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We have studied the time evolution of the heavy-ion luminosity and bunch intensities in the Relativistic

Heavy Ion Collider (RHIC) at BNL, and in the Large Hadron Collider (LHC) at CERN. First, we present

measurements from a large number of RHIC stores (from run-7), colliding 100 GeV=nucleon 197Au79þ

beams without stochastic cooling. These are compared with two different calculation methods. The first is

a simulation based on multiparticle tracking taking into account collisions, intrabeam scattering, radiation

damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary

differential equations with terms describing the corresponding effects on emittances and bunch popula-

tions is solved numerically. Results of the tracking method agree very well with the RHIC data. With the

faster method, significant discrepancies are found since the losses of particles diffusing out of the rf bucket

due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make

predictions of the time evolution of the future 208Pb82þ beams in the LHC at injection and collision energy.

For this machine, the two methods agree well.
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I. INTRODUCTION

During the design and operation of a heavy-ion collider,
e.g., the Relativistic Heavy Ion Collider (RHIC) [1] or the
Large Hadron Collider (LHC) [2], one of the main goals is
to maximize the time integral of the luminosity L at the
experiments. As usual, luminosity is defined as the event
rate per unit cross section and depends only on the spatial
density distributions of the colliding beams at the collision
points.

The time evolution of the spatial densities is determined
via single-particle dynamics from that of the phase-space
distributions, i.e., the kinetics of the beams. This, in turn, is
determined by the combined influences of several interde-
pendent physical processes. The action of some of these
(e.g., beam-beam collisions, scattering on residual gas)
principally remove particles from the beams. Others
[e.g., intrabeam scattering (IBS), radiation damping] pre-
dominantly change their distribution in space and momen-
tum. To maximize

R
Ldt, losses caused by other processes

than the collisions themselves need to be minimized and
the beam sizes should stay small. These processes there-
fore need to be understood and modeled in quantitative
detail.

There have been numerous previous studies of the time
evolution of luminosity (in colliders) or other performance
parameters such as the emittances (e.g., in synchrotron
light sources or the damping rings of linear colliders).

Among many possible references, we cite [3–6] which
are particularly close to the applications of this paper.
Many of these are based on the solution of systems of

coupled ordinary differential equations (ODEs) that de-
scribe the time evolution of a few parameters characteriz-
ing the beam distributions, typically the intensities and the
first- and second-order moments of the distributions (beam
centroids and emittances). Such systems can only be closed
with additional assumptions on the nature of the beam
distributions. Typically these are assumed to be Gaussian
in all 3 degrees of freedom. Besides closing the system of
equations, this can also allow convenient analytical forms
for some of the terms, e.g., those describing intrabeam
scattering or the way in which the luminosity is modified
by crossing angles at the interaction point. This approach
was applied to the evolution of heavy-ion luminosity in the
LHC in Ref. [6]. Alternative approaches involve solving
the Fokker-Planck equation for the beam distribution func-
tions [7,8] and single-particle tracking. In Ref. [9] both the
ODE method and particle tracking were implemented in
the same simulation code.
In this article, we study the time evolution of colliding

heavy-ion beams in RHIC and LHC. In Sec. II, we present
measurements of luminosity and beam intensities during a
large number of physics stores during run-7 [10] in RHIC
and give a summary of the running conditions. The data are
compared with simulations based on two different models:
(i) multiparticle tracking—This method, described in
Sec. III, is rather direct and accurate but slow. We use an
extended version of the code introduced in Refs. [11–13],*roderik.bruce@cern.ch
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motivated by the fact that the longitudinal bunch distribu-
tions in RHIC are not Gaussian, as discussed in Sec. III E.
It is important to have a simulation that can model IBS for
arbitrary profiles of bunched beams. (ii) ODEs—
Numerical solution of a coupled system of ODEs describ-
ing the beam emittances and bunch populations as in
Ref. [6]. This method, discussed in Sec. IV, is fast but
lacks accuracy when the beam distributions are not
Gaussian.

In Sec. V, both methods are compared with the data from
RHIC, and in Sec. VI we make predictions for the LHC.

II. MEASURED LIFETIMES IN RHIC

The RHIC run-7 consisted of 191 physics stores in 2007
with colliding 197Au79þ beams at an energy of
100 GeV=nucleon. The main beam and machine parame-
ters for run-7 are summarized in Table I.

During run-7, longitudinal stochastic cooling became
operational for the Yellow ring [13] (the two rings of

RHIC are called Blue and Yellow). Stochastic cooling
counteracts the longitudinal diffusion caused by intrabeam
scattering (IBS) that eventually pushes particles outside the
longitudinal acceptance (rf bucket). This loss process, dis-
cussed in Sec. III E, is responsible for a large fraction of the
beam losses in RHIC. In this article, we focus on stores
without stochastic cooling in order to make a comparison
with the LHC.
The time-dependent average bunch intensitiesNi (i ¼ 1,

2 for Blue and Yellow, respectively) were measured using
DC transformers [1] and can be fitted empirically by an
exponential function,

NfitðtÞ ¼ Nð0Þ expð�t=TNÞ: (1)

The beam lifetimes TN fitted to data from the first 3 h of all
physics stores are shown in Fig. 1 and the mean and
standard deviation values are listed in Table II. Regular
physics stores last 5 h, but some stores terminate prema-
turely. Almost all stores have data for 3 h.

TABLE I. Typical beam and machine parameters for RHIC run-7 and the LHC, given for the beginning of store. The transverse
emittance in RHIC showed large variations between stores [14].

Parameter Unit RHIC collision LHC collision LHC injection

Species � � � 197Au79þ 208Pb82þ 208Pb82þ
Beam energy GeV=nucleon 100 2759 177.4

Lorentz factor �rel � � � 107.4 2963.5 190.5

Bunch intensity Nb 109 1.1 0.07 0.07

Bunches per beam � � � 103 592 592

Normalized transverse rms emittance �m 3.1 1.5 1.4

Longitudinal rms emittance eV s=nucleon 0.25 0.25 0.07

rms bunch length cm 30 7.94 9.97

rms energy spread 10�3 0.8 0.11 0.39

Number of active interaction points (IPs) � � � 2–4 1–3 0

Optical function at IP ��
xy m 0.8 0.5–0.55 � � �

Crossing angle at IP �rad 0 70–285 � � �
Peak luminosity 1027 cm�2 s�1 3 1 � � �
rf harmonic numbers h � � � 360, 2520 35 640 35 640

rf gap voltage MV 3 (h ¼ 2520)
0.3 (h ¼ 360)
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FIG. 1. (Color) Blue and Yellow beam lifetimes TN obtained by fitting Eq. (1) to measurements. Only stores without stochastic cooling
are included.
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TABLE II. Average and rms values of fitted lifetime parameters for all 191 physics stores of RHIC run-7.

Parameter Unit Average Standard deviation

Blue beam lifetime TN h 9.9 1.7

Yellow beam lifetime TN h 10.9 3.3

Luminosity, fast decaying component A=ðAþ BÞ % 33 12

Luminosity lifetime Tf, fast decaying h 0.6 0.5

Luminosity, slow-decaying component B=ðAþ BÞ % 67 12

Luminosity lifetime Ts, slow decaying h 3.9 2.5
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FIG. 2. (Color) Distributions of fitted luminosity lifetime parameters defined by Eq. (2), where Tf is chosen to be the faster decay time
and Ts the slower.
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FIG. 3. (Color) A typical example of measured and fitted luminosity (left) and bunch population (right). The fits are done only over the
first three hours, indicated by the dashed vertical line, as some stores terminate prematurely. The shown fits have �2=DOF ¼ 1:2 and
0.86. The measurement errors were assumed to be 1:4� 1025 cm�2 s�1 and 2:5� 106, respectively, given by the spread of
measurement points over a short time interval.
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The luminosity was recorded during every store by
detecting neutrons emitted by ions that have undergone
mutual electromagnetic dissociation in the collisions
[15,16]. It turns out that it can be well fitted by a sum of
fast- and slow-decaying exponential functions,

L fitðtÞ ¼ A expð�t=TfÞ þ B expð�t=TsÞ; (2)

with the fit parameters A, Tf, B, Ts. This is a three-

parameter fit since Lfitð0Þ ¼ Aþ B. The fit function (2)
is purely phenomenological: it is not chosen on the basis of
any particular physical model but rather for the fact that it
generally fits rather well and is convenient to implement.
The fit parameters for all stores are shown in Fig. 2 and the
means and standard deviations in Table II. An example of
the measured and fitted luminosity and bunch intensity is
shown in Fig. 3.

III. PARTICLE TRACKING SIMULATION

The tracking program is based on a code initially used
for stochastic cooling [11–13], which has been developed
further to simulate the time evolution of two circulating
and colliding bunches.

Each bunch contains a number of macroparticles (in the
simulations, 5� 104 were used), which are tracked in a 6D
phase space. Normalized coordinates ðx; px; y; pyÞ are used
in the transverse planes and ðt; ptÞ with pt ¼ �� �0 in the
longitudinal (�0 is the Lorentz factor of the reference
particle). The particle coordinates are updated on a turn-
by-turn basis as a function of the physical processes acting
on them. The following processes are taken into account:
(i) synchrotron and betatron motion.—All coordinates are
updated deterministically on every turn, taking into ac-
count the machine tune, chromaticity and rf voltage.
Particles outside the time acceptance of the rf bucket are
removed. In RHIC and LHC, these coasting particles are
cleaned by extracting them resonantly through a few dipole
kicks, sending them onto the collimators. Therefore they
have a negligible influence on beam dynamics. Linear
betatron coupling is taken into account in thin-lens ap-
proximation. A detailed description can be found in
Ref. [11]. (ii) collisions.—Collision probabilities are
sampled as a function of the local density of the opposing
beam at ðx; yÞ. This is described in Sec. III A. (iii) IBS.—
Each particle is given a random kick, calculated using the
Piwinski model, but modulated by the local particle density
in order to account for non-Gaussian longitudinal bunch
profiles. This is described in Sec. III C. (iv) radiation damp-
ing and quantum excitation.—All particles receive a deter-
ministic amplitude decay and a random excitation. This is
described in Sec. III D.

Other processes are neglected. Beam loss rates in RHIC
do not change visibly when the beams are brought into
collision, and the beam-beam parameter is even smaller for
ions in the LHC [2]. Therefore, the beam-beam effect is
neglected in our simulations. A detailed treatment of beam-

gas scattering has been done elsewhere for RHIC [17,18]
and LHC [19,20]. In both cases, lifetimes of the order of
100 or several hundreds of hours were found. The emit-
tance blowup at RHIC is fractions of a percent per hour
[18] and standard formulas [21] give a similar result for the
LHC with predicted vacuum conditions [2,19]. Therefore,
beam-gas scattering has a negligible impact on the dynam-
ics in RHIC and LHC when compared to collisions or IBS.
Furthermore, calculations with the MAD-X [22] program

show that the Touschek effect (large-angle scattering from
the center of the bucket bringing particles outside the
energy acceptance) is negligible in both machines, with
lifetimes of hundreds or thousands of hours. However,
small-angle scattering of particles already close to the
acceptance is important and included as discussed in
Sec. III C.
The strengths of the processes (collision probabilities,

inverse radiation damping times, and kicks from intrabeam
scattering and quantum excitation) are scaled up to account
for both the smaller number of macroparticles and by an
additional factor, set by the user, that reduces the computa-
tional time, so that the number of turns in the simulation
corresponds to a much larger number of turns in the real
machine. Typically one simulation turn corresponds to 2�
104 real machine turns in our simulations to achieve a
relatively fast execution without loss in precision.

A. Collisions

A collision probability P1 is calculated for every particle
on every turn, and a random number is sampled to deter-
mine if an interaction takes place. In that case, the particle
is removed. To calculate P1 we perform an overlap integral
of the density of the opposing bunch with a Dirac �
function that represents the trajectory of a single particle.
The details of this are shown in Appendix A. The most
general collision routine makes no assumptions on the
beam distributions and uses a discrete binning of the
particles. The integration is then replaced by a sum over
the bins. This routine is slow and a much faster code is
obtained with some simplifications.
First, we assume Gaussian distributions in x and y,

which is generally a very good approximation (in RHIC,
the longitudinal distribution is however non-Gaussian as
explained in Sec. III E). Furthermore, we assume a com-
mon luminosity reduction factor instead of computing it
for every particle, so that P1 is a function of the transverse
coordinates only. In the transverse plane we use action-
angle variables ðJx;�xÞ defined for a particle in bunch 1 by

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jx�

�
xy

q
cos�x

x01 ¼ �
ffiffiffiffiffiffiffiffi
2Jx
��

xy

s
ðsin�x þ ��

xy cos�xÞ;
(3)

with the angle variables given at the IP and an analogous
definition in y. Here ��

xy is the value of the optical function
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at the IP (assumed to be the same in x and y), where we
define the longitudinal coordinate to be s ¼ 0 and x0 ¼
dx=ds. We note that ��

xy ¼ ��0
xyð0Þ=2 ¼ 0.

Since every simulation turn corresponds to a large num-
ber of machine turns, where � has a uniform distribution
on the interval ½0; 2��, we average P1 over �. The result-
ing collision probability for a particle in bunch 1, derived
in Appendix A, is a function of the betatron actions J only:

P1 ¼ 	N2

expð� Jx
2
2x

� Jy
2
2y

ÞI0ð Jx
2
2x

ÞI0ð Jy
2
2y

Þ
2���

xy
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2x
2y

p Rtot: (4)

Here 	 is the interaction cross section, N2 the intensity of
bunch 2, I0 a modified Bessel function, ð
2x; 
2yÞ are the

geometric rms emittances of bunch 2, and Rtot is the global
luminosity reduction factor, which takes into account the
hourglass effect and a crossing angle 2�. Writing the
longitudinal distributions of the two bunches, normalized
to unity, as �ziðziÞ, with zi being the distance to the center
of bunch i and i ¼ 1; 2, the reduction factor is given by

Rtot ¼
Z

exp

�
� 2��

xysin
2�

ð
1x þ 
2xÞð1þ 2��
xy

2½1þcosð2�Þ�
ðz1þz2Þ2 Þ

�

� �z1ðz1Þ�z2ðz2Þ
1þ ðz1þz2Þ2

4��
xy

2cos2�

dz1dz2: (5)

When collisions occur at several IPs, P1 is summed up
over all of them (only the factor Rtot=�

�
xy varies).

Furthermore, P1 has to be scaled to account for the smaller
number of macroparticles and the shorter time scale in the
simulation.

If the transverse action in bunch 1 is assumed to be
distributed as �1u ¼ expð�Ju=
1uÞ=
1u for u ¼ x; y,
equivalent to a Gaussian distribution in u1 and pu1, we
calculate the luminosity as

L ¼ kbfrevN1

Z
�1x�1y

P1

	
dJxdJy

¼ kbfrevN1N2

2���
xy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
1x þ 
2xÞð
1y þ 
2yÞ

q Rtot; (6)

where kb is the number of bunches circulating at frequency
frev in each ring. Equation (6) agrees with standard for-
mulas [19].

B. Interaction cross section

To calculate P1 we need the total cross section 	 for
interactions in which colliding particles are lost from the
beam. Apart from inelastic hadronic interactions, bound-
free pair production (BFPP) and electromagnetic dissocia-
tion (EMD) have to be taken into account. These electro-
magnetic processes create particles with a charge-to-
mass ratio different from the main beam, which eventually
leads to particle loss. Detailed discussions of these loss

mechanisms in heavy-ion colliders can be found in
Refs. [2,5,6,23–25].
Cross sections were calculated for BFPP in Ref. [26] and

for EMD in Ref. [27]. We have taken standard values for
the inelastic cross sections as used by the RHIC and LHC
experiments [2,28–30]. In Table III we summarize the
cross sections of the different processes that were used in
the simulation. As can be seen, the majority of the lumi-
nosity is used up by BFPP and EMD rather than the
inelastic interactions, which are the usual object of study
of the experiments.

C. Intrabeam scattering

The standard formalisms for describing IBS [31–36]
assume Gaussian profiles. To simulate RHIC, where the
longitudinal distributions are known to be non-Gaussian,
an IBS model has to go beyond this assumption. Such a
model has been implemented in Refs. [11,13], which we
summarize here for completeness. It assumes that the
longitudinal and transverse degrees of freedom are inde-
pendent and that the transverse distributions remain
Gaussian.
For simplicity and speed, the IBS routine starts from the

Piwinski model [31]. Our code gives the user the choice
between a smooth lattice approximation, resulting in fast
execution, or a slower but more precise calculation taking
the full lattice into account. In this case, the optical func-
tions are read in from an external table created by MAD-X.
Furthermore, the IBS rise times can be calculated with the
term 
2=�u (
 being the dispersion and �u the optical
lattice function) replaced byH ¼ ½
2 þ ð�u


0 � 1
2�

0
u
Þ�

as proposed in Ref. [35]. Here primed quantities represent
derivatives with respect to the path length s. We call this
model the modified Piwinski method and the model pre-
sented in Ref. [31] the original Piwinski method. We
define the rise times TIBS;u; u ¼ x; y; z by

d
u
dt

¼ 
u
TIBS;u

: (7)

The rise times are calculated for Gaussian distributions but
are then modulated for every particle by the local beam
density to account for arbitrary longitudinal profiles. Thus,
particles are given normally distributed momentum kicks

TABLE III. Interaction cross sections 	 in RHIC and LHC for
different processes removing ions from the beam. Values are
taken from Refs. [2,26,27,29]. The EMD cross sections include
all decay channels.

Process 	 in RHIC (barn) 	 in LHC (barn)

BFPP 117 281

EMD 99 226

Inelastic 7 8

Total 223 515
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�pu in each plane on every simulation turn:

�pu ¼ r	pu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T�1

IBS;uTrev	t

ffiffiffiffi
�

p
�tðtÞ

q
: (8)

Here r is a Gaussian random number with zero mean and
unit standard deviation, Trev the revolution time, 	t the
standard deviation of t, and 	pu the standard deviation of

the momentum pu in plane u. It can be shown that, if the
longitudinal distribution �t, normalized to unity, is
Gaussian, integrating over all particles yields exactly the
growth given by Eq. (7). The strength of the IBS kicks is
also scaled up by the time ratio of the simulation.

The rise times at the beginning of a store, calculated with
the different IBS models in the tracking code and parame-
ters in Table I, are shown in Table IV. We show also results
from MAD-X, as discussed in Sec. IV and, for comparison,
the rise times calculated using the Bjorken-Mtingwa
method [32] (with the Coulomb logarithm calculated by
MAD-X). As can be seen, IBS is strong in RHIC and at

injection energy in the LHC.
For the cases studied here, the Piwinski models taking

the lattice into account agree well with the Bjorken-
Mtingwa method, which is considered more general [35].
The smooth lattice approximation, with the average �
function calculated from the tune, gives significantly
shorter rise times, thus overestimating the strength of
IBS. The average difference between the modified
Piwinski method, taking the lattice into account, and the
Bjorken-Mtingwa method is 2.9% and the maximum dif-
ference 5.1%. Despite some known deficiencies in MAD-X

[37], the code agrees well with the other methods for the
cases studied here.

Because of the better agreement with the other more
general methods, we use the modified Piwinski method for
all simulations unless otherwise stated. We take the found
discrepancies as a guide to the maximum uncertainty of the
rise times used in the simulation. The influence of the
uncertainty of the IBS model on the time evolution of the
luminosity and bunch population is very small compared to
other error sources. A comparison between two of the
models is shown in Appendix B.

D. Radiation damping

Radiation damping and quantum excitation are modeled
in each plane u by a deterministic decay, given by the
emittance damping time Trad;u, and a random excitation,

as described in Ref. [38]. Since Trad;u � Trev, we expand to

first order in Trev=Trad;u, so that the decay coefficient for

one turn becomes expð�Trev=Trad;uÞ � 1� Trev=Trad;u.

The quantum excitation is determined by the usual radia-
tion integrals over the lattice [21] and would lead, in the
absence of other dissipative effects, to stationary Gaussian
distributions with rms sizes 	eq;u. The corresponding one-

turn map for the momentum coordinate pt is therefore

pt ! ptð1� Trev=Trad;zÞ þ 	eq;zr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hr2iTrev=Trad;z

q
; (9)

where r is a unit, zero-mean random number. Similar maps
are used in the transverse planes.
In both RHIC and LHC, the photons emitted by heavy

nuclei are very soft [2] so the 	eq;u are several orders of

magnitudes smaller than the real beam and quantum exci-
tation has no significant effect on the dynamics. In RHIC,
radiation damping is also negligible but it is important,
enough to counter IBS, in the LHC at collision energy
[2,6]. The damping times are summarized in Table V.

E. Starting distribution

It is important to choose an appropriate, realistic, start-
ing distribution of the particles in the tracking; otherwise
agreement between measurement and simulation is poor.
In the transverse plane, the beams are well approximated
by Gaussian distributions, both in RHIC and (it is ex-
pected) LHC, and the initial coordinates are generated by
the code from the starting emittances. The data from the
RHIC stores does not in fact include the measured trans-
verse beam sizes so these have been inferred from the
logged initial bunch populations and luminosity using

TABLE V. Calculated radiation damping times for the emit-
tances in RHIC and LHC. The damping is equal in the transverse
planes.

RHIC collision LHC collision LHC injection

Trad;z (h) 825 6.3 23749

Trad;xy (h) 1650 12.6 47498

TABLE IV. IBS rise times for the emittances in RHIC and
LHC, calculated using the original Piwinski model in smooth
lattice approximation (Piw. sm.), original Piwinski taking the
lattice into account (Piw. latt.), and the modified Piwinski
method including the lattice (mod. Piw.). The calculations for
RHIC are done for Gaussian bunches—these values are modu-
lated for each particle by the local density in the tracking code.
Results from the Bjorken-Mtingwa (B-M) method and MAD-X,
used in Sec. IV, are also shown.

RHIC

collision

LHC

collision

LHC

injection

TIBS;x, mod. Piw. (h) 1.86 13.8 6.15

TIBS;x, Piw. latt. (h) 2.05 14.8 6.62

TIBS;x, Piw. sm. (h) 1.67 10.3 4.42

TIBS;x, MAD-X (h) 2.06 13.2 6.77

TIBS;x, B-M (h) 1.88 14.1 5.98

TIBS;z, mod. Piw. (h) 1.96 8.26 2.84

TIBS;z, Piw. latt. (h) 1.93 8.14 2.82

TIBS;z, Piw. sm. (h) 1.50 7.52 2.50

TIBS;z, MAD-X (h) 2.03 7.89 3.03

TIBS;z, B-M (h) 1.99 7.84 2.78
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Eq. (6). A strong coupling between the horizontal and
vertical planes, keeping the beams round on a short time
scale, was assumed. This has been observed empirically in
RHIC [11], while for the future ion operation in the LHC
this corresponds to the somewhat idealized situation de-
scribed by Ref. [39]. We also assumed equal transverse
beam sizes in every bunch of the two beams. Despite not
being justified by measurements, this reduces the dimen-
sionality of the problem to a tractable level; there is, in any
case, insufficient data to attempt a fit to the small variations
in intensity and size of individual bunches. Indeed we have
found that, if different beam sizes are used in the simula-
tion, the luminosity remains approximately unchanged
while the bunch currents show small variations.

In the LHC, the bunch length is much shorter than the rf
bucket size and an approximation of a Gaussian distribu-
tion was used. This is not the case in RHIC, as can be seen

in Fig. 4, where an example of the bunch current measured
at RHIC when the beams were put into collision is shown.
To understand the bunch shape, we discuss briefly the
synchrotron motion in RHIC.
RHIC uses a double rf system (see Table I) and the

longitudinal emittance is comparable to the bucket size
of the h ¼ 2520 system. The combined rf voltage from
both systems is shown in Fig. 5. We show also its negative
time integral, which is proportional to the ‘‘potential en-
ergy’’ term in the Hamiltonian of the synchrotron motion.
One can thus picture the particles ‘‘sliding’’ on this surface.
As a particle in the central bucket continuously receives
small momentum kicks from IBS, it oscillates with higher
amplitudes until it has enough energy to enter the next h ¼
2520 bucket. When it has a high enough amplitude to leave
the h ¼ 360 bucket, defining the acceptance, the motion
becomes unbounded and it is considered lost by the simu-
lation. This loss process is called debunching and is very
strong in RHIC. For this reason, very significant improve-
ments of the lifetimes and integrated luminosity were
possible through the implementation of stochastic cooling
[11–13].
The profile in Fig. 4 results from the rf gymnastics

performed after the energy ramp, when the storage rf
system is turned on. To make the bunches fit in the h ¼
2520 buckets, they are shortened through a rotation in the
longitudinal phase space, but it is inevitable that some
particles escape into neighboring buckets [40].
To reproduce the profile in Fig. 4 and keep the phase

space consistent with the rf motion, we used as starting
conditions coordinates generated by tracking an initially
Gaussian bunch, located only in the central h ¼ 2520
bucket, under the influence of IBS only. In Fig. 6 we
show the longitudinal phase space from this simulation
on different turns. Only particles with an amplitude high
enough to pass from the central h ¼ 2520 bucket are
present in the neighboring buckets. Therefore, the centers
of these buckets are empty in phase space. This gives a
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time profile similar to the expected result of the bunch
shortening (see Ref. [40]).
Figure 4 shows the resulting bunch current for the popu-

lation that was used as starting distribution in the RHIC
simulations. It corresponds well to the measured profile
except around t ¼ �5 ns, at the centers of the first side
buckets (see Fig. 5). The discrepancy means that, in the
measurement, the phase space distribution is less hollow
than in Fig. 6.
Even though it would be possible to recreate the mea-

sured time profile exactly, this ad hoc construction would
depend on an arbitrary choice of the energy deviations of
the extra particles in the side buckets. We prefer to keep the
starting conditions as simple as possible in order to test the
predictive power of the code for a large number of different
conditions and therefore use the profile shown in Fig. 4.
In Fig. 7 we show an example of the simulated losses

caused by IBS and collisions in RHIC. Simulations show
that if no particles are present in the outer h ¼ 2520
buckets in the starting population, losses from debunching
do not occur from the beginning of the store. With such a
longitudinal starting distribution, the initial slope of NiðtÞ
is less steep and the agreement with measurements is
significantly worse.
It should be noted that the assumptions discussed in this

section fully determine all free parameters in the
simulation.

IV. ODE SIMULATION

As an alternative to the relatively slow tracking simula-
tion we compare it with a faster method, which does not
follow single particles but the RMS emittances. This is
done by solving numerically a system of coupled ODEs,
similar to Refs. [6,9,41]. In all cases treated here, we
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FIG. 6. (Color) A simulated bunch under influence of IBS only
in longitudinal phase space at different times. Each point repre-
sents one particle out of 50 000. The center of the bunch is
located in the central bucket at t ¼ 0. The longitudinal momen-
tum is defined as pt ¼ �� �0, where �0 is the Lorentz factor of
the synchronous particle. The figure shows an idealized situ-
ation, where all particles start in the central bucket (reality is
different because of the rf gymnastics). The distribution at
67 min was used as starting conditions in the longitudinal plane
for the full tracking, due to its similarity with the measured
bunch profile in Fig. 4. For speed, the smooth lattice approxi-
mation was used.
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assume no coherent oscillations of the bunches so that the
first-order moments vanish. Then we assume both beams to
be Gaussian in all degrees of freedom, which obviously is
not true for the longitudinal plane in RHIC, but is expected
to hold in the LHC. Solutions for RHIC are presented in
Sec. V anyway for comparison.

We assume round beams (
xi ¼ 
yi 	 
xyi for beams

i ¼ 1; 2) due to a strong coupling between the horizontal
and vertical planes, as discussed in Sec. III E. As in the
tracking simulation, we take only collisions, intrabeam
scattering, and radiation damping into account. In total
we have six dynamical variables: 
xyi, 
li, Ni, where 
li
is the longitudinal emittance. The time evolution of the
system is given by

d
xyi
dt

¼ 
xyi
TIBS;xyðNi; 
xyi; 
liÞ �


xyi
Trad;xy

þ 
xyi
TcollðNi; 
xyi; 
liÞ

d
li
dt

¼ 
li
TIBS;lðNi; 
xyi; 
liÞ �


li
Trad;z

dNi

dt
¼ � Ni

TIBS;NðNi; 
xyi; 
liÞ �
Ni

TLðNi; 
xyi; 
liÞ :

(10)

Here TIBS;xy; TIBS;l are the instantaneous IBS rise times,

and TIBS;N; TL the instantaneous lifetimes from debunch-

ing and collisions. Furthermore, Tcoll is the emittance rise
time caused by core depletion in the collisions [42]. If the
transverse distribution is Gaussian, the collision probabil-
ity is much higher for the particles in the core of the beam.
When these particles are removed, the remaining ones
therefore have a larger transverse emittance. Core deple-
tion is included automatically in the tracking through the
calculation of individual collision probabilities for every
particle but has to be added explicitly in the ODE system.
The core depletion effect is discussed in detail in Ref. [42].

By adding additional terms to the equations, e.g., as was
done for beam-gas scattering in Ref. [6], the method can
easily be expanded to account for other effects leading to
particle loss or emittance growth.

To solve the system numerically or, in certain special
cases, analytically we use MATHEMATICA [43]. Our imple-
mentation allows the kinetics of unequal beam intensities
and emittances to be treated although we shall restrict
ourselves to equal beams in this paper. When using the
method of precalculated and interpolated values of TIBS;l

and TIBS;xy, as explained below, the gain in execution speed

when simulating the time evolution in a store is more than a
factor 1000 compared with the tracking. A 10 h store takes
on the order of a second to solve on a normal desktop
computer.

For convenience, we used MAD-X to calculate TIBS;l and

TIBS;xy. The theoretical framework [44] is an extended

version of the Conte-Martini model [33], which includes
also vertical dispersion. Gaussian beam distributions are
assumed in all planes. The influence of the IBS model on
the simulation result is discussed in Appendix B, where we

make a comparison between MAD-X and the modified
Piwinski model. The evaluation of TIBS;l and TIBS;xy for

just one set of values NiðtÞ, 
xyiðtÞ, 
liðtÞ requires a signifi-
cant amount of computer time, so it is impractical to do this
at runtime.
We therefore use precalculated values of the rise times

evaluated on a grid of points in the relevant region of
ð
xy; 
lÞ. Since TIBS / N�1

i , it is only necessary to evaluate

the rise times for one typical value of Ni and then scale.
The result is a smooth surface, which can be interpolated
with cubic polynomials in the two emittances. This initial
step, which has to be done for each optical configuration
and beam energy under consideration, takes less than an
hour of computer time on a normal desktop machine. In the
MATHEMATICA framework, TIBS;xy and TIBS;l are replaced

by rapidly evaluated interpolating functions with no loss of
precision. This is the key step that allows a fast interactive
analysis of many cases of interest. Since we assume round
beams, we use T�1

IBS;xy ¼ ðT�1
IBS;x þ T�1

IBS;yÞ=2 (above transi-

tion in a flat accelerator lattice the uncoupled IBS calcu-
lation gives a large positive growth rate in the horizontal
plane and a small damping rate in the vertical). The calcu-
lated rise times from MAD-X for the initial distributions are
shown in Table IV.
The debunching effect is in principle similar to

Touschek scattering, with the difference that in the stan-
dard formulas for the Touschek effect [45] all scattering
events leading to a loss are assumed to occur with large
momentum transfers in the center of the bucket. The
debunching losses are however diffusive in nature, since
most of the lost particles were already very close to the
separatrix before the scattering. To model this we use a
method developed by Piwinski [46], as follows.
If we assume that the beam distributions change slowly,

we can approximate them as being in a steady state during
the time step in the numerical integration. The instanta-
neous lifetime arising when the longitudinal aperture cuts
the tails of the Gaussian distribution is then, in analogy
with Ref. [46], given by

1

TIBS;N
¼ �2

max

2TIBS;lðNi; 
xyi; 
liÞ	2
�

exp

�
��2

max

2	2
�

�
: (11)

Here �max is the maximum allowed fractional energy de-
viation �E=E0 (E0 is the reference energy) and

	2
� ¼ 
li�S

�
cE0

(12)

is the standard deviation of �E=E0, with �S being the
angular synchrotron frequency and 
c the frequency slip
factor. Equation (12) is derived for small oscillations,
which limits the accuracy of the model. It should be noted
that a similar effect exists in the transverse planes due to
the cutoff of the physical and dynamic aperture. In the ideal
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case considered here, without significant impact of reso-
nances and nonlinearities, this effect is negligible.

We determine the instantaneous partial lifetime due to
the collisions, TL, from the total number of particles
removed from each beam per time:

1

TL
¼ � 1

Ni

dNi

dt
¼ L	

Ni

: (13)

Here L is given by Eq. (6) and 	 by Table III. The
reduction factor is calculated from Eq. (5) assuming
Gaussian distributions in the longitudinal plane.

Finally, the emittance rise time Tcoll for beam i due to
core depletion has been calculated to be [42]

1

Tcoll

¼
ffiffiffiffiffiffiffiffi

xyi

p
NjfrevnIPRtot	

4
ffiffiffi
2

p
���

xyð
xyi þ 
xyjÞ3=2
: (14)

Here i ¼ 1; 2 and j ¼ 2 for i ¼ 1 and vice versa.

V. COMPARISON BETWEEN SIMULATIONS AND
MEASUREMENTS IN RHIC

As an example of the detailed time evolution in a store,
Fig. 8 shows the measured and simulated luminosity and
bunch populations for store 8908 (parameters are given in
Table VI). This store was above average in luminosity
performance but not exceptionally good. Results from
both simulation methods (tracking and ODEs) are shown.
A very good agreement is obtained with the tracking
method. Using ODEs, the agreement with data is signifi-
cantly worse. This is clearly because of the limitations in
the debunching model and the assumption of Gaussian
longitudinal profiles. In the remainder of this section, we
therefore focus on the tracking method only.

In order to have more statistics, we simulated, using the
tracking method, 139 stores without stochastic cooling
with varying bunch populations and luminosity from
RHIC run-7. We use the fits to the measurements,
Eqs. (1) and (2), for comparisons as they are rather accurate
during the first 3 hours. We used the same current, shown in
Fig. 4, for all stores, which introduces an error, but allows
us to better test the predictive ability of the code.

To measure the goodness of the tracking simulation, we
use two benchmark parameters, � and c , defined as the
average instantaneous ratio or ratio of the integrals be-
tween a simulated and measured quantity U over the first
three hours:

� ¼ 1

3 h

Z t¼3 h

t¼0 h

UsimðtÞ
UfitðtÞ dt c ¼

R
t¼3 h
t¼0 h UsimðtÞdtR
t¼3 h
t¼0 h UfitðtÞdt

:

(15)

HereU is one of the quantitiesL,N1,N2. Some histograms
of � and c for 139 stores are shown in Fig. 9. We have
deselected nine stores, where the automatically calculated
fit parameters were unrealistic or the beam current or
luminosity dropped too rapidly to possibly be accounted

for by collisions and IBS. The mean values and standard
deviations of � and c are shown in Table VII. An excellent
agreement is found for the bunch population, while the
integrated luminosity is on average overestimated by 13%.
Given the realities of practical machine operation, we still
consider this as a good agreement.
Several possible sources of the discrepancies between

measured and simulated luminosity exist. Apart from the
uncertainty resulting from the approximations in the simu-
lation model, and the use of the same longitudinal initial
conditions in all stores, variations of the machine optics, in
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particular ��
xy, between different stores could give rise to

errors. The logged data show that in some stores, the
luminosity varies between the IPs at STAR and PHENIX,
although they have nominally the same ��

xy.

The interaction cross sections have uncertainties of the
order of a few 10%. Decreasing 	 to 180 barn in the
simulation changes the luminosity by 4% after 3 h. The
cross section for mutual EMD, which was used to convert
event rate to measured luminosity, has an uncertainty of not
less than about 5% [15]. The uncertainties in cross sections
could therefore explain a significant part of the overesti-
mation of the luminosity in the simulation.
Calculating IBS rise times in the smooth lattice approxi-

mation, which we consider to be a less accurate model that
in this case overestimates the influence of IBS, improves
agreement with the measured luminosity (c ¼ 1:10) while
keeping the excellent agreement with the measured inten-
sities (� � 1). This need not mean that the used IBS rise
times calculated with the more detailed models are too low.
It could also be that some other process, not included in the
simulation, causes additional beam losses. Such unac-
counted processes include orbit variations, nonlinearities,
rf noise, ground motion, triplet quadrupole errors, current
noise, and the effect of dynamic aperture. These processes
cannot easily be included in the simulation, since their
strengths are not well known.

VI. PREDICTIONS FOR THE LHC

As the overall agreement with data from RHIC is very
good, we use the tracking code to make predictions for the
LHC, both at injection and collision energy. Run parame-
ters are presented in Table I. There are important differ-
ences with respect to RHIC. The LHC uses a single rf
system and bunches are expected to have a Gaussian
distribution in the longitudinal plane, meaning that the
ODE method also has the potential to work well.
In Fig. 10 we show simulations of the time evolution at

the injection plateau, where bunches are kept circulating
without colliding while the ring is filled. This is expected to
take about 10 min per ring but, to cover cases where there
may be some delay in starting the ramp, we have simulated
1 h. IBS rise times are longer than in RHIC, especially in
the transverse plane (see Table IV). The transverse emit-
tance is expected to be 2% larger after 20 min and 7%
larger after 1 h. The simulated bunch current is 1.4% lower
after 20 min and 5.2% after 1 h because of debunching
losses. The profile stays approximately Gaussian.
Simulations of the time evolution at collision energy

using ODEs were done in Ref. [6]. Here we redo the

TABLE VII. The mean h�i and the standard deviation 	� of
the ratio between simulated and measured quantity over 139
stores in run-7 without stochastic cooling in RHIC.

Quantity h�i 	� hc i 	c

L 1.16 0.056 1.13 0.044

N1 1.02 0.032 1.02 0.029

N2 1.01 0.033 1.01 0.031

TABLE VI. Starting parameters for the example store called
8908. The transverse starting emittance was not measured, but
inferred from the measured luminosity, bunch populations, and
hourglass factor using Eq. (A9). It was assumed to be equal for
both beams and planes.

Parameter Unit Value

N1 (Blue) 109 particles 1.056

N2 (Yellow) 109 particles 1.004

L 1027 cm�2 s�1 3.0

Transverse geometric rms emittance mmmrad 2.34

FWHM of bunch length ns 2.6
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FIG. 9. (Color) Comparison of tracking simulation and measure-
ment of integrated luminosity (top), instantaneous Blue (middle),
and Yellow (bottom) bunch intensity for 139 stores in RHIC
without stochastic cooling. The parameters � and c are defined
by Eq. (15).
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calculations, including also core depletion, and compare
with tracking for 1–3 active IPs (the three experiments
ALICE, ATLAS, and CMS are expected to study heavy-
ion collisions). The results are presented in Fig. 11. At
collision energy the dynamics in the LHC changes signifi-
cantly, since radiation damping (see Table V) becomes
important and compensates the emittance blowup from
IBS. As particles are removed from the beams by colli-
sions, IBS becomes weaker while damping stays constant.
Therefore, the emittance shrinks during the store. The
agreement between the simulation methods is excellent.
Losses from debunching are predicted to be negligible in
the conditions simulated for the LHC. Beam losses from
collisions are by far the dominant effect.

VII. CONCLUSIONS AND OUTLOOK

We have presented measurements of the time evolution
of the luminosity and bunch intensities in both beams
during RHIC run-7 and compared with two simulation

methods: tracking and ODEs. Tracking simulations of
139 stores without stochastic cooling show that the pa-
rameter �, defined as the average ratio between a simulated
and measured quantity, is close to 1 with a standard devia-
tion of only 3% for the bunch populations. An average
overestimate of the measured integrated luminosity by
around 13% was found. Possible sources of the discrep-
ancies include the use of the same longitudinal starting
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tracking.
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profile in all stores, variations in ��
xy, the cross section for

two-neutron electromagnetic dissociation (used to convert
the measured luminosity), and the neglection of certain
factors including rf noise and dynamic aperture.

The ODE simulations show significant discrepancies
with measurements in RHIC, which come from the
Gaussian approximation of the longitudinal bunch profile
and the limitations in the debunching model. Including
non-Gaussian profiles in this method is not possible in
the present framework.

We have also made predictions of the time evolution in
the LHC, where Gaussian bunches are expected and the
two simulation methods are in very good agreement. In this
case, the ODE method increases the execution speed by a
factor 1000. The dynamics in the LHC is however signifi-
cantly different, since radiation damping is a stronger
effect than IBS. This gives rise to a shrinking emittance
at collision energy (although this benefit will vanish rap-
idly if the LHC is operated at less than full energy).
Therefore, debunching is not an issue in the LHC and the
collisions are the main source of particle losses.

Both simulation methods are suitable as testing tools to
optimize the luminosity. If stochastic cooling were to be
included, the tracking could be used to make precise
predictions of the improvement in luminosity due to sto-
chastic cooling in one or both beams in RHIC.
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APPENDIX A: COLLISION PROBABILITY

To derive the phase-averaged collision probability P1 in
Eq. (4), we consider the movement of a particle in bunch 1
through bunch 2 at an IP, using the coordinate systems
defined in Fig. 12 and consider first the case with zero
crossing angle. The two bunches move with opposite ve-
locities v so their centers have s ¼ �v�. Both centers are
at s ¼ 0 at the IP at time � ¼ 0. We write the density of
bunch i, normalized to one, as �iðx; y; ziÞ. The total number
of reactions Lsc per interaction cross section 	 during a
single bunch crossing is [47]

Lsc ¼ MN1N2

Z
�1ðx; y; s� v�Þ

� �2ðx; y; sþ v�Þdxdydsd�; (A1)

where M is a kinematic factor defined as

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~v1 � ~v2Þ2 � ð ~v1 � ~v2Þ2=c2

q
: (A2)

With zero crossing angle and bunch velocities j ~v1j ¼
j ~v2j ¼ v, we have M ¼ 2v.

To obtain P1, we define a distribution function �p1 for a

single particle in bunch 1 using the Dirac � function. Since
zero transverse magnetic field is assumed at the IP, a
particle in bunch 1 with spatial coordinates ðx1; y1; z1Þ in
the bunch and transverse angles ðx01; y01Þ follows a straight
line so

�p1ðx; y; s� v�Þ ¼ �ðs� v�� z1Þ�ðx� ½x1 þ x01s�Þ
� �ðy� ½y1 þ y01s�Þ: (A3)

In the most general collision routine in the tracking
code, �2 is determined by sorting the particles in bunch 2
in discrete bins along the directions ðx; y; z2Þ. We assume
that the transverse distributions at s ¼ � ¼ 0 are indepen-
dent, writing them as ��

2xðxÞ��
2yðyÞ, and that the longitudi-

nal density �2z is independent of x and y. The transverse
binnings are performed at s ¼ � ¼ 0.
However, we must take into account that the transverse

distributions change along s with the optical function
�xyðsÞ, which we assume to be equal in both planes in

the proximity of the IP. In the drift section around the IP
�xyðsÞ ¼ ��

xyð1þ s2=��2
xyÞ, where ��

xy is the presumed

minimum at the IP. At a given s close to the IP, the
transverse distributions are wider by a factor that we call
�ðsÞ, defined as
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FIG. 12. (Color) Schematic view of the collision between two
bunches at an IP, showing the three coordinate systems used: the
s axis is fixed in the laboratory frame and with s ¼ 0 at the IP,
while the z1 and z2 axes move with the origin fixed in the center
of the two bunches. The bunch movement is indicated by the red
arrows. The transverse coordinates of all systems coincide, since
zero crossing angle is assumed. All distances are measured in the
laboratory frame.
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�ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�xyðsÞ
��

xy

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

��2
xy

vuut : (A4)

Inserting �p1 in Eq. (A1), multiplying by 	, and inte-

grating, gives P1 for a particle with given coordinates
ðx1; x01; y1; y01; z1Þ:

P1 ¼ 2	N2

Z ��
2xðx1þx0

1
s

�ðsÞ Þ
�ðsÞ

��
2yðy1þy0

1
s

�ðsÞ Þ
�ðsÞ �2zð2s� z1Þds:

(A5)

In the code, the integral in Eq. (A5) is replaced by a sum
over all bins that a specific particle passes through.

This method is however slow. A faster code is obtained
by assuming Gaussian distributions in x and y. Equation
(A5) then becomes

P1 ¼ 2	N2

Z expð� ðx1þx0
1
sÞ2

2
2x�
�
xy�

2ðsÞ �
ðy1þy0

1
sÞ2

2
2y�
�
xy�

2ðsÞÞ
2���

xy�
2ðsÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi


2x
2y
p �2zð2s� z1Þds:

(A6)

Here the standard deviation of coordinate u in bunch 2 at

s ¼ 0 is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

xy
2u
q

. We then change to action-angle

variables ðJx; �xÞ using Eq. (3) and average P1 over �x.
The x1-dependent exponential in Eq. (A6) becomes
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0
exp
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� ffiffiffiffiffiffiffiffi
��
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��
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�
: (A7)

With a similar phase averaging over �y, Eq. (A6) gives

P1 ¼ 	N2

expð� Jx
2
2x

� Jy
2
2y

ÞI0ð Jx
2
2x

ÞI0ð Jy
2
2y

Þ
2���

xy
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2x
2y

p

�
Z 2�2zð2s� z1Þ

1þ s2

��
xy

2

ds: (A8)

Equation (A8) is the exact phase-averaged collision proba-
bility for a particle in bunch 1 with coordinates ðJx; Jy; z1Þ.
We note that the integral represents the hourglass factor for
a particle at a given z1.

Furthermore we approximate the hourglass factor to be
equal for all particles, by averaging over all z1 values.
Changing integration variable from s to z2 for ease of
implementation, the global hourglass factor Rh is

Rh ¼
Z �z1ðz1Þ�z2ðz2Þ

1þ ðz1þz2Þ2
4��2

xy

dz1dz2: (A9)

It can be shown that, if �zu are Gaussian, Eq. (A9) is
equivalent to the well-known formulas in Ref. [48].

With this approximation, P1 becomes

P1 � 	N2

expð� Jx
2
2x

� Jy
2
2y

ÞI0ð Jx
2
2x

ÞI0ð Jy
2
2y

Þ
2���

xy
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2x
2y

p Rh: (A10)

Simulations show that the errors introduced for single
particles by using a global Rh are insignificant when con-
sidering the whole bunch. For the cases considered in this
article, only negligible changes in the simulated time evo-
lution of the luminosity and bunch intensity appear if
Eq. (A10) is used instead of Eq. (A5), while the execution
time drops by a factor 15. Therefore, we only use the faster
method for the results in this article.
If the bunches collide with a small crossing angle 2�, we

replace Rh by a more general luminosity reduction factor
Rtot, which accounts for both the crossing angle and the
hourglass effect. Such a factor is derived in Ref. [49] for
equal Gaussian beams by integration of Eq. (A1). Our
calculation is completely analogous, with the generaliza-
tion that we assume unequal transverse beam sizes and
unknown longitudinal distributions. The integrations over
ðy; �Þ can be carried out directly yielding Eq. (6), with Rtot

given by Eq. (5).

APPENDIX B: COMPARISON OF IBS MODELS

The simulation results are relatively insensitive to the
IBS model. As an illustration, we have calculated the time
evolution of the quantities of interest for the LHC collision
scheme using the modified Piwinski method for IBS in the
ODEs, instead of MAD-X. Three experiments were assumed
active.
In Fig. 13, we show the ratio Um=Up, where U is the

luminosity, bunch population, or transverse emittance. The
subscript m indicates that MAD-X was used for IBS calcu-
lations, while p stands for the modified Piwinski model.
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FIG. 13. (Color) The ratio of the quantities calculated using
MAD-X for IBS to the ones where the modified Piwinski model

was used. The time dependence was solved with the ODE
method assuming the LHC collision scheme (numerical parame-
ters are shown in Table I), with three experiments active.
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The emittance shows the largest deviations (around 1%
after 10 h), which is small compared to the overall error.
The IBS rise times as a function of transverse emittance are
shown for both models in Fig. 14.
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