The SF magnets and SD magnets in the
matching cells are powered by two separate supplies.
Therefore we group all sextupoles into four parameters.
Because sextupole strengths affect the chromaticities, we
include chromaticity measurements as fitting data in order
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FIG. 6. The fitted sextupole parameters are compared to the
expected values.

to impose additional constraints. For this purpose Eq. (11)
is expanded to included two additional terms (C, —
C,)?/o%, and (C, — C,)?/ a'zcy, where o ¢, ¢, are expected
measurement uncertainties, assumed to be 0.01 in our
simulations.

To determine the strengths of the sextupoles by the
fitting scheme, the beam must have large oscillation am-
plitudes in these magnets to sample the nonlinear field. The
horizontal and vertical beta functions are 5.4 and 6.0 me-
ters, respectively, for SF magnets and 2.0 and 10.6 meters
for SD magnets. In a test we set the horizontal and vertical
offsets to be 5 and 3 mm at the starting point. Based on the
modified lattice that has quadrupole and skew quadrupole
errors, two sextupole parameters are also changed before
the lattice is used to generate tracking data. The same BPM
error set is then applied. Fitting the data leads to the same
results as Figs. 4 and 5 for the quadrupole, skew quadru-
pole, and BPM parameters. Figure 6 shows the fitted sextu-
pole parameters. The target values are successfully
recovered. Again there appear to be some systematic errors
due to the coupling between the parameters. The coupling
is a consequence of the lack of information needed to
resolve the individual effects of the parameters, similar to
the case of the coupling between quadrupole parameters
[9]. In the present setup we use three BPMs per cell, with
only one in the arc between the sextupoles. Including
additional BPMs may help improve the resolution for
sextupole parameters.

Increasing the amplitude of the beam motion may also
improve the resolution for sextupole parameters. However,
in reality the BPMs have a nonlinear response to beam
positions due to both the geometric configuration of the
BPM buttons and the electronics. When the beam position
offset from the BPM center is large, the BPM reading
differs from the real beam position. Precise characteriza-
tion of the BPM nonlinearity may be obtained by modeling
or measurements and can be used to calibrate BPM
readings.

We have assumed BPMs 0 and 1 have no gain and roll
errors. Such errors would contaminate the initial phase

0 002 004 006 008 0.1

A

FIG. 7. The residual beta beat vs gain errors of BPM 0 and 1.
The gain errors are g, = 1 — A and g, = 1 + A for BPM 0 and
g =1+ Aandg, = 1— Afor BPM 1. The roll errors are fixed
at —10 mrad and 10 mrad for the two BPMs, respectively.

space coordinate data and affect the fitting results. It is
thus very important to choose these two BPMs properly or
calibrate them with techniques such as the orbit response
matrix method [1]. The effects of errors in BPMs 0 and 1
are studied with simulations. Figure 7 shows the horizontal
and vertical beta beat between the fitted and target lattices
when the gain errors of BPMs 0 and 1 are varied for the
case corresponding to Fig. 4. Both BPMs have fixed roll
errors. In the unfavorable scenario when the two BPMs
have opposite gain errors up to 4%, the target lattice can
still be approached to achieve a beta beat of less than 3% in
both planes. This indicates that our calibration method is
applicable for reasonable gain and roll errors.

In the simulation we added 50 wm rms noise to all
BPMs. In reality turn-by-turn BPMs for electron storage
rings usually have lower noise. In addition, it has been
demonstrated that singular value decomposition [2,3] can
be used to reduce random noise from BPM data. For
example, in our simulation, if we keep 20 singular modes
out of the total 57 X 2 modes, we keep all the vital infor-
mation in the BPM data and the BPM noise levels are
reduced to 25 um rms.

VI. CONCLUSION

We have proposed a method to calibrate the lattice of a
ring or a transport line using the multipass BPM data. This
method compares the measured beam position to the beam
position predicted by tracking to fit the lattice model. The
lattice calibration method is demonstrated with experi-
ments on a portion of the SPEAR3 ring and simulations
using the SPEAR3 storage ring model.
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