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The use of electrostatic ion beam traps requires one to set many potentials on the electrodes (ten in our
case), making the tuning much more difficult than with quadrupole traps. In order to obtain the best
trapping conditions, an analytical formula giving the electrostatic potential inside the trap is required. In
this paper, we present a general method to calculate the analytical expression of the electrostatic potential
in any axisymmetric set of electrodes. We use conformal mapping to simplify the geometry of the
boundary. The calculation is then performed in a space of simple geometry. We show that this method,
providing good accuracy, allows one to obtain the potential on the axis as an analytic function of the
potentials applied to the electrodes, thus leading to fast, accurate, and efficient calculations. We conclude
by presenting stability maps depending on the potentials that enabled us to find the good trapping

conditions for O*" at much higher energies than what has been achieved until now.
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I. INTRODUCTION

In the past few years a variety of electrostatic devices for
storing and handling low energy ion beams have been
designed and operated. Electrostatic storage rings [1-3],
cone traps [4], Orbitraps [5], and electrostatic ion beam
traps (EIBT) [6,7] are now used to study atomic and
molecular metastable states or molecular fragmentation,
photodissociation, or mass spectrometry (see, e.g., Ref. [8]
for a review). The design and study of these instruments
relies nowadays mainly on computer simulations. An
EIBT, as designed by Zajfman and collaborators [6,9],
and independently by Benner [7], is a purely electrostatic
trap composed of two electrostatic mirror—Einzel lens
combinations, as represented in Fig. 1. This trap has
many interesting features [10]: on one hand, it offers
trapping of energetic particles (keV) in a well-defined
direction and, on the other hand, it is small, relatively
inexpensive, and has a field-free region where ions move
freely and where measurements can easily be performed.
It can also be used as a moderate-resolution mass
spectrometer [11].

In this paper, our aim is to provide a method enabling the
determination of an analytical solution to the electrostatic
potential in any axially symmetric configuration using the
elegant method of conformal mapping. We will present the
method on the EIBT, but it can be used on other sets of
electrodes.

The main reason for the quadrupole traps’ extensive use
in precision experiments lies in the fact that their fields can
easily be described by an analytical formula. It enables a
deeper understanding of many subtle phenomena like
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frequency shifts due to space charge. The inventors of
the ion trap resonator used either a matrix approach [11]
or numerical simulations [12]. The former are useful for
acquiring a qualitative understanding, but cannot provide
detailed insight in the operating conditions, while the latter
may not provide enough numerical accuracy to follow the
particles during several tens of thousands of oscillations
inside the trap, or be too time and resources consuming to
explore many different potential configurations. The track-
ing of particles in the EIBT is rather difficult because of the
combination of a long free-flight zone between the mirrors
and of two areas in which the particles slow down, stop,
and reverse their course on very short distances, while
being subjected to strong, rapidly varying, electrostatic
fields. The simulation time becomes rapidly a limitation
when many potential configurations must be studied while
looking for new operating conditions. Instead of two tuning
parameters as in a Paul trap, we have to fix the potentials of
five electrodes in a symmetric configuration (ten when
each side of the trap is set differently). The space to explore
is therefore too large for numerical simulations in which
the field is determined by usual finite element methods,
where one has to make a different calculation for each set
of parameters. Moreover, numerical errors accumulate and
perturb the trajectory of the particle over long trapping
times. In the sequel, we will show how to find a formula,
depending only on these parameters, which is able to give
the electrostatic potential with good accuracy. We will also
show some practical applications.

Before we present our method, we will just review two
ways of calculating electrostatic potentials and explain
why they are difficult to use in our case.

Green’s functions often yield analytical results because
they allow reduction of the solution of the Dirichlet prob-
lem to the calculation of the following integral:
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FIG. 1. Overview of the EIBT. Five potentials are applied to
the electrodes, the other are grounded. The injection of the bunch
of ions is performed when all the electrodes on one side of the
trap are grounded. The potentials are raised before the bunch has
time to come back. This trap can be used to make metastable
state lifetime measurements, hence the photomultiplier tube.

V(Mo) = _onsUs(M)%dS

where M|, is the point where the potential is evaluated, €, is
the vacuum permeability, n parametrizes the direction
orthogonal to the surface, Ug(M) is a given potential
distribution over the surface S, and G is a Green’s function.
However, Green’s functions are only known for simple
geometries, which limits the analytical approach.

A very interesting method called quasi-Green’s func-
tions has been developed in [13]. This method is based
on the division of a complicated geometry into different
simple shapes. The main drawback is that the final expres-
sion is given as an infinite sum whose coefficients have no
closed form. In practice, the given expression, although
analytical, is much more complicated than the one we will
present in this article.

Another technique is the charge ring method [14-17].
The integral form of the Poisson equation is applied to N
rings representing the geometry. If N is large enough, we
get a set of linear equations @ = AQ, where @ is the
potential applied to the rings, Q is the charge induced on
each ring, and A is a matrix depending only on the geome-
try. Once the inverse of A has been determined, the charge
of each ring is known and the potential at a point r that is
not on the boundary is given by

N
qi dr;
V = >
(r) 24776051' '/;i |r - r,~|

i=1

where s; is the area of ring i. Hundreds of rings usually
provide accuracy of the on-axis potential of the order
of 107* (1 order of magnitude better than the method

proposed here, see Sec. III A). However, it is at least 1
order of magnitude slower to compute: even though the
inverse of A is calculated only once for a given geometry,
one has to evaluate numerically N integrals, which is much
longer than to evaluate common mathematical functions.
We have implemented both methods on the same geometry
and the conformal method was 64 times faster than the ring
method. The choice between those two techniques will rely
on the need to improve accuracy or speed.

This article is organized as follows: in Sec. II, we present
an approximate method to obtain the analytical potential of
an axisymmetric set of electrodes, having the same radius.
In Sec. III, we explain how to use the Schwarz-Christoffel
method to alter the metric and obtain a set of electrodes
with the same radius, and in Sec. IIT A we solve the prob-
lem in this new space using the method of Sec. II.
Section III B contains a summary of the key steps of the
whole method as well as a discussion on the improvement
of the accuracy. Finally, in Sec. IV we show that the
dynamics of the ions in the EIBT is governed by a Hill’s
equation and we present a stability map showing what
experimental parameters lead to an efficient trapping.

II. SEPARATION OF VARIABLES AND
BERTRAM’S METHOD

We start from the Laplace equation in cylindrical
coordinates:
%V 19V 3*V
VIV =——F+-—+ —, 1
arr  r or 972 1
where V = V(r, z) is the potential at radius r from the axis
and at a distance z from the center of the trap. Using the
method of separation of variables, i.e., assuming V(r, z) =
R(r)Z(z), we obtain [18]
d*Z d’R  dR
- KZ=07"5+r—+rK*R=0, (2
dz? " dr? d dr d 2)
where k is a real constant. Equation (2) is a particular case
of the general Bessel equation [19], whose solution is a
Bessel function of the first kind: Jy(kr). We can use the
general solution given by a Fourier-Bessel series of the
form

V(r z) = % [jm alk)Jy(kr)edk, 3)

enabling us to take into account the boundary conditions.
Thus, if the potential at some radius R is known as a
function of z, then a(k) can be found by means of the
Fourier transform:

a(k)Jo(jkR) = f Ty ~iks
o(Jj V(R z)e”"dz. “)

Given that any solution of the Laplace equation in a
cylindrical symmetry is also of the general form,
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V(r,z) = Z 120 rnven(0, 2), (%)
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it is sufficient to determine V(0, z) along the axis.
Following Bertram [20], we assume that if we know the

potential V(R, /) at a distance R from the axis, then the

potential on the axis is well approximated by the formula

V(0,z) = % +: V(R z — f)sechZ(% f)d.{f, (6)

where the constant w = 4A, = 1.3152, and A, is the first
coefficient of the following development [20]:

1 < nk
— = A, cos—. 7
TR~ 240y @

In our case, if all the electrodes had the same radius,
we could directly use this method, taking V(R, ) as a
piecewise linear function of the set of potentials
{V1, V5, V3, V,, V.}. However, since the radius of the first
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FIG. 2. The line represents the analytical function and the dots
are the numerical solution achieved with the finite elements
software COMSOL MULTIPHYSICS® (top). The difference between
the two previous curves is shown in the bottom image. In this
case, we applied Bertram’s method replacing R by a function of
z. Even though the function is a polynomial going smoothly from
R, to R, we see that the error is large ( — 258 V) near z =
—0.15 m where the transition occurs. Here (V, = 4513V, V, =
4836 'V, V3 =3112V, V, = 1642V, V, = 3941 V).

four electrodes is R = 8 mm, different from the Einzel
electrodes where R, = 13 mm, this method does not work
in the area where the radius changes. We tried to introduce a
smooth function R(z) in the integral, but the difference
between those results and a finite element solution always
shows a large discrepancy as illustrated in Fig. 2.

The previous method is rather simple and efficient to
find the potential. Its only limitation is the need to have
identical radii for all electrodes. In the next section, we will
show how to use conformal mapping to place ourselves in
the space where the borders have a constant radius.

III. CONFORMAL MAPPING

Conformal mapping is widely used in applied physics
and chemistry. One can cite the design of airfoils: the
Joukowsky transformation [21] reduces the study of the
laminar flow on a complicated profile to the much easier
study of a cylinder in the transformed flow, or the study of
diffusive flow at micro-ring electrodes in analytical chem-
istry [22,23]. Applications in electrostatic potential deter-
mination are also known (see, e.g., [24-27]). However, all
these works use conformal mapping in a geometry where
one dimension can be considered infinite. A section per-
pendicular to this infinite dimension is then mapped. In this
paper, we show that conformal mapping can be used to find
the electrostatic potential in a space limited axisymmetric
geometry by mapping the plane parallel to the axis and
rotating it.

In order to use the results of II, the first step is to find the
holomorphic function that maps section A, described in
Fig. 3, on a rectangle. Holomorphic functions are of great
interest because angles are conserved under those trans-
formations: equipotential lines stay orthogonal to field
lines.

We first use the Schwarz-Christoffel transformation [28]
to map domain A, parametrized by z = x + iy onto the
upper half plane where t = r + is, as represented in Fig. 4:

d ()= Kt 't — a)/2(t — b)"1/2,
dt
so that
{— 1/2
= f(t) = K] ' ( a) dl’l + Kz,

o 7(f — b)l/?

where K| and K, are constants to be determined. With an
appropriate choice of the origin [f(0) = 0], we have K, =
0. For K, we use the boundary conditions: going from
point A to point E in the Z plane (see Fig. 4) corresponds to
a large semicircle of radius p — +o0 and 6 from O to 7 in
the T plane:

] - (pe”’ _ a)l/2 o
iR, =K f ‘ . ipe'®de.
z 1 0 pezﬁ(pez() _ b)1/2 P

When taking the limit p — + 00, this reduces to
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FIG. 3. A section of one side of the trap: the crosshatched areas
are the electrodes, the continuous lines are the equipotentials, the
domain A is surrounded by a dashed border, and the circled
points represent the z; points, which define our boundary
conditions.

o - (peie)l/z o - .
lRZ_Klj; Wlpe dH—Klnr,

and so K| = R, /. The second boundary condition, going
from B to B’ in the Z plane, is expressed by integrating
around BB’ with p — 0 and # going from O to 7

R T

=R [7_lee" )
7 Jo pelO(petG _ b)l/Z

T [ o= m;
=—2.]- = IR 4|—
p- bj;zdﬁ iR, b

Choosing a = 1 only fixes the origin in the 7 plane, and
it implies \/E = %. Finally, we make the substitution:

ipe'do

r—1
t+1

p:

and the integration gives
Vbp — 1 1+p
= _(_ In i)
Vb o bp+1 1—p
The mapping from the W plane to the 7' plane is much
simpler:

w = g(r) = Log(1),

and we can finally link the Z plane to the W plane by the
following transformation:

Ya
Z-plane D E
B' C
B A - X
f
S T-plane
-0 0 b )
. = |G
A BB C D E
g W-plane
Va
.gl Iog(a) IogD(b) +E°°' u
B A
=T

FIG. 4. The three working planes. The Z plane is the physical
plane corresponding to domain A in Fig. 3. The T plane is an
intermediate step due to the fact that the Schwarz-Christoffel
method always maps a polygon on the upper complex plane
where Im(z) = s > 0. The W plane is the calculation plane
where we can apply the method of Sec. II since it can be seen
as the section of a constant radius cylinder. The arrows on the
border represent the three mapping used to transform one plane
to the other.

2= flg"'w)] = % [log@iz

1 o <Jb(e —1) —e" —

—b++e" —1
—b—+e" —1

)] =<{(w), (8

The transformation z = {(w) gives a one-to-one mapping
between points of the Z plane and points of the W plane
and it is a conformal transform as the composition of two
conformal transforms. Since { is not invertible, we have
found a good approximating function defined on three
intervals and inverse of which is

\/_E Vb(e¥ — 1) + Je¥ —

0.015

0.010F

r(m)

0.005F

0.000F

-0.04 -0.02 0.00 0.02
z (m)

FIG. 5. This figure represents the image of the mapping {(w)
applied to the rectangle defined as w = u + jv with =20 <u <
8 and —7 < v < 0. The dots indicate the position of the z;.
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(1—b)(exp[ Vb (E log‘/_+l)]+1+h)

— log ab < "2
W) =1 P —20 =2 =2
logh3? (exp[};—f - \/%7 logﬁzi] + %) 20 <2
f
where zo = 0.007 m and P(z) is a 6th-order polynomial  where
connecting continuously the two asymptotic expansions.
The point.s at *zq ?epresent the limit of validity of the two Vi
asymptotic expansions. ;= P
There is one last thing to do before one can solve the Ak a)l
problem in the W plane. Figure 5 shows the image of the ¢i(u) = u;tanh— (u — u;)
rectangle defined as w = u + iv with —20 <u <8 and . o
— 7 < v < 0. On the vertical bold lines, u is constant and Yilu) = 2sinh 2 (w41 — uy)
we will call these lines iso-u. We see that the iso-u are cosh? (2u — u;yy — u;) + cosh 2 (u;y — u;)
distorted near 0. Therefore, the distance between the points he (u — u
_ ; cosh (u — u;1y)
w; = {7 1(z;) is not the same as the distance between the (1) = log cosh® (1 — 1)
points z;: the metric is not conserved on the border. G !

Consequently, the width of the electrodes near the point
C in the W plane is not the physical width, which leads to
errors in the potential. In order not to modify the metric on
the border, one should first apply the function

B2) = (&' (2) — im] (€]

to the points z; so that their images have the same distance
between them in the W plane and in the Z plane (physical
plane). This function uses the fact that, on the axis, the
metric is not modified from one plane to the other. It is the
same idea as in [26] where a “‘space dependent diffusion
coefficient” is used to account for the fact that real space is
compressed/expanded unevenly to fit the W plane. In the
sequel, we shall use the following notation: z; = B(z;).

A. Solving in the W plane

Using £(w) we can now apply Bertram’s method in the
W plane where the radius is constant. Following [20], we
assume that the potential varies linearly between the elec-
trodes. We shall come back to this approximation in the last
part of this section. We now use (6) in the W plane where
the radius is constant R = 7r. On the border, we have

By -V,
Vi) = (5 = ) + V)G = i)
imi\Ui+1 T U
with u; = £ 1(Z,), where Z; = B(z;). z; are the positions of

the points in Fig. 3, V; is the potential at z;. I1(u; — u; ;)
is a function equal to zero everywhere except between u;
and u;; where it is equal to one. Replacing in (6), we
obtain

13
Vi (0, ) = z[Q b1 () — b))

l\)l'—‘

Qi — Vs u ] (10)

Now that we have Vyy, the potential along the axis in the
Z plane is given by
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FIG. 6. The line represents the potential on the border used to
calculate the potential on the axis and the dots are the numerical
solution achieved with COMSOL MULTIPHYSICS (top). The differ-
ence between the two previous curves is shown in the bottom
image. Here (V; = 4513V, V, =4836V, V; =3112V, V, =
1642V, V, = 3941 V).
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V2(0,2) = Vyl[{ ' (2)]

as w = " !(z) varies from point B to point A.

The error between the numerical solution and our result
is around 1%, which is enough for many applications.
There are two main sources of errors. First, the calculation
does not take into account the field leaking at the front and
at the rear of the set of electrodes. It can be seen in Fig. 3
that the potential is not exactly zero on the axis after the
neutral electrodes preceding V, and following V. This
explains the two dark negative zones in Fig. 6. Second,
on the same figure, we see that the hypotheses we have
made, concerning the variation of the potential between the
electrodes, induce an error of about 100 V on the border.
Yet, since this error is oscillating along each border, it
compensates and the error on the axis is only about 20 V
(Fig. 7). An attempt to enhance the potential at the borders
is described in [29]. Finally, there is an error coming from
the cylindrical term of Eq. (1), which is not invariant under

4000 e
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e
s
N
> 2000 E
1000 | e
(2 T r Sy——
—-0.20 -0.15 -0.10 -0.05 0.00
z (m)
50 -
0
e
=)
N
> =50 + E
<
—100 ]
—150 d
—-0.20 -0.15 -0.10 —-0.05 0.00
z (m)

FIG. 7. The line represents the analytical function and the dots
is the numerical solution (top). The difference between the two
previous curves is shown in the bottom image. We see that the
error is around 1% and its smooth repartition shows that it does
not arise from the varying radius. This difference is the conse-
quence of the approximation we used to fix V(R, z) between the
electrodes. Here (V;, =4513V, V, =4836V, V3 =3112V,
V,=1642V, V, = 3941 V).

L L L L L L L L L L L
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

FIG. 8. This figure represents the image of a mapping obtained
numerically.

conformal mapping. However, it is always at least 1 order
of magnitude smaller than the two previous error types.

The best way to increase accuracy is to use a domain that
takes into account the shape of the electrodes. Instead of
the mapping of Fig. 5, we could have used the one of Fig. 8.
Besides showing that this method can be applied to com-
plicated geometries, Fig. 8 enables us to emphasize a
crucial point: the mapping might not be analytic for a given
geometry. However, since the geometry does not change, it
is enough to calculate the inverse map numerically one
time, find the polynomial that fits this numerical solution
on the axis, and then, using Bertram’s formula, we have an
analytic expression whose parameters are the electrodes’
potentials. With this mapping, the accuracy is approxi-
mately 0.1%.

Solving numerically a Schwarz-Christoffel map will not
be treated here because we chose a complete analytical
case to show all the details of the method. One could refer
to [28,30] for an extensive review on all the numerical
techniques involved. Note that all the results presented in
the sequel use the simple case of Fig. 8.

B. Summary of the method

Write the Schwarz-Christoffel transformation adapted to
the geometry to obtain z = {(w). For more details
see [28].

If the inverse w = ¢~ !(z) is not straightforward, it can
be well approximated by a polynomial.

Let z; = x; + iR(x;) be the points of the Z plane defining
the position of each side of the electrodes, one has to apply
the function B(z) = {[{ '(z) — im] to obtain the set of
points 7 = L[ (z;) — i),

Transpose the problem from the Z plane to the W plane
where w; = {(Z;) = u; + iv,.

Use the formula (10) to obtain Vy, (u, — Pi).

The potential of one point z = x + 0 X 7 on the axis in
the Z plane is V,(z, 0) = V[ 1(2)].

IV. APPLICATION: STABILITY MAP

The main difficulty to tune an EIBT is due to the large
number of parameters implied in its manipulation: five
potential values on each side, the energy of the ions, their
temperature, and their charge-to-mass ratio. The designers
of the trap used an optical model consisting of mirrors and
lenses [10], yet, since the focal length is not linked to the
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values of the potential, the behavior of the EIBT, given a
set of potentials, is unpredictable. Until now, experimen-
talists had to use simulation software like SIMION® [31] to
determine optimal trapping conditions [10]. Since a finite
element calculation has to be achieved each time a parame-
ter is changed, this method turns out to be fastidious.
Worse, simulating the trajectory of ions going back and
forth is much more difficult than simulating a beam be-
cause the errors on the position accumulate and become
comparable to the size of the trap. Even with the smallest
step and a recursive method, SIMION® [31] was not able to
enforce energy conservation after a few hundreds oscilla-
tions (the error was about 100 eV). From Eq. (3), we can
limit ourselves to the second order. Higher order terms can
be neglected as long as » < 8 mm, which is the aperture of
our trap. The potential in the trap is then given by

1 ,d*V(z)
P(r2) = V(@) = r =

where V(z) is the potential along the axis. It follows that
the trajectory of one ion in the trap is determined by the
following set of equations:

m d’z dv(z) 1 ,d*V(z)

— = +-r

q dr dz 4 d7’

, 1D

12)

mdr 1 d*V(z)

D e

q d* 2 dF?
The second term of the right side of Eq. (12) is small
compared to the first (for » <8 mm) and can thus be
neglected. We obtain the longitudinal motion of the ion

z(t). Substituting z(7) in (13), we obtain a Hill’s equation
[32]:

13)

d*r (i d?V(z)
a2 2m  dz?

the term in parentheses being a periodic function of period
T. This equation arose in the study of the moon’s dynamic,
and the usual method to discuss the stability of its solution
consists of calculating infinite determinants [33]. The prin-
cipal matrix of this equation is

(2, 1) ), (15)

W (t, 1)
M) =| .

® ( (8 1) (2 1)
where (%, 7y) is the solution of (14) with initial condi-
tions i,[fl(to, to) = 1 and lﬂl(l‘o, to) =0 and l//z(t, to) with
Yo (t, 1) = 0 and ¢, (1, 1y) = 1. Liouville’s formula [34]
shows that

Z(t))r —0 (14)

detM(z, 1) = 1 (16)

and therefore the characteristic equation of the monodromy
matrix M(t, + T) is given by [34]

xX2—2Ax+1=0, 17

where

A = TeM( + )] = 100+ T 10) er balto + 7 1)

(18)
Applying Floquet’s theorem [35], we know that if A? > 1,

one of the two solutions is unbound but if A2 < [ there are
two solutions:

+
r(1) = e p.(1), (19)
1.0
0.8 ]
Qi
= 06 it +
L o4 "3 4
02} & !
0.0 b}{\ L +; -H-41
1000 1500 2000 2500 3000 3500 4000 4500
Vz (V)

FIG. 9. These curves show 1 — |A] as a function of V_ (poten-
tial applied to the lens) in two distinct cases: (right curve, +) is
the trapping efficiency of Ar" at 4.2 keV with the same con-
ditions as in [36]. The set of points is a reproduction of the
experimental data in their Fig. 3(a). The left curve, o, represents
the trapping efficiency of Ar" at 1.2 keV with the same con-
ditions as in [10]. The set of points is a reproduction of the
experimental data in their Fig. 8. There is very good agreement
between theory and experiment.
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7000
E/ 6500
>
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5500
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Vz (V)

FIG. 10. The contours show the iso-n values where
n = |A| — 1. The stability region is defined by n < 0. The
white dots indicate settings where trapping was experimentally
observed. The radius of each dot is proportional to the trapping
efficiency. The thick white line is the border of the three stability
regions: there are three stability zones marked I, II, and III
corresponding to the three types of orbits of Fig. 11. We used
O*" at 5.2 keV/charge and the potential set is (V;, V, = 5850 V,
V3 =4150V, V, = 1650 V, V).
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where p. (1 +T) = p.(1), y = Im[} log(x,)], and x, =
A + +/A? — 1. In conclusion, Hill’s equation is stable, and
thus trapping can be observed, when |A| < 1. We now
compare these theoretical results with experiment.

Figure 9 shows a comparison with the results published
by other groups using the same kind of trap. These curves
show 1 — |A] as a function of V, (potential applied to the
lens). They show a perfect agreement with two indepen-
dent groups [10,36]. We also tried to reproduce the data of
[37] using H; at 1.0 keV and a negative potential on the
Einzel lens. We also predict three stability intervals, ap-
proximately at the same position, because we have not
taken into account the differences in the geometry of their
trap. However, we notice that the method works also with
negative potentials. Our method enables one to plot these
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0.004
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(
0.000 F &
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—0.004

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
z (m)

T T T T T T T

0.002 A

111

0.001 | A

0.000 | .

r(m)

-0.001 ]

-0.002 3
P < T S S H U S B |
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

z (m)

FIG. 11. Trajectories of O** at 5.2 kV. (top) Stability zone I:
(Vi =7500V, V,=5850V, V;=4150V, V,=1650V,
V. = 3650 V). (middle) Stability zone II: (V; = 6500 V, V, =
5850V, V3 =4150V, V, = 1650V, V, = 4950 V). (bottom)
Stability zone III: (V; = 5100V, V, =5850V, V3 =4150V,
V4, =1650V, V, = 5400 V).

curves in less than a second whereas the cited authors had
to make a SIMION® [31] simulation for each point.

Figure 10 shows the stability map depending on two
parameters V; and V, (the respective potentials of the rear
electrode and of the Einzel lens). This is the equivalent to
the famous Ince-Strutt diagram used to tune quadrupolar
traps [38]. The white dots indicate settings where trapping
was experimentally observed. We fixed the value of V| and
scanned V. Trapped ions go through a ring at the center of
the trap and induce a current. We then analyze this ampli-
fied current with a spectrum analyzer: if we see a peak
corresponding to the oscillating movement of the ions, we
mark this position with a white dot. The radius of each dot
is proportional to the trapping efficiency.

There is a shift between theory and experiment, which
was first thought to be caused by a technical problem: it is
difficult to monitor with good accuracy our power supplies
up to 8 kV, especially because they are raised in a few
nanoseconds. However, a recent improvement of the
model, taking space charge effects into account, seems to
explain this shift. These results will be presented else-
where. Nonetheless, we could not explain the absence of
trapping on the upper part of stability zone II. We tested to
see if higher order terms of Eq. (3) could account for this,
without success. No trapping can be seen in zone III, but as
shown in Fig. 11, this region corresponds to very peculiar
closed trajectories, which seem more theoretical than
observable.

V. CONCLUSION

In this article, we have given a method to calculate an
analytical solution to the Laplace equation in axially sym-
metric devices. This method is very general and can be
used for various parts constituting a beam line. We suc-
cessfully applied it to the EIBT and showed that the elec-
trostatic potential is given by a formula depending on the
five electrode potentials. The formula has been compared
with many finite element calculations where the potentials
have been changed on the whole achievable range (from 0
to 8000 V for each of the five potentials), and in the region
where the ions can move the error is never greater than 1%.
This analytical expression of the potential inside this trap
provides users with a much more powerful tool to study
and optimize this novel kind of trap. As an example, we
study the stability of the trap and show that they agree with
experiments giving a fast and easy way to predict trapping
parameters.
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