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Collimators and transitions in accelerator vacuum chambers often include small-angle tapering to lower

the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya’s

formula (for axisymmetric geometry), much less is known about the behavior of the impedance in the

high-frequency limit. In this paper we develop an analytical approach to the high-frequency regime for

round collimators and tapers. Our analytical results are compared with computer simulations using the

code ECHO.
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I. INTRODUCTION

The impedance of small-angle axisymmetric tapers with
perfectly conducting walls was first computed analytically
by Yokoya in the limit of low frequencies [1]. In this limit
the longitudinal impedance is purely imaginary, which
means that the beam does not lose energy to radiation.
Later works [2,3] generalized Yokoya’s approach for rect-
angular and elliptical cross sections of the transitions. In
the opposite limit of very high frequencies, a so-called
optical model has been developed [4,5] which predicts a
real longitudinal impedance. Simulations show, however,
that there is a large range of frequencies between Yokoya’s
theory and the optical impedance where both theories fail
to provide an accurate result. In this paper we address this
intermediate regime between the two limiting theories.
This paper uses the method developed in an earlier paper
by one of the authors [6], which attempted to solve this
problem, but failed to take into account the effect of mode
transformation in transition regions.

In this paper we consider the geometry of an axisym-
metric collimator shown in Fig. 1. It consists of two
identical conical tapers of length l connected by a section
of a cylindrical waveguide of length g. The radius of the
pipes outside of the collimator is b1, and the radius of the
pipe between the tapers is b2. We use cylindrical coordi-
nate system r; z; � with the origin of the coordinate z
situated in the middle of the collimator. The system is
then symmetric with respect to reflection in the plane z ¼
0 [7]. The radius of the collimator bðzÞ as a function of z is
defined by

bðzÞ ¼
8><
>:
b2; 0< jzj< g

2 ;

b2 þ ðb1 � b2Þ jzj�g=2
l ; g

2 < jzj< lþ g
2

b1; jzj> lþ g
2 :

(1)

Throughout this paper we assume that the angle of the
collimator � is small,

� ¼ arctan
b1 � b2

l
� b1 � b2

l
� 1:

We assume that a beam propagates along the axis of the
collimator at the speed of light. Our goal is to calculate the
longitudinal impedance of the collimator.

II. THE METHOD

We will use a method of eigenmodes, in which the
electromagnetic radiation field of the beam is represented
by a sum of modes of the empty waveguide. It is based on
calculation of the energy radiated by the image currents
induced by the beam in the walls of the waveguide. In the
absence of other losses, the radiated energy is equal to the
energy loss of the beam and can be related to the real part
of the impedance. The imaginary part of the impedance can
then be found using the Kramers-Kronig relations between
the imaginary and real parts of the impedance.
The Fourier component of the beam current is (we

assume the e�i!t time dependence in what follows)

I! ¼ I0e
ikz; (2)

where ! stands for frequency, I0 is the amplitude of the
current harmonic, and k ¼ !=c. Let us denote the time-
averaged intensity of radiation of this current from the
collimator region by P!. The real part of the impedance
is then given by the following relation (see, e.g., [8]):

0 z

g ll

b2

b1b1

FIG. 1. Geometry of an axisymmetric collimator.
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ReZð!Þ ¼ 2P!

I20
: (3)

The radiation is due to the image currents induced in the
perfectly conducting walls in the taper regions where the
walls are not parallel to the z axis. It is convenient to
represent the total electric field of the beam current (2)
inside the taper as a sum of the vacuum field, Evac, and the
radiation fieldErad,E ¼ Evac þErad, where for an on-axis
beam

E vac ¼ r̂
2I0
rc

eikz; (4)

with r̂ being a unit vector in the radial direction of the
cylindrical coordinate system.

The radiation field Erad satisfies Maxwell’s equation
with the boundary condition that requires the tangential
component of the total electric field on the wall to vanish

E rad
t jwall ¼ �Evac

t jwall: (5)

It is convenient to replace the boundary conditions (5) for a
nonvanishing tangential component of the radiation elec-
tric field on the wall by the surface magnetic current imag

located inside the waveguide infinitesimally close to the
wall [9,10]. The magnitude and direction of the magnetic
current is given by

i mag ¼ c

4�
n�Erad

t jwall ¼ � c

4�
n�Evac

t jwall; (6)

where n is the unit vector normal to the surface and
directed towards the metal. Note that the magnetic current
exists only inside the tapers and vanishes in the region
where the wall is parallel to the z axis.

Inside the waveguide, the radiation field excited by the
magnetic currents can be represented as a sum of eigen-
modes,

E rad ¼ X
n

anE
þ
n ; (7)

where an is the amplitude andEþ
n is the electric field of the

nth eigenmode, propagating in the positive direction of the
z axis. A similar expansion in terms of the amplitudes an is
also valid for the magnetic field. Note that, in general, the
sum in (7) also includes modes E�

n propagating in the
backward direction [9]. However, in the limit of high
frequency, the modes that make a dominant contribution
to the impedance propagate in the forward direction, and
the backward propagating modes can be neglected.

The norm Nn of the mode n is defined as

Nn ¼ c

4�

Z
m � ðEþ

n �H�
n �E�

n �Hþ
n ÞdS; (8)

where the integral is taken over the cross section of the
waveguide and the unit vector m is perpendicular to the
integration surface and points in the direction of propaga-
tion. It can be shown thatNn does not depend on the choice

of position of the cross section. The right-hand side of
Eq. (8) can be considered as a scalar product of the two
fields Eþ

n ;H
þ
n and E�

n ;H
�
n . One can show [9] that the

scalar product of two different modes is equal to zero, so
that a generalization of Eq. (8) for n � j is

c

4�

Z
m � ðEþ

n �H�
j �E�

j �Hþ
n ÞdS ¼ Nn�nj: (9)

We will use this equation in the next section.
The energy radiated by the currentP! can be written as a

sum over all possible modes,

P! ¼ X
n

Pnjanj2; (10)

where Pn is the energy flow in the mode of unit amplitude.

III. EIGENMODES IN THE COLLIMATOR

As described in the previous section, to calculate the
excitation of electromagnetic field by the beam, one needs
to know the eigenmodes of the complete circuit. Analytical
expressions for eigenmodes are available for cylindrical
and conical waveguides; however, there is no a compact
expression for eigenmodes of a collimator shown in Fig. 1.
More precisely, a single conical mode that propagates in
the left taper of the collimator experiences transformation
at the transition to the straight central section, generating
several modes in the central part. Each of these modes, in
turn, experiences a transformation at the second transition
from the cylindrical waveguide to the right taper, resulting
in multiple conical modes in the right taper. Wewill have to
take these transformation processes into account in our
analysis.
For calculation of the longitudinal impedance, one only

needs axisymmetric TM modes. In the cylindrical central
part of the collimator, the modes propagating in the posi-
tive direction, Eþ

n ;H
þ
n , are given by the following equa-

tions:

Eþ
z;n ¼ j2n

b22
J0

�
jn

r

b2

�
ei�nðzÞ

Eþ
r;n ¼ � ijnkn

b2
J1

�
jn

r

b2

�
ei�nðzÞ

Hþ
�;n ¼ � i!jn

b2c
J1

�
jn

r

b2

�
ei�nðzÞ;

(11)

where n is the mode index, n ¼ 1; 2; . . . , J0, and J1 are the

Bessel functions, jn is the nth root of J0, and kn ¼
ð!2=c2 � j2n=b

2
2Þ1=2. The phase of the mode is equal to

�nðzÞ ¼ knz. The modes propagating in the negative di-
rection, E�

n ;H
�
n , are obtained from the forward modes by

changing the signs of �n and Eþ
r;n in (11).

A simple calculation gives the norm (8) of the mode n:

Nn ¼ 1
2!knj

2
nJ

2
1ðjnÞ; (12)

with the energy flow in the mode equal to Pn ¼ Nn=4.
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In the limit of high frequency, it turns out that only the
modes that propagate at small angles to the axis of the
system make the dominant contribution to the impedance
(so-called paraxial approximation, see [11]). In this ap-
proximation one can neglect the transverse component
jn=b2 of the wave vector and replace kn by k everywhere
in Eqs. (11) and (12), except for the phase �n.

Analytical expressions for eigenmodes of the electro-
magnetic field are also available for conical geometry (see,
e.g., [9]). In the general case of arbitrary cone angle � and
arbitrary frequency !, they involve the Legendre and
Bessel functions. We will use here a simplified version of
these functions valid in the limit of a small angle � and
high frequency !, replacing kn by k where possible [see
explanation after Eq. (12)]. The derivation of these modes
is given in the Appendix. In this limit, the conical eigen-
modes (which we mark by the tilde below) are similar to
the cylindrical ones, and, in our cylindrical coordinate
system, they can be written as follows:

~Eþ
z;n ¼ j2n

b2
J0

�
jn

r

b

�
ei�nðzÞþikr2=2RðzÞ

~Eþ
r;n ¼ � ijnk

b
J1

�
jn

r

b

�
ei�nðzÞþikr2=2RðzÞ

~Hþ
�;n ¼ � i!jn

bc
J1

�
jn

r

b

�
ei�nðzÞþikr2=2RðzÞ;

(13)

where the phase�n is now determined from the differential

equation d�n=dz ¼ ½!2=c2 � j2n=bðzÞ2�1=2. The factor
RðzÞ in the above equations is the curvature radius of the
spherical wave fronts of the modes in the conical regions; it
is equal RðzÞ ¼ ½arctanb0ðzÞ=bðzÞ��1 � bðzÞ=b0ðzÞ. Note
that, due to the linear dependence of bðzÞ in the tapers, b0 ¼
const. The sign of R is important: it is negative in the left
taper, corresponding to converging wave fronts of the
modes, and is positive in the right taper, where the wave
fronts are diverging from the center of the collimator.
Because Eqs. (13) differ from Eqs. (11) only by a phase
factor, the norm for the conical modes is the same as for the
cylindrical ones, given by (12). The relation Pn ¼ Nn=4
holds as well.

For the phase �nðzÞ in (13) we have

�nðzÞ ¼
Z z

0

�
!2

c2
� j2n

bðz0Þ2
�
1=2

dz0: (14)

The conical modes propagating in the negative direction
are obtained from (13) by changing the signs of �n and
Eþ
r;n.

The small angle of the collimator, as was pointed out in
[6], allows one to neglect the reflection of eigenmodes at
the transitions between the cylindrical and conical regions.
However, it does not preclude mode transformation at
these transitions, and we will account for this below.

IV. AMPLITUDES OF THE MODES AND MODE
TRANSFORMATION

Calculation of the mode amplitudes in the collimator is
performed in several steps. At z ¼ �ðlþ g=2Þ where the
beam enters the collimator, there is no radiation field
present, hence an ¼ 0 in Eq. (7).
In the left taper, where there are magnetic currents (6),

the amplitudes an depend on z. The values of the ampli-
tudes at the exit from the left taper, z ¼ �g=2� � (an
infinitesimally small � here indicates a location right be-
fore the exit from the taper), are given by the following
integrals [9]:

að1Þn ¼ � 1

Nn

Z
left

imag � ~H�
n dS; (15)

where H�
n is the magnetic field of the nth eigenmode

propagating in the negative direction, dS is an infinitesimal
element of the surface area, and the integration covers the
wall area in the left taper where the magnetic current
resides.
At the transition point z ¼ �g=2, the modes will be

transformed from conical to cylindrical ones, and the
amplitudes of the modes will be linearly transformed

from að1Þn at z ¼ �g=2� � to að2Þn at z ¼ �g=2þ �,

að2Þn ¼ X
j

Snja
ð1Þ
j : (16)

We will discuss below how the matrix elements Snj are

computed.
The next mode transformation occurs at the transition

z ¼ g=2 with the new amplitudes að3Þn ,

að3Þn ¼ X
j

Rnja
ð2Þ
j : (17)

Finally, radiation of the magnetic currents in the right taper

will add to að3Þn :

að4Þn ¼ að3Þn � 1

Nn

Z
right

imag � ~H�
n dS: (18)

The amplitudes að4Þn are the final values that should be used
in Eq. (10) to calculate the radiated power.

We now use Eqs. (4), (6), (12), and (13), to compute að1Þn

in (15)

að1Þn ¼ � 2iI0�

ckjnJ1ðjnÞ
Z �g=2

�l�g=2

dz

bðzÞ e
ikz�i�nðzÞþikbðzÞ�=2;

(19)

where we have used the small-angle approximation, � �
1, and b0 � �� in the left taper. Taking into account the
symmetry of the collimator and performing a similar cal-
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culation for the second term on the right-hand side of
Eq. (18), one finds that it is equal to the complex conjugate
of (19).

To find the matrix elements Snj in Eq. (16), we note that

due to the continuity of the field at z ¼ �g=2 it can be
expanded into the conical eigenmodes as well as the cy-
lindrical modes:

X
n

að2Þn
~Eþ
n ¼ X

j

að1Þj Eþ
j ; (20)

with a similar continuity equation holding for the magnetic
fields. Using the orthogonality property of the modes with
respect to the scalar product (9), we find

að2Þn ¼ c

4�Nn

X
j

að1Þj

Z
m � ðEþ

j � ~H�
n � ~E�

n �Hþ
j ÞdS;

(21)

which defines the matrix elements in Eq. (16). The matrix
elements Rnj in Eq. (17) could be found in a similar

fashion.

V. NUMERICAL RESULTS

The impedance calculation algorithm described above
was implemented in MATHEMATICA [12]. In numerical
calculations, the infinite sums involved in Eqs. (10), (16),
and (17) are truncated, and only first Nm � 10 lowest
modes are used to calculate the impedance. By varying
Nm we verified that the result does not depend on the exact
value of Nm.

To illustrate our method, we have chosen the following
collimator geometry: l ¼ g ¼ 3 cm, b1 ¼ 2b2 ¼ 0:5 cm,
so that the collimator angle is � ¼ 4:7 degrees. The real
part of the impedance computed from the beam pipe cutoff,
fc ¼ j1c=2�b2 ¼ 46 GHz, up to the frequency fmax ¼
3:9 THz is shown in Fig. 2 in solid blue. At higher fre-
quencies this impedance approaches the optical model
value, Zopt ¼ ðZ0=�Þ logðb1=b2Þ ¼ 83�.

While our algorithm directly finds only the real part of
impedance, we can find the imaginary part by making use
of causality, which relates imaginary and real parts of the
impedance via the Hilbert transforms (Kramers-Kronig
relations) [8]. To proceed, we need to define ReZ for all
frequencies, so we set it to zero below fc, and set it equal to
the optical model value above fmax. ImZ calculated by the
Hilbert transform of this ReZ is shown in Fig. 2 in solid
red. Below the cutoff frequency it ends up very close to the
Yokoya value. For comparison, we plot impedances calcu-
lated from a Fourier-transformed wake potential of a �z ¼
20 �m Gaussian bunch computed by the EM code ECHO

based on a finite integration technique [13]. Running ECHO

we usually used the grid size from 5 to 200 times smaller
than �z and made sure that the numerical result converged
and did not change with further refining of the mesh. One
can see a very good agreement between our approach and
the ECHO results.
Since our algorithm allows one to accurately find the

impedance over a very broad frequency range, we can use
inverse Fourier transform to reconstruct the wake potential
of a short bunch. For instance, for a Gaussian bunch with
rms length �z ¼ 100 �m, we obtain the wake potential
shown in Fig. 3, plotted with the ECHO result for compari-
son. Again, we observe a perfect agreement between the
two.
Finally, in Fig. 4 we present the loss factor and the

maximum absolute value of the wake potential as a func-

FIG. 2. Collimator impedance: present theory is shown with
solid line, the result of simulations with ECHO are shown with
dots.
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FIG. 3. Wake potential of a �z ¼ 100 �m bunch.
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FIG. 4. Loss factor and maximum of the wake potential.
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tion of bunch length. As we expect from the optical model,
for short bunches, both quantities scale as��1

z , while in the
opposite, Yokoya regime, jWðsÞjmax / ��2

z and the loss
becomes exponentially small. In the intermediate region
[roughly 2 magnitude orders in �z with corresponding
changes of 3 or more orders in magnitude in jWðsÞjmax

and kloss] the scaling is more complex, and, to our knowl-
edge, it is not described by any existing analytical treat-
ments. Our new approach comfortably fills this gap.

VI. CONCLUSIONS

In conclusion, we developed a novel analytical approach
to find the impedance of (small-angle) tapered collimators
in axially symmetric geometry. Impedance can be found
over a very broad frequency range, from DC to high-
frequency optical model limit, thus allowing one to recon-
struct the wake potential of short bunches. We note that this
algorithm is also applicable to convex (cavitylike) struc-
tures. Our general method can also be used for tapers with
large angle �; however, this would require working with
exact eigenfunctions in the conical region, given by
Eq. (A1), instead of simpler expressions, Eq. (13).

We plan to apply our method to 3D geometries in the
future.
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APPENDIX: DERIVATION OF APPROXIMATE
EIGENMODES FOR A CONICALWAVEGUIDE

Consider a conical waveguide with its associated spheri-
cal coordinate system �, 	, and �, such that the origin of
the system is located at the vertex of the cone, see Fig. 5.
The metal surface of the waveguide is located at 	 ¼ �,
and the electromagnetic fields occupy the region 	 < �.

The transformation from the spherical coordinate system to
the cylindrical one r; �; z employed in the main body of
our paper is given by z ¼ � cos	 and r ¼ � sin	, where z
is now measured from the vertex of the cone.
We are interested in axisymmetric (no � dependence)

TM eigenmodes that can propagate in the waveguide.
These modes have three components of the field: E�, E	,

and H�. The modes propagating away from the vertex in

the positive direction of � (denoted by the superscript
‘‘þ’’) are given by the following equations [9]:

Eþ
�;
 ¼ 
ð
þ 1Þ

�2
Uþ


 ð�; 	Þ; Eþ
	;
 ¼ 1

�

@2Uþ



@�@	
;

Hþ
�;
 ¼ ik

�

@Uþ



@	
;

(A1)

where

Uþ

 ð�; 	Þ ¼

ffiffiffiffiffiffiffiffiffiffi
�k�

2

s
Hð1Þ


þð1=2Þðk�ÞP
½cosð	Þ�; (A2)

with Hð1Þ

þð1=2Þ the Hankel function of the first kind of order


þ 1
2 . The eigenvalues 
 are found from the requirement

of the zero tangential electric field at the metal surface,
P
½cosð�Þ� ¼ 0.
The eigenmodes propagating in the negative direction

are given by (A1) with Uþ

 replaced by U�


 . The function

U�

 is given by (A2) in which Hð1Þ


þð1=2Þ is replaced by the

Hankel function of the second kind Hð2Þ

þð1=2Þ.

In the limit of small angles � the eigenvalues 
 are large,
and we can use the approximation P
½cosð	Þ� � J0½ð
þ
1
2Þ	�, where J0 is the Bessel function of zero order, and

approximate 
ð
þ 1Þ � ð
þ 1
2Þ2. We then can write

Eþ
�;
 ¼ �2

�2
J0ð�	Þ

ffiffiffiffiffiffiffi
�

2
x

r
Hð1Þ

� ðxÞ

Eþ
	;
 ¼ ��k

�
J1ð�	Þ

� ffiffiffiffiffiffiffi
�

2
x

r
Hð1Þ

� ðxÞ
�0

Hþ
�;
 ¼ � i�k

�
J1ð�	Þ

ffiffiffiffiffiffiffi
�

2
x

r
Hð1Þ

� ðxÞ;

(A3)

where x ¼ k� and � ¼ 
þ 1
2 and the prime denotes the

derivative with respect to x. The boundary condition now
takes the form J0ð��Þ ¼ 0, from which it follows that

� ¼ jn
�
; (A4)

where jn is the nth root of J0. From (A4) we see that indeed
small � means � � 1.
For large values of x, one can use the asymptotic ex-

pression [14]

Hð1Þ
� ðxÞ �

ffiffiffiffiffiffiffi
2

�x

s
eic ðxÞ; (A5)FIG. 5. Spherical and cylindrical coordinate systems associ-

ated with a conical waveguide.
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with

c ðxÞ � x� �

2
�� �

4
þ 4�2 � 1

8x
: (A6)

Substituting (A4) and (A5) into (A3) we obtain

Eþ
�;
 ¼ j2n

b2
J0

�
jn

r

b

�
eic ðxÞ

Eþ
	;
 ¼ � ijnk

b
J1

�
jn

r

b

�
eic ðxÞ

Hþ
�;
 ¼ � ijnk

b
J1

�
jn

r

b

�
eic ðxÞ;

(A7)

where in the derivative with respect to x we used an
approximation c 0 � 1 and replaced b ¼ �� and r=b ¼
	=� (see Fig. 5), where b is the radius of the metal surface
in the cylindrical coordinate system. The last two equations
are approximations to the exact equalities b ¼ � sin� and
r=b ¼ sin	= sin� in the limit 	;� � 1.

To prove that Eqs. (A7) are identical to (13), we need to
show that the phase c given by (A6) can be also repre-
sented as

c ¼ �nðzÞ þ kr2

2R
; (A8)

with

d�n

dz
¼

�
k2 � j2n

bðzÞ2
�
1=2 � k� j2n

2kbðzÞ2 : (A9)

Observing that x ¼ k� ¼ kz= cos	 � kzð1þ 	2=2Þ �
kzþ kr2=2z we substitute it to (A6) and neglect 1 in
comparison with 4�2 in the last term

c ðxÞ � kzþ kr2

2z
þ�2

2x
þ const

� kzþ kr2

2z
þ j2n

2k�2�
þ const

� kzþ kr2

2z
þ j2n

2k�b
þ const: (A10)

The second term in these equations is associated with the
quantity kr2=2R in (A8) because the coordinate zmeasured
from the vertex is equal to the curvature of the wave fronts
defined in (13) as R. The sum of the first and the third term
indeed satisfies Eq. (A9) if one takes into account
dbðzÞ=dz ¼ �.
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