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The field distribution in a coaxial electrostatic wiggler corresponds to the special solution of a Laplace

equation in a cylindrical coordinate system with a boundary value problem of sinusoidal ripples. This

paper is devoted to the physical and mathematical treatment for an analytical solution of the field

distribution in the coaxial electrostatic wiggler. The explicit expression of the solution indicates that the

field distribution in the coaxial electrostatic wiggler varies according to a periodic function in the

longitudinal direction, and is related to the first and second kinds of modified Bessel functions in

the radial direction, respectively. Comparison shows excellent agreement between the analytical formula

and the computer simulation technology (CST) results. The physical application of the considered system

and its analytical solution are discussed.
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I. INTRODUCTION

A free-electron laser (FEL) based on the three-wave
(incident wave, pump wave, and space-charge wave) in-
teraction mechanism in an electrostatic wiggler for a rela-
tivistic electron beam to generate millimeter waves was
first suggested by Bekefi and Shefer [1,2]. Then it was
verified by in-principle experiments [3,4], and further
studies were continued by several authors [5–11].
Typically, the electrostatic wiggler is a configuration with
the periodic electrostatic field distribution produced by the
ripple corrugations on the inside surface of the metallic
pipe connected with an electrostatic voltage [1,2]. Without
loss of generality, it can be represented by the structure
shown in Fig. 1, where the outside surface of the inner rod
with a radius rin is smooth and grounded and the inside
surface of the outer conductor is connected to a negative
voltage �V0 and sinusoidally corrugated with a mean
radius h, a ripple period p, and a ripple amplitude l.
Below, for the convenience of description, it will be re-
ferred to as the ‘‘coaxial electrostatic wiggler.’’

Compared to an electrostatic wiggler and an
electromagnetic-wave wiggler, the advantage of a mag-
netic wiggler is related to practical feasibility of large
magnetic field amplitudes. On the axis of a magnetic
wiggler, as a matter of fact, the force acted by the magnetic
wiggler field on an electron is evzB � ecB (e, vz, c, and B
being the electron’s charge and axial velocity, the light
speed in vacuum, and the amplitude of the magnetic wig-
gler, respectively), whereas the force produced by an elec-
trostatic wiggler is eE. Therefore, relationship of the
equivalence between the magnetic and electrostatic wig-
glers is E � cB; that is to say, the effect produced by a
magnetic wiggler with field amplitude of 1 T is equivalent
to that produced by an electrostatic wiggler with large field

amplitude of 3� 108 V=m. If an electromagnetic-wave
wiggler is a planar wave, its power flow per unit area on

cross section is s ¼ j ~E� ~Hj ¼ cB2=�0 � 2:387�
1014B2. In other words, the effect produced by a magnetic
wiggler with field amplitude of 1 T is equivalent to that
produced by an electromagnetic-wave wiggler with large
power flow of 2:387� 1014 W=m2. It is due to this advan-
tage that the magnetic wiggler is usually considered in FEL
technology. Compared to an electromagnetic-wave wiggler
and an electrostatic wiggler, however, a magnetic wiggler
has the disadvantage that its period is restricted within the
range of centimeters due to the state-of-art techniques,
whereas the period of the electrostatic wiggler and the
electromagnetic-wave wiggler can easily be extended
to the range of millimeters. Therefore, attention has also
been paid to the electrostatic and electromagnetic-wave
wigglers.

FIG. 1. Schematic diagram of a coaxial electrostatic wiggler,
which is performed by a coaxial structure: the outside surface of
the inner rod is smooth and grounded; the inside surface of the
outer conductor is connected to a negative voltage and corru-
gated with sinusoidal ripples.*sczhang@home.swjtu.edu.cn
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Recently, a two-dimensional dusty plasma crystal [12]
or a planar electrostatic system [13] was proposed as an
electrostatic wiggler for FEL. Excluding the space-charge
wave in the aforementioned three-wave interaction mecha-
nism, it is found that a planar electrostatic wiggler [13]
may be favorable for a mildly relativistic electron beam to
generate terahertz waves by extracting the kinetic energy
of the electrons [14]. Moreover, further study shows an
interesting phenomenon that a coaxial electrostatic wiggler
may pump both the kinetic energy and the electrostatic
potential energy of a relativistic electron beam interacting
with a transverse-electric wave, resulting in the wave am-
plification with ultrahigh gain [15].

Although the coaxial electrostatic wiggler was often
used before, to the best of my knowledge, so far its physi-
cal and mathematical issues have not been rigorously
treated. Since an explicit expression of the field distribu-
tion in a coaxial electrostatic wiggler is of significance in
analyzing a coaxial-electrostatic-wiggler FEL, this paper is
devoted to a rigorous treatment in mathematics and physics
for this topic. The present paper is organized as follows. In
Sec. II a theoretical model is described. The explicit ex-
pressions of the general solution and the special solution of
the field distribution are mathematically derived in
Secs. III and VI, respectively. Comparison between the
explicit formulas and the software computer simulation
technology (CST) [16] simulation results is given in
Sec. V. Finally, conclusions and discussion are presented
in Sec. VI.

II. PHYSICAL AND MATHEMATICAL MODEL

Adopting a cylindrical coordinate system ðr; ’; zÞ shown
in Fig. 2, one can write the boundary function of the inside
surface of the outer conductor as

rout ¼ h� l cosðkzÞ; (1)

where k ¼ 2�=p. Under the assumption that the transverse
dimension is much smaller than the length in the z direc-
tion, the electrostatic potential �ðr; zÞ in the physical sys-
tem leads to the boundary value problem of the two-
dimensional Laplace equation,

@2�ðr; zÞ
@r2

þ @2�ðr; zÞ
@z2

¼ 0; (2)

with the boundary conditions

�ðr; zÞjrin¼0 ¼ 0; (3)

�ðr; zÞjr¼h�l cosðkzÞ ¼ �V0; (4)

and the periodical condition

�ðr; zÞ ¼ �ðr; zþ pÞ: (5)

In the following process, we derive the general solution
by solving Eq. (2), and then determine the special solution
by making use the boundary conditions and the periodical
condition equations (3)–(5).

III. DERIVATION OF GENERAL SOLUTION

We employ the method of separation of variables by
letting

�ðr; zÞ ¼ RðrÞZðzÞ: (6)

Substituting it into (2), one can obtain two ordinary
differential equations:

1

r

d

dr

�
r
dR

dr

�
� �RðrÞ ¼ 0; (7)

d2ZðzÞ
dz2

þ �ZðzÞ ¼ 0; (8)

where � is the separation constant.
We deal with Eqs. (7) and (8) in the following three

aspects.
(i) The separation constant � is negative: � ¼ �q2 < 0

(q being a nonzero real number). In this situation the
solution of (8) is

ZðzÞ ¼ g1e
qz þ g2e

�qz; (9)

where g1 and g2 are the integral constants. To satisfy
the periodic condition (5), obviously, both g1 and g2
must be zero, which leads to a trivial solution and should
be abnegated.
(ii) The separation constant � is zero: � ¼ 0. Then, the

general solutions of (7) and (8) are as follows:

ZðzÞ ¼ a0
0zþ b0

0; (10)

RðrÞ ¼ c0
0 lnrþ c1

0; (11)

where a0
0, b00, c00, and c1

0 are the integral constants. In

order to satisfy the periodic condition (5), one must let
a0

0 ¼ 0. When � ¼ 0, therefore, the solution of the elec-

trostatic potential is

�0ðr; zÞ ¼ d1 lnrþ d0; (12)

p

l

h

0V =

0V V= −

inr r=outr r=

o Z

r

FIG. 2. Cylindrical coordinate system ðR;’; zÞ adopted in the
present paper.
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where d1 ¼ b0
0c0

0 and d0 ¼ b0
0c1

0 are the integral

constants.
(iii) The separation constant � is positive: � ¼ q2 > 0 (q

being a nonzero real number). In this case the solution
of (8) is

ZðzÞ ¼ a cosðqzÞ þ b sinðqzÞ; (13)

where a and b are the integral constants. Inserting (13) into
the periodic condition (5) yields

a cosðqzÞ þ b sinðqzÞ ¼ a cosðqzþ qpÞ
þ b sinðqzþ qpÞ; (14)

which leads to the eigenvalues

qp¼ 2n�; i:e:; q¼ 2�n

p
¼ kn; n¼ 1;2;3; . . . ; (15)

where n ¼ 0 which corresponds to q ¼ 0 and � ¼ 0 has
been excluded. Substituting � ¼ q2 > 0 into (7) results in

ðqrÞ2 d
2R

dr2
þ ðqrÞ dR

dr
� ðqrÞ2R ¼ 0: (16)

Letting

qr ¼ t (17)

and inserting it into (16) yields

t2
d2R

dt2
þ t

dR

dt
� ðt2 � 0ÞR ¼ 0: (18)

Equation (18) is the first kind of modified Bessel equa-
tion of zero order with respect to the variable t. It has the
following general solution:

RðrÞ ¼ c0½I0ðqrÞ þ � 0K0ðqrÞ�; (19)

where c0 and � 0 are the integral constants, I0 and K0 are the
first and second kind of modified Bessel functions of zero
order, respectively. Substituting the eigenvalues (15) into
(13) and (19), we obtain

ZnðzÞ¼an cosðnkzÞþbn sinðnkzÞ; n¼ 1;2;3; . . . (20)

RnðrÞ¼ cn½I0ðnkrÞþ�nK0ðnkrÞ�; n¼1;2;3; . . . : (21)

Inserting (20) and (21) into (6), we find

�nðrÞ ¼ cn½I0ðnkrÞþ �nK0ðnkrÞ�
� ½an cosðnkzÞþ bn sinðnkzÞ� ðn¼ 1;2;3; . . .Þ:

(22)

Superposing the solutions for both � ¼ 0 and for � ¼
q2 > 0, Eqs. (12) and (22), we obtain the general solution
of Eq. (2):

�ðr; zÞ ¼ d0 þ d1 lnrþ
X1
n¼1

cn½I0ðnkrÞ þ �nK0ðnkrÞ�

� ½an cosðnkzÞ þ bn sinðnkzÞ�: (23)

Compared to the ordinary structure without ripples,
obviously, the last term on the right-hand side of Eq. (23)
represents the effect of the ripples on the field distribution.

IV. DETERMINATION OF SPECIAL SOLUTION

Below, we determine the special solution by making use
of the boundary conditions. Inserting (23) into the inner
boundary condition (3) yields

d0 þ d1 lnrin þ
X1
n¼1

cn½I0ðnkrinÞ þ �nK0ðnkrinÞ�

� ½an cosðnkzÞ þ bn sinðnkzÞ� ¼ 0: (24)

Balancing both sides of this equation requires

d0 þ d1 lnrin ¼ 0 I0ðnkrinÞ þ �nK0ðnkrinÞ ¼ 0; (25)

which leads to

d0 ¼ �d1 lnrin (26)

and

�n ¼ � I0ðnkrinÞ
K0ðnkrinÞ : (27)

Consequently, (23) can be rewritten as

�ðr; zÞ ¼ d1 lnr� d1 lnrin þ
X1
n¼1

cn½I0ðnkrÞ þ �nK0ðnkrÞ�

� ½an cosðnkzÞ þ bn sinðnkzÞ�; (28)

where �n must be fixed by (27). Then, substituting (28) into
the outer boundary condition (4) results in

�V0 ¼ d1 lnrout � d1 lnrin þ
X1
n¼1

cn½I0ðnkroutÞ

þ �nK0ðnkroutÞ�½an cosðnkzÞ þ bn sinðnkzÞ�: (29)

Noting that rout ¼ h� l cosðkzÞ is a function of the
variable z, we rewrite the term d1 lnrout in (29) as

d1 lnrout ¼ d1 ln½h� l cosðkzÞ�

¼ d1 lnhþ d1 ln

�
1� l

h
cosðkzÞ

�
: (30)

Suppose h � l and rout � h so that we approximately
get

I0ðnkroutÞ þ �nK0ðnkroutÞ � I0ðnkhÞ þ �nK0ðnkhÞ: (31)

It will be shown in Sec. V that this approximation is
quite reasonable. Substituting (30) and (31) into (29) yields
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�V0 ¼ �d1 lnrin þ d1 lnhþ d1 ln

�
1� l

h
cosðkzÞ

�

þ X1
n¼1

cn½I0ðnkhÞ þ �nK0ðnkhÞ�½an cosðnkzÞ

þ bn sinðnkzÞ�; (32)

or

� V0 � d1 ln

�
1� l

h
cosðkzÞ

�

¼ ½�d1 lnrin þ d1 lnh� þ
X1
n¼1

cn½I0ðnkhÞ þ �nK0ðnkhÞ�

� ½an cosðnkzÞ þ bn sinðnkzÞ�: (33)

To balance both sides of this equation, one must let the
constant term and the functional term to z on the left-hand
side be equal to the ones on the right-hand side:

� V0 ¼ d1 ln
h

rin
; (34)

�d1 ln

�
1� l

h
cosðkzÞ

�
¼ X1

n¼1

cn½I0ðnkhÞ þ �nK0ðnkhÞ�

� ½an cosðnkzÞ þ bn sinðnkzÞ�:
(35)

Equation (34) determines the integral constant

d1 ¼ � V0

lnðh=rinÞ : (36)

In order to determine the other integral constants, we
make use of the series lnð1� uÞ ¼ �u� 1

2 u
2 � 1

3 u
3 �

1
4 u

4 � � � � and expand

ln

�
1� l

h
cosðkzÞ

�
¼ � l

h
cosðkzÞ � 1

2

�
l

h

�
2
cos2ðkzÞ

� 1

3

�
l

h

�
3
cos3ðkzÞ � � � � : (37)

Substituting (37) into (35) and balancing both sides, we
obtain

bn � 0; (38)

and

an ¼ 0; n ¼ 2; 3; 4; . . .

c1a1 ¼ �V0ðl=hÞ
½I0ðkhÞ þ �1K0ðkhÞ� lnðh=rinÞ ; n ¼ 1;

(39)

where

�1 ¼ � I0ðkrinÞ
K0ðkrinÞ : (40)

Finally, substituting (36), (38), and (39) into (28), we
obtain the special solution of the electrostatic potential:

�ðr; zÞ ¼ � V0

lnðh=rinÞ lnðr=rinÞ

� V0ðl=hÞ
½I0ðkhÞ þ �1K0ðkhÞ� lnðh=rinÞ

� ½I0ðkrÞ þ �1K0ðkrÞ� cosðkzÞ: (41)

V. COMPARISON OF ANALYTICAL SOLUTION
WITH NONLINEAR SIMULATIONS

One software often used in the electromagnetic compu-
tation is the CST [16], which is based on the nonlinear self-
consistent Maxwell’s equations together with the boundary
conditions. In this section we examine the special solution
by comparing with the results of the CST simulations.
By inserting (41) into the definition of electric field
~E ¼ �r�, the r-, ’-, and z-direction components of the
electric field can then be figured out:
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FIG. 3. Electric field components in the r direction (a) and the
z direction (b) versus the longitudinal position z at a location of
r ¼ 6:04 mm, where l ¼ 0:3 mm, h ¼ 8 mm, p ¼ 11:32 mm,
rin ¼ 5:6 mm, and V0 ¼ 100 V.

SHI-CHANG ZHANG Phys. Rev. ST Accel. Beams 13, 090701 (2010)

090701-4



Erðr; zÞ ¼ V0

lnðh=rinÞ
1

r
þ V0kðl=hÞ

½I0ðkhÞ þ �1K0ðkhÞ� lnðh=rinÞ
� ½I1ðkrÞ þ �1K1ðkrÞ� cosðkzÞ; (42)

Ezðr; zÞ ¼ � V0kðl=hÞ
½I0ðkhÞ þ �1K0ðkhÞ� lnðh=rinÞ ½I1ðkrÞ

þ �1K1ðkrÞ� sinðkzÞ; (43)

E’ðr; zÞ ¼ 0; (44)

where I1 and K1 are the first and second kind of modified
Bessel functions of order one, respectively. When
l ¼ 0 (i.e., no corrugated ripples), all the expressions
derived above go back to the well-known ones of a smooth
system:

Erðr;zÞ¼ V0

lnðh=rinÞ
1

r
; E’ðr;zÞ¼Ezðr;zÞ¼0: (45)

Physically speaking, therefore, expressions (42) and (43)
conclude the effect of the corrugated ripples on the electric
field.
Now we choose a typical set of parameters to compare

the analytical formulas with CST simulation results:
l ¼ 0:3 mm, h ¼ 8 mm, p ¼ 11:32 mm, rin ¼ 5:6 mm,
and V0 ¼ 100 V. Figures 3 and 4 provide comparison of
the calculation results of the radial and longitudinal com-
ponents of the electric field at location of r ¼ 6:04 mm and
7.52 mm, respectively, where the solid lines are obtained
from the analytical expressions (42) and (43) derived in the
present paper, and the dashed lines from the CST simula-
tions. The azimuthal component simulated by the CST is
zero, which exactly coincides with Eq. (44). We have noted
that, in Figs. 3(a) and 4(a), there is a small systematic shift
of the radial component calculated by the analytical for-
mula and by the CST simulations. The reason may be the
disappearance of the harmonic terms in Eq. (32) in the
derivation process from Eq. (37) to (40). Nevertheless,
excellent agreement between the analytical expressions
and the CST simulation can be found in Figs. 3 and 4.

VI. CONCLUSIONS AND DISCUSSION

A coaxial electrostatic wiggler leads to a two-
dimensional Laplace equation with a coaxial sinusoidal
boundary value problem. By using separation of variables,
both the general solution and the special solution have been
mathematically derived, which are the sine or cosine func-
tions with respect to the axial variable and are related to the
first and second kind of modified Bessel functions to the
radial variable, respectively. This distribution reflects the
effect of the sinusoidal-ripple boundary on the electric
field. Comparison has demonstrated excellent agreement
between the analytical formulas and the CST simulations.
Since the field distribution shown by (42)–(44) is similar

to those in a magnetic wiggler and a planar electrostatic
wiggler, a coaxial electrostatic wiggler could be expected
to modulate the motion of relativistic electrons, just as a
magnetic wiggler or a planar electrostatic wiggler does
[13,17,18]. Nonlinear study further confirms efficient am-
plification of an electromagnetic wave at a frequency of
120 GHz with an output power of 2.7 megawatt (MW) and
an ultrahigh gain of 74 dB, where the coaxial electrostatic
wiggler extracts both the kinetic energy and the electro-
static potential energy of the relativistic electron beam to
the wave [15].
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