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Integrable systems appeared in physics long ago at the onset of classical dynamics with examples being

Kepler’s and other famous problems. Unfortunately, the majority of nonlinear problems turned out to be

nonintegrable. In accelerator terms, any 2D nonlinear nonintegrable mapping produces chaotic motion

and a complex network of stable and unstable resonances. Nevertheless, in the proximity of an integrable

system the full volume of such a chaotic network is small. Thus, the integrable nonlinear motion in

accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to

mitigate the effects of space charge and magnetic field errors. To create such an accelerator lattice, one has

to find magnetic and electric field combinations leading to a stable integrable motion. This paper presents

families of lattices with one invariant where bounded motion can be easily created in large volumes of the

phase space. In addition, it presents three families of integrable nonlinear accelerator lattices, realizable

with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion,

which can be solved in terms of separable variables.

DOI: 10.1103/PhysRevSTAB.13.084002 PACS numbers: 05.45.�a, 02.30.Ik

I. INTRODUCTION

All present accelerators (and storage rings) are built
to have ‘‘linear’’ focusing optics (also called lattice).
The lattice design incorporates dipole magnets to bend
particle trajectory and quadrupoles to keep particles stable
around the reference orbit. These are ‘‘linear’’ elements
because the transverse force is proportional to the particle
displacement, x and y. Only a fraction of the accelerator
circumference is occupied by dipoles and quadrupoles,
thus the equations of motion (in the uncoupled case) are
written as

x00 þKxðsÞx¼0 y00 þKyðsÞy¼0 Kx;yðsþCÞ¼Kx;yðsÞ;
(1)

where Kx and Ky are piecewise constant functions of s

(the time-equivalent longitudinal coordinate), and C is the
accelerator circumference and the longitudinal motion is
negligible.

One can notice that these are two uncoupled Hill’s
equations. Such an equation was first solved by Ermakov
[1] who obtained its invariant, which in accelerator physics
is called the Courant-Snyder invariant [2]. This invariant
can be understood by introducing the so-called normalized
phase-space coordinates:

zN ¼ zffiffiffiffiffiffiffiffiffiffi
�ðsÞp ; pN ¼ p

ffiffiffiffiffiffiffiffiffiffi
�ðsÞ

q
� �0ðsÞz

2
ffiffiffiffiffiffiffiffiffiffi
�ðsÞp ; (2)

where z stands for either x or y, p is similarly either px or
py, and �ðsÞ is either the horizontal or vertical beta func-

tion [defined in Eq. (7)]. In these new normalized variables,

the initial time-dependent Hamiltonian associated with
Eqs. (1) becomes time independent,

H ¼ 1
2ðp2

N þ z2NÞ; (3)

and thus leads to two invariants, the horizontal and vertical
Hamiltonians. According to Eq. (3), in a linear lattice, all
particles execute harmonic oscillations around the refer-
ence orbit with a frequency, known as the betatron tune,
which is identical for all particles, regardless of their
amplitude. Linear lattices have been considered attractive,
in part because linear dynamics is easily understood.
However, several things make the perfect linear lattice

undesirable. First, linear motion is unstable to perturba-
tions in the focusing fields because of linear and nonlinear
resonances. Second, the lattice focusing strength depends
on the particle’s kinetic energy deviation from the design
beam energy. This effect is called chromaticity (or tune
dependence on beam energy). In a perfectly linear lattice
this undesirable effect could be quite large. The chroma-
ticity is routinely corrected by nonlinear focusing magnets,
called sextupoles (the force proportional to z2). Finally,
ring designers often add higher multipole nonlinear
elements to lattices. For example, a focusing element
called an octupole (� z3) is often added to increase the
betatron tune dependence on the particle amplitude in
order to achieve the so-called Landau damping by reducing
the number of resonant particles. All these nonlinear
(polynomial in x and y) elements have one thing in com-
mon: they limit the available phase-space area where the
particle motion is regular (nonchaotic) because the systems
are far from integrable. If the nonlinear lattice is integrable
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from the very beginning, then even for off-momentum
particles the system will be always close to the integrable
one. This, in turn, provides us minimization of chaotic
region volumes and gives us predictability in the particle’s
behavior.

In this paper we present several nonlinear integrable
accelerator lattices with regular particle orbits in a large
phase-space volume around the reference orbit. The goal is
to find such a combination of static electromagnetic fields
along the orbit that leads to two functionally independent
invariants which are in involution (i.e. with zero Poisson
brackets). Ultimately, the idea is to construct an accelerator
with a large betatron frequency spread (>10%) while
maintaining regular (nonchaotic) particle orbits.

An overview of the advances in accelerator nonlinear
lattices with integrable motion can be found in Ref. [3].
Reference [3] outlined the main difficulty in finding such
lattices: the fields must obey the stationary Maxwell equa-
tions (or the Laplace equation) and this is too severe of a
constraint for already extremely rare cases of 2D integrable
time-dependent classical Hamiltonians that describe the
transverse motion of particles in accelerators. Even when
the exact cases were found, the motion was unstable. Let us
take, for example, time-independent magnetic fields near a
reference particle closed orbit. For static constant (along
the orbit) fields, the time-independent Hamiltonian is
automatically the system’s invariant, but such a system
would lack the 2D stability near the closed orbit because
electric or magnetic fields cannot focus particles simulta-
neously in both directions (from here on we exclude weak
focusing based solely on bending magnets). Only time-
dependent strong focusing can produce stable linear
motion. A nearly integrable nonlinear lattice with thin
lenses was suggested in [3] where the motion is separable
in Cartesian coordinates.

In this paper we adopt a different approach—the lenses
are taken to be not thin. The special time (or longitudinal
coordinate) dependence of the transverse fields can be
chosen such that the 2D motion has one or two invariants
in involution but the motion is essentially coupled as
compared to the case in Ref. [3]. In the case of two
invariants the motion is separable in polar, parabolic, and
elliptical coordinates and has large 4D volumes of stable
nonlinear motion. In the next section we present the
acceptable field equations. Then we introduce the special
time dependence of the fields to guarantee the existence of
the motion invariants. The analysis of exactly integrable
cases is done at the end of the paper.

II. PROPERTIES OF 2D FIELDS

As we mentioned in the previous section, we will not
consider weak focusing in the bending magnets. In addi-
tion, we neglect effects of the longitudinal fields that result
in a focusing strength proportional to the second order of
magnetic fields. We consider only effects of the transverse

fields. Moreover, we deal only with fields that satisfy the
Laplace equation for their potentials (the scalar potential ’
for the electric fields and the longitudinal component of the
vector potential A). In other words we assume that

’xx þ ’yy þ ’ss � ’xx þ ’yy ¼ 0; (4)

where the subscript indicates a partial derivative. The same
assumption is used for the vector potential as well. It is
based on the fact that the third term of the left-hand side of
(4) is (in the lattice construction of the next sections) of the
order of ðrc=�Þ2 � 10�4, where rc is the vacuum chamber
radius and � is the typical beta-function value in accelera-
tors. This ratio is comparable to the typical relative field
accuracy of accelerator components. In addition, we can
always approximate a nonlinear lattice with the smooth
dependence of element strengths by constant field sections
with a varying strength in a manner similar to difference
equation approximations to ordinary differential equations
with an arbitrary accuracy. In this approach all the kicks
from thin elements obey the 2D Laplace equations and the
equations for potentials overall are equivalent to (4).
The transverse motion in our case is uncoupled from the

longitudinal one and the longitudinal coordinate s is used
as ‘‘time’’ throughout the paper. The corresponding time-
dependent Hamiltonian of the transverse motion is

H ¼ p2
x

2
þ p2

y

2
þUðx; y; sÞ; (5)

where Uðx; y; sÞ is the particle’s potential energy, which
satisfies Eq. (4). The particle is assumed to have a unit
mass and charge.

III. SPECIAL TIME DEPENDENCE OF FIELDS

Reference [4] presents examples of time, coordinates,
and momenta transformation for the Hamiltonian of the
type (5) to be transformed to a similar Hamiltonian but
with a different potential energy. To demonstrate such a
transformation, let us assume that we have equal linear
focusing in the horizontal and vertical planes and some
additional time-dependent potential. The Hamiltonian (5)
has the form

H ¼ p2
x

2
þ p2

y

2
þ KðsÞ

�
x2

2
þ y2

2

�
þ Vðx; y; sÞ; (6)

where KðsÞ is the linear focusing coefficient. Now we can
make a normalized variables substitution, following Eq. (2)
with an equation for � being

ð ffiffiffiffi
�

p Þ00 þ KðsÞ ffiffiffiffi
�

p ¼ 1ffiffiffiffiffiffi
�3

p ; (7)

where the differentiation has to be taken with respect to s.
After we introduce the new ‘‘time’’ c , which is the beta-
tron phase
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c 0 ¼ 1

�ðsÞ ; (8)

we obtain the new Hamiltonian HN expressed in new
variables:

HN ¼ p2
xN þ p2

yN

2
þ x2N þ y2N

2

þ �ðc ÞV½xN
ffiffiffiffiffiffiffiffiffiffiffiffi
�ðc Þ

q
; yN

ffiffiffiffiffiffiffiffiffiffiffiffi
�ðc Þ

q
; sðc Þ�: (9)

Below are the three main ideas of this paper: (1) If the

potential UðxN; yNÞ ¼ �ðc ÞV½xN
ffiffiffiffiffiffiffiffiffiffiffiffi
�ðc Þp

; yN
ffiffiffiffiffiffiffiffiffiffiffiffi
�ðc Þp

; sðc Þ�
in Eq. (9) is time independent, the system has at least one
invariant of the motion, namely, the Hamiltonian (9) itself
in new variables:

HN ¼ p2
xN þ p2

yN

2
þ x2N þ y2N

2
þUðxN; yNÞ: (10)

(2) The accelerator lattice with equal horizontal and verti-
cal focusing can be organized in several ways. First, one
can employ solenoids to provide axially symmetric focus-
ing. Second, consider an element of lattice periodicity
consisting of two parts: (i) a drift space, L, with exactly
equal horizontal and vertical beta functions, followed by
(ii) an optics insert, T, which has the transfer matrix of
a thin axially symmetric lens (Fig. 1). Such an element of
periodicity can be organized by regular quadrupoles and
dipoles [5]. This lattice structure provides equal linear
focusing such that the beta-functions in the drift space L
are given by

�ðsÞ ¼ L� skðL� sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� Lk

2 Þ2
q : (11)

This drift space can be used for an additional time-
dependent linear or nonlinear element characterized by
the potential Vðx; y; sÞ as in Eq. (6). The linear part (the
T insert) external to the nonlinear element provides time-
independent linear focusing in new variables (9) thus
providing stable motion which is otherwise absent in
Laplacian time-independent fields. (3) Among all such
chosen time-independent Hamiltonians (10), we can find
several sets of potentials U, which obey the Laplace equa-
tion (4) and possess the second integral of motion—such

systems are exactly integrable and realizable by magnetic
or electric fields.
In the following sections we will give examples of

systems with one and two 2D invariants.

IV. EXAMPLES OF NONLINEAR 2D SYSTEMS
WITH ONE INVARIANT

First, all realizable potentials U obey Eq. (4) and can be
expressed via one free function:

Uðx; yÞ ¼ ReFðxþ iyÞ; (12)

where F is any analytical (at least in the vacuum chamber)
function of complex variables. The potential U in this case
automatically satisfies the Laplace equation (4). As a trivial
example let us consider an extended quadrupole occupying
the entire drift space L with the potential Vðx; y; sÞ ¼
q

�ðsÞ2 ðx2 � y2Þ, where q is the quadrupole magnitude and

�ðsÞ is given by Eq. (11). One can notice that such a
potential satisfies Eq. (4) at each s location. After the
transformation (2) the new time-independent potential
becomes [following Eq. (9)] UðxN; yNÞ ¼ qðx2N � y2NÞ.
Thus, the motion remains linear and stable (as long as
jqj< 1=2).
As our next example, let us consider an extended octu-

pole occupying the entire drift space L. It is clear that the
octupole strength V has to be inversely proportional to �3,

Vðx; y; sÞ ¼ �
�ðsÞ3 ðx

4

4 þ y4

4 � 3x2y2

2 Þ. From (9) we have

U ¼ �

�
x4N
4

þ y4N
4

� 3y2Nx
2
N

2

�
; (13)

where � is an arbitrary constant. One can see that
the resulting potential is time independent and the
Hamiltonian (10) in the normalized variables is the invari-
ant of the system.
Such nonlinear potentials, though not integrable, have

stable motion around closed orbit, have well-defined
boundaries, and the escape of particles from the vicinity
of a closed orbit is eliminated because the Arnold diffusion
is absent in this case (see [6] for more examples and
explanations).

V. 2D REALIZABLE LATTICES WITH EXACTLY
INTEGRABLE MOTION

Among potentials Uðx; y; sÞ in (10) there exists a sub-
class that satisfies the Laplace equation (to the authors
knowledge, the corresponding Hamiltonians are analyzed
for the first time in the theory of integrable systems). The
Hamiltonians (10) have an additional integral which is
quadratic in momenta and, thus, the motion is separable
in some variables. This problem has been studied for a long
time with the first systematic study carried out by Darboux
[7]. We will drop the subscript N for simplicity and will
start with the most general time-independent Hamiltonian
of the form

FIG. 1. An element of periodicity: a drift space with equal beta
functions followed by a T insert.
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H ¼ 1
2ðp2

x þ p2
yÞ þUðx; yÞ: (14)

We will search for the second invariant in the following
form:

I ¼ Ap2
x þ Bpxpy þ Cp2

y þD; (15)

where A, B, C, and D are functions of x and y only. After
coordinate rotations, translations, etc., the most general
expression for these functions are [8,9]

A ¼ ay2 þ c2; B ¼ �2axy; C ¼ ax2; (16)

and D is determined from a special partial differential
equation along with the potential U.

We will now classify the potentials according to values
of arbitrary constants, a and c.

A. Elliptic coordinates

Let a � 0 and c � 0, then we will take a ¼ 1 and we
arrive at the famous Bertrand-Darboux partial differential
equation for an integrable potential [7]:

xyðUxx �UyyÞ þ ðy2 � x2 þ c2ÞUxy þ 3yUx � 3xUy ¼ 0:

(17)

This equation has the following general solution:

Uðx; yÞ ¼ fð�Þ þ gð�Þ
�2 � �2

; (18)

where f and g are arbitrary functions and

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxþ cÞ2 þ y2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� cÞ2 þ y2
p

2c

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxþ cÞ2 þ y2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� cÞ2 þ y2
p

2c
:

(19)

The second invariant thus yields

Iðx; y; px; pyÞ ¼ ðxpy � ypxÞ2 þ c2p2
x

þ 2c2
fð�Þ�2 þ gð�Þ�2

�2 � �2
: (20)

First, we would notice that the parabolic potential
(x2 þ y2) satisfies Eq. (17) with f1ð�Þ ¼ c2�2ð�2 � 1Þ
and g1ð�Þ ¼ c2�2ð1� �2Þ. Second, we can solve
Eq. (17) together with the Laplace Eq. (4) in elliptical
coordinates (see, e.g., [10]) to obtain the following
solution:

f2ð�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

q
½dþ ta coshð�Þ�

g2ð�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
½bþ ta cosð�Þ�;

(21)

where b, c, d, and t are arbitrary constants. We omit here
the lengthy steps required to obtain Eq. (21). Thus, we
arrive at a Hamiltonian exactly in the form of Eq. (10):

Hðx; y; px; pyÞ ¼ p2
x

2
þ p2

y

2
þ x2

2
þ y2

2
þ f2ð�Þ þ g2ð�Þ

�2 � �2

(22)

in normalized variables (the subscript N is omitted) and
with f2 and g2 given by Eq. (21). This system has the

second integral in the form of Eq. (20) with f ¼ f1
2 þ f2

and g ¼ g1
2 þ g2.

B. Polar coordinates

If a � 0 but c ¼ 0, we arrive at the following limit of
Eq. (22):

H ¼ p2
x

2
þ p2

y

2
þ r2

2
þ fðrÞ þ gð�Þ

r2
; (23)

where � is the azimuthal angle, and f and g are arbitrary
functions at this point. If the potential obeys the Laplace
equation, they are

fðrÞ ¼ d lnðrÞ gð�Þ ¼ b sinð2�Þ þ t cosð2�Þ (24)

with d, b, t being arbitrary constants. The second integral
in this case is

I ¼ ðxpy � ypxÞ2 þ 2gð�Þ: (25)

C. Parabolic coordinates

The third case (not considered by Darboux) corresponds
to a ¼ 0. Again, starting from the general expression of
Eq. (15), one can show [8,9] that the second integral has

A ¼ 0 B ¼ �y C ¼ x: (26)

The equation for the potential U is then

2xUxy þ 3Uy þ yðUyy �UxxÞ ¼ 0; (27)

which has the solution

Uðx; yÞ ¼ fðrþ xÞ þ gðr� xÞ
2r

;

I ¼ ðypx � xpyÞpy þ ðr� xÞfðrþ xÞ � ðrþ xÞgðr� xÞ
2r

;

(28)

where f and g are arbitrary functions. First, we would
notice that the only parabolic solution of Eq. (27) is (y2 þ
4x2) with f1ðwÞ ¼ g1ðwÞ ¼ w3. Thus we can form the
axially symmetric and Laplacian focusing terms as
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f1ðrþ xÞ þ g1ðr� xÞ
10r

¼ r2

2
þ 3

10
ðx2 � y2Þ ¼ 1

5
ðy2 þ 4x2Þ:

(29)

We will now look for a nonlinear potential, which satisfies
the Laplace equation as well as Eq. (27). The Hamiltonian
has the form

H¼p2
x

2
þp2

y

2
þ r2

2
þ 3

10
ðx2�y2Þþf2ðrþxÞþg2ðr�xÞ

2r
;

(30)

where

f2ðrþ xÞ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffi
rþ x

p þ tðrþ xÞ2
g2ðr� xÞ ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffi
r� x

p � tðr� xÞ2
(31)

and b, d, and t are arbitrary constants. The potential
functions f and g in Eq. (28) are expressed as f ¼
f1
5 þ f2 and g ¼ g1

5 þ g2.

D. Cartesian coordinates

There are no nontrivial nonlinear solutions separable in
Cartesian coordinates. To the authors’ knowledge, Ref. [3]
presents the only known approach to get an uncoupled,
nonlinear, regular motion in accelerators in Cartesian
coordinates. Its approach differs substantially from this
paper.

In addition to the presented above ‘‘basic’’ integrable
cases, there are systems that can be obtained from the de-
scribed ones by translations, rotations, etc. We skip these
obvious possibilities for brevity. In the next section we
briefly analyze their four-dimensional regions of stability.

VI. BRIEF ANALYSIS OF EXACTLY
INTEGRABLE CASES

All of the above integrable systems have Lagrange
stability property, i.e., all trajectories are bound—none of
them escapes to infinity. This follows from the fact that the
quadratic term in all normalized variable Hamiltonians is a
dominant term at infinity and the motion at large ampli-
tudes is linear and stable. At smaller amplitudes all
described above integrable potentials differ substantially
from that of presently used multipole polynomial poten-
tials—the integrable potentials have singularities at one or
two isolated points and their derivatives (forces) may have
discontinuities on some intervals or rays. Nevertheless,
these potentials satisfy the Laplace equation and can be
obtained by appropriately shaped electrodes or magnetic
poles. Because of these singularities, there is a nontrivial
property of these systems—the motion in the transverse
plane can be bound in a closed space, or can be bound in a
ringlike area, or even more topologically complicated
areas. We would like to determine here the dynamic
invariants for the case when the motion is bound in the

closed area where singularities are absent—this is the
simplest case of the vacuum chamber and magnet geome-
try that is the same as in conventional accelerators (even
though the ringlike vacuum chamber shapes with magnets
inside is possible as well). All these singularities are sim-
plest in a polar case when they are just located at r ¼ 0 and
are equivalent to those of the singular fields of a line
current and a 2D dipole. They are more complex in two
other cases. Below we go over three systems from the
previous section to state the conditions when the motion
is simplest and bound in the closed area without singular-
ities. Figures 2–7 show typical trajectories in normalized
variables. Of particular interest is the case presented in
Fig. 4 and analyzed in more detail in Ref. [5].

A. Elliptic coordinates

We can convert Eq. (22) into a Hamilton-Jacobi equation
for action S and solve for the motion in separated elliptic
variables, which is equivalent to replacing momenta in the
Hamiltonian (22) with the derivative of the action S with
respect to the corresponding variable (see, e.g., [11]):

p2
� ¼

�
@S

@�

�
2 ¼ 2c2Eþ �� 2c2fð�Þ

�2 � 1
;

p2
� ¼

�
@S

@�

�
2 ¼ 2c2E� �þ 2c2gð�Þ

1� �2
;

(32)

where E and � are constants (integrals of motion) defined
from Eqs. (20) and (22) as

E ¼ Hðx; y; px; pyÞ � ¼ �Iðx; y; px; pyÞ þ 2c2E:

(33)

By definition, j�j � 1. In order for the motion to be
confined between the two points � ¼ �1 and � ¼ 1, the
energy must be E � 0 and �þ 2c2gð�1Þ> 0, so that
when � approaches �1, the momentum p� ¼ @S

@� becomes

imaginary. These conditions determine the phase space of
the motion, bound around zero and not encompassing

points � ¼ �1, � ¼ 1. For example, take c ¼ 1, fð�Þ ¼
�4

2 þ 0:25�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
, and gð�Þ ¼ � �4

2 . This potential has

two singularities (poles) at ½x; y� ¼ ½�1; 0� and [1, 0] and
its derivative is discontinuous on the interval between these
two points. The conditions for the motion to be confined
between the poles determine two constraints for the invar-
iants E � 0, �> 1. An example of such a motion is shown
in Fig. 2. One can see that the trajectory crosses the interval
x ¼ ½�1; 1�, y ¼ 0. The force is discontinuous on this
interval and thus the vertical phase space (the top right
figure) has a trajectory derivative discontinuity at y ¼ 0.
Therefore, such a trajectory may not be physically realized
in vacuum.
Figure 3 shows the opposite case for the same potential.

The trajectory never crosses the interval x ¼ ½�1; 1�,
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y ¼ 0, but the vacuum chamber has to be a ringlike
assembly to contain the particles inside.

The Fig. 4 presents a different force without a disconti-
nuity between the singularities. It corresponds to the fol-

lowing coefficients in Eq. (21): c ¼ 1, d ¼ 0, b ¼ 0:1�,
and t ¼ �0:2. In the entire volume between singularities
the motion is regular, bound, and the fields can be created
in a vacuum chamber by electrodes or magnetic poles.
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FIG. 3. Same as Fig. 2 except for initial conditions that are taken to be x ¼ 1:2, px ¼ 0:1, y ¼ 0:001, and py ¼ 0:2 (E � 3:05 and
� � 0:98).
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FIG. 2. Two-dimensional projections of a four-dimensional elliptical-type integrable motion [horizontal phase space (left top),
vertical phase space (right top), and x-y projection (left bottom)] and the three-dimensional trajectory surface in px, x, y coordinates.
The initial conditions are x ¼ 0:9, px ¼ 0:1, y ¼ 0:42, py ¼ 0:1, E � 1:91, and � � 1:96.
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After constructing the action S, following Ref. [11] as

SðE;�Þ ¼ �E�þ
Z

p�d�þ
Z

p�d�; (34)

where � is the time, the motion can be completely solved in
quadratures by taking partial derivatives of S with respect
to E and � and equating these derivatives to new constants
of integration.

B. Polar coordinates

This is the easiest case to analyze. From [11], the
solution of the Hamilton-Jacobi equation is [with p’ ¼ 0

for a 2D case in [11] and functions from Eq. (24)]

S ¼ �E�þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� 2b sin2�� 2t cos2�
p

d�

þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E� r2 � 2d lnr� �=r2
q

dr: (35)

Again, the constants E and � are defined from Eqs. (23)
and (25) as E ¼ H and � ¼ I. One can see that the angle �

can vary from 0 to 2� if � � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ t2

p
. This is the

condition when the trajectory encircles the singularity r ¼
0; otherwise it covers the area that does not include the
singularity. The latter case is presented in Fig. 5; the former
case is given in Fig. 6. The constants in this example are
taken: d ¼ �1, b ¼ 0, and t ¼ 0:1. The initial conditions
are given in the captions of Figs. 5 and 6.

C. Parabolic coordinates

This case is different from the previous two—the tra-
jectories cannot encircle the singularity, r ¼ 0. Let us look
at the solution of the Hamilton-Jacobi equation from [11]
for the functions (31) (again p’ ¼ 0 for the 2D case, and z

has to be replaced by x in [11]):

S ¼ �E�þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

2
þ �

2�
� �2

10
� b

2
ffiffiffi
�

p � t�

s
d�

þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

2
� �

2�
� �2

10
� d

2
ffiffiffiffi
�

p þ t�

vuut d�; (36)

where the constants E and� are defined from Eqs. (28) and
(30) as E ¼ H and � ¼ I. One can see that for E> 0 if
� ¼ rþ x approaches 0 (�> 0), then � ¼ r� x cannot
approach zero since the function in the second integral
becomes imaginary, and vice versa. It means that the
trajectory cannot encircle the singularity. A typical
case is shown in Fig. 7 for b ¼ �0:1, d ¼ 0, and t ¼ 0;
the initial conditions are given in the caption. The singu-
larity in this case is at ½x; y� ¼ ½0; 0� and the discontinuity
in the force lies at a horizontal (x) negative semiaxis
(where � ¼ 0). The trajectories never cross it if �< 0
(Fig. 7, bottom left).
In all three cases the frequencies in normalized coordi-

nates start from around 1, and then some of the frequencies
may approach 0 for some initial conditions, which indi-
cates change of topology for the first two cases. Basically,
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FIG. 4. Same as Fig. 2 except the force coefficients are different and the initial conditions are taken to be x ¼ 0:95, px ¼ 0:0,
y ¼ �0:8, and py ¼ 0:1 (E � 1:15 and � � 1:356).
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FIG. 6. An exactly integrable case, separable in polar coordinates. The four subplots show the same projections as in previous
figures. The initial conditions are x ¼ 0:85, px ¼ 0:698, y ¼ 0:7, py ¼ 0:0. E � 0:962, and � � 0:2004.
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FIG. 5. An exactly integrable case, separable in polar coordinates. The four subplots show the same projections as in previous
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it means that the spread of frequencies in this case can be
made around 100% which is important for applications
such as, e.g., mitigating instabilities in intense beams.

VII. DISCUSSION ON THE PRACTICAL
IMPLEMENTATION OF THE INTEGRABLE

LATTICES

As it is clear from the nonlinear lattice construction, the
nonlinear portions with the constant Hamiltonian in nor-
malized variables have to be separated by insertions with
the transfer matrices Mx and My, equal for both directions

and representing a thin focusing radial kick:

Mx;y ¼ 1 0
�k 1

� �
; (37)

where k is the arbitrary positive coefficient. Along with the
length of the nonlinear section, it determines the beta-
function behavior (obviously, the constant k and the linear
force component of the nonlinear section have to provide
stable linear motion). This, in turn, determines the beta-
function behavior and gives the dependence of nonlinear
fields on longitudinal coordinate. The matrices (37) can be
realized as thin solenoidal lenses or long insertions with

few lenses as the space or energy permits [5]. The other
possible matrices can have a form:

Mx;y ¼ �1 0
k �1

� �
: (38)

One can see that the difference of (37) and (38) is that the
dynamic variables change sign in the latter case. For
motion to be continuous in nonlinear sections, the odd
degrees of coordinates in potentials have to change sign
after each linear insertion with matrix (38). Overall, the
linear insertions have the betatron phase advance equal to
the integer of �, as it was stated in Sec. III. If the phase
advance is zero (solenoidal thin lenses are used as inser-
tions), the spread of betatron frequencies can reach 100%
in principle. If it is �, then it can be made around 50%
since the nonlinear section phase advance can approach �
as well.
The nonlinear section fields can be made by profiling the

magnet tips, as described in [3]. The nonlinear elements are
not required to be strictly continuous but have to approxi-
mate the continuous equations with Hamiltonian (10)—the
degree of approximation depends on applications and has
to be determined at the stage of the nonlinear machine
design.
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FIG. 7. Exactly integrable case, separable in parabolic coordinates. The four subplots show the same projections as in previous
figures. The initial conditions are x ¼ �1:2, px ¼ �0:1, y ¼ 1:2, and py ¼ �0:02.
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One more note—if one needs to create an intense beam
with a very large space charge tune shift, it can be done in a
self-consistent manner and the system can remain inte-
grable if the space charge force is linear and its gradient
is equal in both directions. It can be achieved by making
the beam density constant and profiling the vacuum cham-
ber to keep the potential outside compatible with the linear
force inside the beam. The painting can be made in the
manner suggested in paper [12], which describes various
self-consistent 2D and 3D space charge distributions and
their realizations in real machines.

VIII. CONCLUSION

This paper presents the first finding of exactly integrable
nonlinear accelerator lattices realizable with magnetic or
electric fields, when the phase space occupied by trajecto-
ries has large regions of stability and a very large betatron
frequency spread that can mitigate instabilities, space
charge effects, and particle loss. In addition, it demon-
strates that there exists a variety of nonlinear 2D lattices
with one integral of motion which lack Arnold diffusion
and can be used for the creation of a bound but chaotic
motion or many other integrable cases. Possible lattice
constructions are discussed.
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