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Beam transport line with scaling fixed field alternating gradient type magnets
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A scaling fixed field alternating gradient (FFAG) accelerator provides large momentum acceptance
despite the fact that magnetic guiding fields are constant in time. Optical functions are identical over the
large momentum range as well. We have designed a straight beam transport line (BTL) using a scaling
FFAG type magnet which has a field profile of y*, where y is the horizontal coordinate and k is the
magnetic field index. This FFAG-BTL has very large momentum acceptance and optical functions that,
practically speaking, do not depend on momentum. We also designed a dispersion suppressor at the end of
the line by combining unit cells with a different field index & so that the momentum dependence of orbit
location should be eliminated at the exit. An obvious application of this design is the BTL after an FFAG
accelerator to a patient in a hadron therapy facility or to a target in general. This could be an alternative to
the conventional BTL with solenoids or quadrupoles because of the strong focusing nature of a quadrupole
and the large momentum acceptance like a solenoid.
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L. INTRODUCTION

An ordinary synchrotron with an alternating gradient
focusing structure cannot transport a beam with large
momentum spread because the sizable dispersion function
causes a significant shift in the closed orbit of the off
momentum particle and it hits a vacuum chamber. The
chromaticity cannot be zero for a large momentum range
due to the inherent nonlinearity; as a result, the focusing
structure will lose stability beyond some momentum range.
By comparison, the scaling fixed field alternating gradient
(FFAG) accelerator keeps the closed-orbit shift depending
on particle momentum very small. The focal length is
scaled with only the average orbit radius so that the tune
is independent of momentum. This can be done with a
magnetic field profile which has steeper gradient toward a
large orbit radius. Although strong nonlinearities are in-
herently introduced, it has been shown that large momen-
tum aperture as well as large transverse acceptance are
obtained [1,2].

A FFAG accelerator can be operated with high repetition
frequency because of the constant magnetic field. Neither
the ramping of pulsed magnets nor the synchronization
between the magnetic field and the rf frequency is neces-
sary because the orbit is allowed to move. For example, the
proof of principle proton FFAG demonstrated a 1 kHz
operation, which is impossible with an ordinary synchro-

*shinji.machida@stfc.ac.uk

1098-4402/10/13(8)/084001(9)

084001-1

PACS numbers: 29.27.—a, 41.85.—p, 87.56.—v

tron [3]. The repetition frequency is only limited by the
available rf voltage and its frequency modulation. For a
proton driver, without increasing the number of particles
per bunch, a high current operation becomes possible. For
a hadron therapy accelerator, a high repetition operation
makes the spot scanning technique practical. An FFAG has
the potential to deliver a beam with different momentum in
a pulse by pulse mode.

Since such an accelerator has the capability of fast
switching beam momentum, the following beam transport
line (BTL) should have a large momentum acceptance as
well. A BTL with a large momentum acceptance is also
desirable as a dump line of a high intensity synchrotron
where a beam that has tripped during acceleration goes
through. Although the idea of using the scaling FFAG
optics, where the closed-orbit shift depending on particle
momentum is very small and the chromaticity is zero for a
large momentum range, for a BTL has been around for
years, there has been no design up to now. A BTL design
with the nonscaling FFAG optics, for example, by
Trbojevic [4], is limited to certain types of geometry.
This paper will describe a way of designing a BTL using
the scaling FFAG optics. In Sec. II, we will show a model
of a magnet which is the essential element of the FFAG-
BTL. We will also show a unit cell as the minimum
focusing component of the BTL and study its tunability,
acceptance, and tolerances against several machine errors.
In Sec. 111, we will describe a way of obtaining the disper-
sion suppression.

© 2010 The American Physical Society
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II. BEAM TRANSPORT DESIGN

A. Rectangular scaling type magnet

A scaling FFAG type magnet for a BTL can be made as
follows. In a circular scaling FFAG accelerator, the field
profile in cylindrical coordinates, which satisfies the scal-
ing optics [5,6], is described as

&mm=&%ﬂ%@, (1

where B_(r, §) is the vertical magnetic field, B, is the
reference field at ry, which is the reference radius mea-
sured from the machine center, k is the field index, and
F(6) is a periodic function around the ring. The magnets in
a scaling FFAG are wedge shaped with edges perpendicu-
lar to the arc and magnetic field lines that follow the arc.
In a BTL, on the other hand, there is no machine center.
By analogy to the magnet of a scaling FFAG, however, we
define a magnet for the FFAG-BTL with the field profile

&mw=84ﬁ;ﬁ%w, 2)

where x, y, and z are Cartesian coordinates, with x longi-
tudinal, y horizontal, and z vertical. In fact, in the limit of
large r( of Eq. (1), an arc length of a FFAG ring becomes a
straight line, which implies Eq. (2) is a reasonable assump-
tion with large y,. The field strength B is adjusted so that
a beam goes through near the x axis, which will be later
shown possible. In order to keep the focusing strength at
the lower order unchanged, k is increased by the same
amount when y, is increased. As the expansion of the field
shows,
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the first quadrupole term is proportional to k/y,. As for a
different form in the limit of large r( [7], see Appendix A
for more discussions.

Notice that the magnet has a rectangular shape and the
constant field lines are straight along the BTL. The func-
tion F(x) which describes the longitudinal position depen-
dence of the fields is unity in the core of the magnets, zero
far from the magnets, and has an Enge function falloff in
between, which is described by

1
1 +exp[X2,Ci(x/g)T

Fx) = “)

where C; are the Enge coefficients and g is the gap of the
magnet [8]. We assumed that g is constant and independent
of transverse coordinate. The overlap of fields from adja-
cent magnets is included as taking a summation of both.

Since Eq. (2) only describes the fields at the median plane,
the off plane fields are described as a series expansion,

Bx(xl yr Z) = ZBx,i(x’ y)zl
i=0

By(x, v, Z) = ZBy,i(xr )’)Zi (5)
i=0

BZ(X’ Y, Z) = ZBz,i(x’ )’)Zi-
i=0

We keep the terms up to i = 4 and truncate the rest. The
coefficients are obtained iteratively by imposing
Maxwell’s equations.

B. Orbit and optics of unit cell

In the following optics calculation and particle tracking,
we use s-code [9,10]. In s-code, all the elements including
different orders of multipoles and rf cavities are repre-
sented as a collection of thin lenses, which include end
field regions. At each thin lens, momenta are updated
according to the magnetic field strength. A particle goes
straight between thin lenses.

In order to make an alternating gradient focusing, mag-
nets of this type with alternating signs are aligned sequen-
tially along a straight line. As the simplest example, we
considered the FDDF configuration, where F is a hori-
zontally focusing magnet and D is defocusing. This can be
also regarded as a singlet FD focusing structure starting
from the center of the F magnet. In this configuration, the
orbit at entrance and at exit becomes perpendicular to the
magnet faces.

Using the parameters listed in Table I, the orbit and
optics with a periodic boundary condition were calculated.
We took a reference momentum and momentum range
according to the typical values of a hadron therapy facility.
From the practical fabrication point of view, we only used a
few lower order multipoles in Eq. (3). Figure 1 shows how
many multipoles were necessary to keep phase advance per
unit cell with a periodic boundary condition (hereafter, cell

TABLE 1. Parameters of a FDDF cell.
Focusing structure FDDF
Magnet length 0.2 m
Drift length 0.2 m
Cell length 1.6 m
Reference radius y, 1 X 10° m
(Field index k)/y, 5m™!
Reference momentum 0.5 GeV/c
Momentum range 0.25 to 0.75 GeV/c
B, at F 20T
B atD -30T
Enge coefficients 0.1455, 2.2670, —0.6395,
Ci(i=0,5) 1.1558, 0, 0
Gap of magnet g 0.15 m
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FIG. 1. (Color) Cell tune with momentum: (a) horizontal,
(b) vertical. The terms dodeca, deca, octa, and sext indicate
that the maximum order of the expansion is dodecapole, decap-
ole, octapole, and sextupole, respectively.

tune in the unit of 27) flat over the momentum range. It
shows that the multipole field up to decapole (y* term)
gives fairly good approximation of the r* field profile. The
magnetic field profile is shown in Fig. 2. A practical
magnet design would be the one in Ref. [11]. There is an
independent coil for each multipole. We can shape the field
profile by adjusting current to each coil. In the following,
all the calculations were done with this multipole based
field profile instead of the field of Eq. (2).

magnetic field strength [T]
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FIG. 2. Field profile of the magnet made from multipoles up to
decapole.
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FIG. 3. (Color) Different momentum orbits in a unit cell which

satisfies the periodic boundary condition. Rectangles at the
bottom show the position of FDDF magnets.
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FIG. 4. (Color) Beta functions with different momenta in a unit
cell which satisfies the periodic boundary condition. Rectangles
at the bottom show the position of FDDF magnets.

Figure 3 shows that the shape of the orbits for different
momenta are nearly identical and only slightly shifted.
Figure 4 shows the beta function for different momenta.
They are almost on top of each other.

C. Tunability

The cell tune can be adjusted by the field index k, or
more precisely speaking k/y,, and the ratio of field
strength at F and D as in an ordinary scaling FFAG
accelerator. The cell tune as a function of the field index
and the ratio of field strength —B, /B, r is calculated
with the magnet length and the lattice layout fixed. Figure 5
shows the cell tune space which can be covered with those
variables.

D. Beam transport line

A BTL is made up of many unit cells. We took, as an
example, 100 cells and studied the acceptance. The toler-
ances against several machine errors: alignment, field
strength, and field shape were also investigated.

084001-3



MACHIDA AND FENNING

Phys. Rev. ST Accel. Beams 13, 084001 (2010)

0.5

0.4

L0168 L

0.3

q,

0.2

0.1

0.0 I I I I 1
00 01 02 03 04 05

FIG. 5. Phase advance/27 in a unit cell with different
(field index k)/y, and ratio of field strength at F and D.
Upright numbers indicate the ratio of the field strength,
—B.op/B,or and vertically aligned numbers indicate the
(field index k)/yq.

Asymmetry of the field profile in the horizontal direction
shown in Fig. 2 increases the restoring force on one side
and decreases it on the other. When the particle amplitude
exceeds a certain value, the restoring force is not enough
and a particle does not come back to the beam axis. Even if
there is enough restoring force, nonlinearity coming from
the field profile distorts beam emittance.

At the reference momentum of 0.5 GeV/c, the largest
amplitude particle which could be transported in the
FFAG-BTL was calculated. A set of five initial phase space
positions with the same horizontal amplitude was chosen
uniformly in the azimuthal direction in horizontal phase
space. At each horizontal phase space position, five parti-
cles are allocated which are also uniformly distributed in
the azimuthal direction in vertical phase space. Therefore,
each particle has the same horizontal and vertical ampli-
tude, but the phase in transverse phase space is different.
The total number of particles is 25. If the amplitude of any
one of the particles started growing monotonically rather
than oscillations, we considered that the initial amplitude
to be outside the aperture. We chose operating points at the
grids of Fig. 5. Table II shows the acceptance in terms of
unnormalized value. The acceptance is much larger than
beam emittance for typical proton beam such as
1077 mm mrad (unnormalized).

At the nominal operating point with the
(field index k)/yo = 5 and the ratio B, p/B,or = 1.5,
the edge of a 107 mmmrad unnormalized emittance
beam was tracked for 100 cells. Phase space at the end of

TABLE II. Acceptance of the FFAG-BTL [7 mm mrad] un-
normalized.
(Field index k)/y,

5 6 7 8 9 10
—B.op/Bar
1.2 1820 1240 700 120 R R
1.3 1610 1040 940 570 310 120
1.4 800 470 660 190 220 270
1.5 80 290 170 50 40 100
1.6 100 20 10 130 110 70
1.7 K 30 30 20 20

the BTL is shown in Fig. 6. In this case, 18 phase space
positions with the same amplitude in horizontal direction
have 18 particles in vertical direction. Not much distortion
of beam emittance is observed except a little square shape
in horizontal phase space.

(a) 1.5_
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-1.01

A5x10° 4
8x10° -4 0 4 8
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(e}
|
A

FIG. 6. (a) Horizontal and (b) vertical edge of a beam after
going through 100 cells. 18 phase space positions with the
amplitude of 1077 mm mrad in one direction has 18 particles in
the other direction.
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TABLE III. Maximum orbit distortion due to 0.1 mm (sigma)
alignment error or 0.1% (sigma) strength and shape errors. The
data is consistent with a linear relation between the distortion
and errors as shown in Fig. 7. Strength and shape errors do not
cause orbit distortion in the vertical direction.

Momentum Horizontal Vertical

Error [GeV/c] [mm] [mm]
Alignment 0.25 52*x19 45+ 1.5

0.5 54+19 4.8 = 1.7

0.75 52 4.8 = 1.7
Strength 0.25 9+3 s

0.5 9+3

0.75 9+3
Shape 0.25 6=x2

0.5 2.0 0.7

0.75 5.1+ 1.8

In order to see tolerances against several machine errors,
we introduced three different kinds of error. One was a
magnet alignment error. Another was an error in the field
strength by introducing some fluctuations in B ,. The third
was an error in the field shape by introducing fluctuations
in k. We provided 501 different patterns for each error
assuming that the error distribution was Gaussian with two
sigma cut off. The sigma value for each error was varied
from O to 0.2 mm for an alignment error and from 0% to
0.2% for both field strength and field shape errors. B, at D
for field shape error is change from —3.0 to —2.8 T to
avoid nearby 4g, = 1 resonance where g, is horizontal cell
tune. The maximum orbit distortion and the growth of
square root of beta functions were then calculated for
each error pattern and normalized by the magnitude of
the error. The whole procedure was repeated with several
momenta. Tables III and IV show the mean and the stan-
dard deviation of the results.

The tables show that the maximum orbit distortion is a
few mm to 10 mm and the maximum growth of square root

TABLE IV. Maximum growth of square root of beta functions
due to 0.1 mm (sigma) alignment error or 0.1% (sigma) strength
and shape errors. The data is consistent with a linear relation
between the growth and errors as shown in Fig. 8.

Momentum Horizontal Vertical
Error [GeV/c] [%] [%]
Alignment 0.25 6+2 39+ 1.8
0.5 10 +£20 5+3
0.75 10 = 16 5+3
Strength 0.25 5+2 4+4
0.5 7+4 1.5+0.5
0.75 7+4 1.5+0.5
Shape 0.25 5+£2 33*1.1
0.5 1.7+1.2 23+0.7
0.75 8+ 1.3 42+ 1.3

= horizontal
25 vertical )
20 - _
15 R

max orbit distortion [mm]

0 T T - T T 1
0.00 0.05 0.10 0.15 0.20

1 ¢ of alignment error [mm]

FIG. 7. (Color) Maximum orbit distortion against alignment
errors. Straight lines indicate linear fit.

of beta functions is a few % to 10% with reasonable
assumption of various errors [12].

II1. DISPERSION SUPPRESSOR

In the FFAG-BTL, a particle with different momentum
has a different central orbit. If we consider an application
such as a BTL right after a FFAG accelerator, the orbits
may be separated already at the entrance to the BTL
because of the orbit separation depending on momentum
in the ring. However, we want to suppress the dispersion at
the end of the FFAG-BTL so that all the different momen-
tum particles go to a single spot.

|| = horizontal
L15 = vertical

1.10 L

(BB

1.05

1.00 _ > .' T T 1
0.00 0.05 0.10 0.15 0.20
1 o of field shape error [%]

FIG. 8. (Color) Maximum growth of square root of beta func-
tions against field shape errors. Straight lines indicate linear fit.
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We know that, if the dipole bending strength of the
adjoining —1/ section is halved, where I is the identity
transfer matrix, the dispersion function will be zero at the
end [13]. It is called a dispersion suppressor with the
missing dipole scheme. In terms of scaling FFAG optics,
a dispersion suppressor can be a —/ section with the
(field index k)/y, doubled with respect to a normal cell
(see Appendix B). In practice, it is easier to design a —/
section first. An example is two unit cells each with 90 de-
grees phase advance in the horizontal direction. Either the
(field index k)/y or the ratio B, p/B.o r could be used to
obtain the correct phase advance. Second, one fixes the
reference momentum and calculates a periodic solution.
This gives an orbit position at the ends of a cell in a
dispersion suppressor. We name it the reference position.
Third, one designs another unit cell with the
(field index k)/y, halved, which becomes a normal cell,
and adjusts the field strength of F and D so that the
reference momentum particle has the same orbit position
at the ends of the cell as that of the dispersion suppressor.
Finally, one connects the normal cell to the dispersion
SUppressor.

A reference momentum particle entering a normal cell at
the reference position comes back to the reference position
at the exit of the cell. Then, it enters the dispersion sup-
pressor at the reference position and comes back to the
reference position at the exit of the cell with a smaller
horizontal shift within the dispersion suppressor cell. A
particle with different momentum has a shifted central
orbit in the normal cell. It comes back to the same hori-
zontal position at the exit as at the entrance in the normal
cell. However, it goes to the reference position once it exits
the dispersion suppressor if the —/ condition is preserved.

In fact, the —1 condition is only approximately satisfied
for off momentum particles because the shape of orbits in
the dispersion suppressor is not similar and the phase
advance strongly depends on the orbit position as shown
in Fig. 9. We have looked at the transverse position at the
exit of the suppressor as a function of momentum deviation

. 0.00-

% -0.05-

S -0.104

2 .0.154

Q — +0.3
= .0.204 0
S — .03
< 025 , , , :

0 1 2 3 4
path length [m]

FIG. 9. (Color) Different momentum orbits in a normal cell and
the dispersion suppressor. Numbers in the legend show the
momentum deviation from the reference momentum, Ap/p.
The normal cell is from O to 1.6 m and the dispersion suppressor
section from 1.6 to 4.8 m.

= o

= 10

)

= 07

g -10 7

=

S 20~

1 T T T T T

-0.4 -0.2 0.0 0.2 0.4

Ap/p

FIG. 10. Relative horizontal orbit position at the exit of the
dispersion suppressor as a function of momentum deviation.
Zero corresponds the orbit position of a reference momentum
particle.

in Fig. 10. This shows the dispersion suppressor works only
in the limited momentum range. Although FFAG-BTL
itself has larger momentum acceptance, the dispersion
suppressor determines the momentum range we can use.
It is still large enough for many purposes such as a hadron
therapy facility. Failure to meet an exact condition of —/
also affects the beta functions in the dispersion suppressor.
Figure 11 shows the beta function for different momenta.
Because of the variation of the beta functions, the beam
size at the end becomes a function of momentum. The
beam size at the exit of the suppressor as a function of
momentum deviation is shown in Fig. 12. Within the

N(i)4_—+0.3
S 0
g3 .03
g 24

21
=

0

path length [m]

path length [m]

FIG. 11. (Color) (a) Horizontal and (b) vertical beta functions in
a normal cell and the dispersion suppressor. Numbers in the
legend show the momentum deviation from the reference mo-
mentum, Ap/p. The normal cell is from 0 to 1.6 m and the
dispersion suppressor section from 1.6 to 4.8 m.
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FIG. 12. (a) Horizontal and (b) vertical square root of beta

functions of off-momentum beam normalized by that of the on-
momentum one as a function of momentum deviation.

momentum range of +30%, the beam size varies by around
*30%. Nevertheless, for a target or a patient, the small
variation of beam size should not be a problem.

IV. SUMMARY

With a scaling FFAG accelerator type magnet, we have
designed a beam transport line (FFAG-BTL). Although the
magnetic field is constant in time, it has a large momentum
acceptance. We studied the tunability of transverse focus-
ing, transverse acceptance, and tolerance against several
machine errors. We also designed a dispersion suppressor
section so that the shifted orbits depending on beam mo-
mentum can be merged into a spot at the end of the line.
Although the momentum range is limited over which the
dispersion suppressor works reasonably well, that is
around *30%, it should be enough for many applications.

A possible use of the FFAG-BTL is for beam transport
between a FFAG accelerator and a target or a patient
downstream. With large momentum acceptance, it be-
comes possible to change the beam momentum pulse by
pulse, which realizes the spot scanning technique when
applied to a hadron therapy facility. Another use of the
FFAG-BTL with a large momentum acceptance is a dump
line of a high intensity synchrotron where a beam that has
tripped during acceleration goes through.
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APPENDIX A

Mori, Planche, and Lagrange also proposed the field
profile of a straight beam transport line, which satisfied
the scaling law [7]. In the straight line, the scaling law
means that the orbit shape and optics functions become
identical independent of beam momentum. According to
the reference, the field profile should be

B.(x,y) = Bo exp(% y)F(x), (AD)

where n = (p/B.)(dB./dy) and p is the radius of curva-
ture. Equation (A1) is actually the form of Eq. (2) in the
limit of large y, as shown in [14]:

o\ so/yk/30)
lim <M> = lim [(1 +l)v“ y:l o

/y(n/p)
= lim [(1 + l)yo y] g exp(ﬁy>,
Yoo Yo P

(A2)

where k/y, is replaced by n/p before taking the limit of
large yj.

Unfortunately, the derivation of the field profile in [7] is
not rigorous although the result is correct. We will show
that Eq. (A1) indeed gives the scaling law in the following
way.

Suppose there is a particle whose momentum is p; and
goes through the horizontal position of y; and longitudinal
position of x;. According to Eq. (A1), it sees the bending
and focusing strength of

n
B (x1,y1) = By eXP(;M)F(xl) (A3)
and
B
Bbun) 1B oy Y. a0
y p

Consider another particle whose momentum is p, = ap;y,
where « is a constant. It has the same bending radius « and
focusing strength K at y, = y; + 2 loga and x, = x; be-
cause

apy
eBexp[n(y; + 2 loga)/p]
ap 4!

~ eByexp(ty;)exp(loga) B

P2
K=—=
eBz

(AS)

and
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dB_(x3,y5) @ dB.(x1,y1) dB_(xy,y1)
= dy = dy = dy
B, (x5, y2)ky  aB (x;, y))k; B (x), y1)K

(A6)

Namely, if the orbit and optics for a particular momentum
particle exist, the other particles whose momentum is p, =
ap; have the identical orbit and optics at the horizontal
position shifted by £ loga.

The quantitative difference between Eq. (2) and
Eq. (Al) can be estimated as follows. If the transverse
part of both equations is expanded as Taylor series,
Eq. (2) becomes

+ v\k
Bzo(yo y)
Yo

— oo — +
=Bzo<l+ LMk=D- Gkt D)

: . ) (A7)
=17 Yo

On the other hand, Eq. (A1) becomes
n k 1 k"
B exp(—y) =B exp(—y) =B (1 + — —ny”).
20 p z0 Yo 20 nZl n i
(A8)
The difference between individual terms of those equations

is the order of% which is negligible when k is large enough
such as 5 X 10° in the example we took.

APPENDIX B

Let the 3 X 3 transfer matrix of the repetitive cell be
my mp d
Ry=|my my d| (BI)
0 0 1

where (:Z; :Z;) is the 2 X 2 transfer matrix for betatron
motion and (j,) is the dispersion vector. The dispersion
function can be obtained using the closed-orbit condition

D(x+L)=D(kx) and D'(x+L)=D'(x), (B2
where L is the length of a repetitive period. Namely,
D D
R ( D'|=1|D ) (B3)
1 1

When

miq min _ —1 0 — 7
nmyq myy 0 -1 ’

the dispersion vector and the dispersion function satisfy

d d
D=§ and D’=E.

In an FFAG, from Eq. (2),

(B4)

+ dp\1/(k+1)
Y (Po P) ’ (BS)

Yo Po

where p, is the reference momentum and dp is a deviation.
Taking the leading term, it becomes

(B6)

Therefore the dispersion function is inversely proportional

to k / Yo-

When k/y of the dispersion suppressor is doubled with
respect to the normal cell, the dispersion function D,, and
its derivative at the normal cell and D and its derivative at
the suppressor cell are

D,=2D and D', =2D"

D,
1

at the entrance of the dispersion suppressor becomes at the
end

-1 0 d\ /D, —2D+d 0
(0 e d/)(D/,,)=(_2D/+df)=(o>.
0 0 1 1 1 1

(B8)

The dispersion function and its derivative are zero after the
dispersion suppressor.

(B7)
Then,
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