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Three-dimensional simulation of harmonic up-conversion in a free-electron laser amplifier operating

simultaneously with two cold and relativistic electron beams with different energy is presented in the

steady-state regime. The fundamental resonance of the higher energy beam is adjusted at the third

harmonic of the lower energy beam. By using slowly varying envelope approximation, the hyperbolic

wave equations can be transformed into parabolic diffusion equations. By applying the source-dependent

expansion to these equations, electromagnetic fields are represented in terms of the Hermite Gaussian

modes which are well suited for the planar wiggler configuration. The electron dynamics is described by

the fully three-dimensional Lorentz force equation in the presence of the realistic planar magnetostatic

wiggler and electromagnetic fields. A set of coupled nonlinear first-order differential equations is derived

and solved numerically. This set of equations describes self-consistently the longitudinal spatial depen-

dence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam.

The evolutions of the transverse modes, in this system, are investigated for the fundamental resonance and

its harmonic up-conversion. In addition to uniform beam, prebunched electron beam has also been studied.

The effect of sinusoidal distribution of entry times for low energy electron beam on the evolution of

radiation is compared with water bag distribution. It is shown that prebunching reduces the saturation

length substantially. The analysis is related to extreme ultraviolet and x-ray emission where by seeding the

lower frequency of the fundamental resonance of the lower energy beam substantial power is obtained at

its third harmonic.
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I. INTRODUCTION

The main concern in free-electron laser (FEL), nowa-
days, is the production of coherent high power short wave-
length radiation because it has the potential to open new
regimes in atomic and electronic processes [1–5]. The
main problem in this field is to find processes or phe-
nomena for seeding the FEL. In one method, the stochastic
bunching in the electron beam, due to shot noise, was
exploited [6]. Since the self- amplified spontaneous emis-
sion (SASE) starts from electron beam shot noise, the
output of the system typically has limited temporal coher-
ence and relatively large shot-to-shot fluctuations in both
power and spectrum although it has transverse coherence
[7].

In order to improve the longitudinal coherence, other
methods have been proposed such as injection of harmon-
ics, which is generated in gas [8], classical or nonclassical
high-gain harmonic generation [9–11], and two-beam FEL
for frequency up-conversion [12]. In these methods har-
monic bunching play an essential role. Radiation of the
electron beam in the planar undulator contains a rich
harmonic spectrum. Higher harmonic radiation can signifi-
cantly extend the operating band of user facilities.

In the two-beam frequency up-conversion method which
was proposed by McNeil et al. [12], two relativistic elec-
tron beams with different energies were exploited in a FEL.
The higher energy electron beam is chosen so that its
fundamental resonance wavelength is a harmonic reso-
nance wavelength of the lower energy beam. It is shown
in Ref. [12] that it is possible to seed the copropagating
electron beams, externally, at the fundamental resonance of
the lower energy electron beam. The lower energy beam
will be bunched at its fundamental resonance as well as at
its harmonics and will retain the coherence properties of
the seed. This process is strongly coupled with the higher
energy beam because its fundamental FEL interaction is at
one of the harmonics of the lower energy beam. This
coupling between the lower and higher frequency FEL
interactions allows the coherence properties of the longer
wavelength seed field to be transformed to the unseeded
short harmonic wavelength interaction.
This phenomenon has not been studied in three dimen-

sions neither in the averaged form nor in the nonaveraged
method. Therefore, three-dimensional features such as dif-
fraction, radiation guiding, and evolution of transverse
modes have not been considered in this system. The optical
guiding of light in FEL [13–15] results during amplifica-
tion when the coherent interaction between the source
electron beam and the electromagnetic field introduces*mohammad_hadi_rouhani@yahoo.com
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an inward curvature in the phase front of the light, which
refracts it back toward the lasing core of the electron beam.
During the amplification the electron beam can behave like
a guiding structure that suppresses diffraction, reduces
transverse power losses, and enhances the electromagnetic
field amplification. The evolution of transverse modes is
important in planning for future user facilities that intend
to employ radiation from this system [16]. Although the
multiple electron beam FEL was studied in [17], in three
dimensions, the harmonic up-conversion was not consid-
ered. The main interest in that paper was to reduce the
coherent synchrotron radiation in the bunch compressor by
adding energy spread to the electron beam.

The purpose of the present study is to present a three-
dimensional nonaveraged simulation of two-beam FEL by
using source-dependent expansion (SDE) [18–22]. The
novel aspect of the SDE method is that the characteristics
of the modes are governed by the driving current density.
Therefore, instead of using the usual modal expansion
consisting of vacuum Laguerre-Gaussian or Hermite-
Gaussian functions [23], the source function is, in SDE,
incorporated self-consistently into the functional depen-
dence of the radiation waist, the radiation wave front
curvature, and the radiation amplitude. The effect of pre-
bunching of low energy electron beam on the evolution of
radiation in the system is studied. Using low energy pre-
bunched electron beam saturation length can be reduced
dramatically.

It is important to emphasize that no average is performed
over the Lorentz force equation; therefore the Kroll-
Morton-Rosenbluth (KMR) scheme is not used. In the
KMR method [24–29], the electron trajectories are aver-
aged over the wiggler period. Hence, only two equations
are integrated per electron, specifically, for the energy and
ponderomotive phase. Advantages of the non-KMR ap-
proach are the possibility to treat the injection of the
beam into the wiggler, the ease of inclusion of external
focusing or dispersive magnetic components in the beam
line, and the facility for using an actual magnetic field in
the numerical solution.

The code which is written for this purpose is named
modified MEDUSA code. Because we did not have access to
the original MEDUSA code [30], we first rewrote the code
and then modified it to study the two-beam FEL.

The organization of the paper is as follows. The general
formulation is described in Sec. II, including the wiggler
model, the dynamical field equations with SDE, and the
Lorentz force equations. The simulation is preformed to
study the two-beam FEL in Sec. III. Section IV is devoted
to the summary and suggestions.

II. BASIC EQUATION

The tapered planar wiggler magnetic field, produced by
magnets with parabolically shaped pole faces, may be
described by

BwðxÞ ¼ BwðzÞ
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where Bw denotes the wiggler amplitude, kw ¼ 2�=�w is
the wiggler wave number corresponding to the wiggler
period �w, and Nw is the number of entry taper of wiggler
periods. This type of wiggler provides enhanced focusing
of the electron beam in the plane transverse to the direction
of bulk electron flow. At the entry region, the wiggler
amplitude varies with axial position in order to model the
adiabatic injection of the beam into the wiggler.
The vector potential of the linearly polarized radiation

field is

A rðx; tÞ ¼
X
h

Ar;hðx; tÞ; (2)

A r;hðx; tÞ ¼ Ar;hðxÞ
2

eihðkz�!tÞêx þ c:c:; (3)

where Ar;h is the slowly varying complex radiation field

amplitude, ! is the fundamental frequency, and
c.c. denotes the complex conjugate. The wave equation is
[20]
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where Jx is the driving current density. Since the wave-
length of interest is less than a micrometer, the collective
Raman effects due to the beam space charge wave are
neglected.
Substituting Eq. (2) into Eq. (4), using slowly varying

envelope approximation, and averaging over one wave
period, transforms the normally hyperbolic equation into
a parabolic diffusion equation for harmonic amplitudes:�

r2
? þ 2ihk

@

@z

�
Ar;h ¼ � 8�

c

!

2�

Z 2�=!

0
Jxe

ihðkz�!tÞdt:

(5)

The details of the derivation of Eq. (5) are given in the
Appendix. The source-dependent expansion technique is
applied to the above equation. Since the planar wiggler is
used, the Hermite-Gaussian modal expansion will be em-
ployed. It is worth mentioning that for the system with
circularly symmetric structure the Laguerre-Gaussian
modes are better suited. For this reason the radiation
amplitude represented in terms of Gauss-Hermite modes as
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X
l;n
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where the summation indices l and n denote the transverse
mode structure, h is the harmonic number, and
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describes the transverse structure of each mode. Here,Hl is
the Hermite polynomial of order l,wh is the spot size of the
hth harmonic, �h is related to the curvature of the phase

front, and �Al;n;h ¼ �Að1Þ
l;n;h � i�Að2Þ

l;n;h. It is assumed that

�Að1Þ
l;n;h, �A

ð2Þ
l;n;h, �h, and wh are slowly varying functions in

z.
To find the dynamical equations, substitute the mode

representation, i.e., Eq. (6) into the parabolic diffusion
equation (5). Then, by multiplying the result with
expð�i�hr

2=w2
hÞ and orthogonalizing in x and y with the

use of the following relation,
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where h0 is the highest harmonic for the low energy elec-
tron beam (superscript s) which also coincides with the
fundamental resonance wavelength of the high energy
electron beam (superscript f). The dimensionless variables
are �x ¼ kwx, �y ¼ kwy, �z ¼ kwz, �t ¼ ckwt, �! ¼ !=ckw,
�k ¼ k=kw, �wh ¼ kwwh, �Xh ¼ Xh=kw, �Yh ¼ Yh=kw,
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The source terms are
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where Fl;n ¼ ð2lþnl!n!Þ�1, !2
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In obtaining Eq. (8) a symmetry argument is used that
electrons that enter the interaction region at time intervals
equal to 2�N=!, with N an integer, will have identical
trajectories. This is used to exchange the integrals on t, x,
and y with the integrals on t0, x0, and y0 in the current
[31,32]. Moreover, the recurrence relation of Hermite pol-
ynomial together with the assumption that the direct mode-
mode coupling terms can be neglected [30] are also used to
find the dynamical equation (8).
It is assumed that the lowest order mode is dominant;

therefore, the diffraction of each harmonic component of
the radiation field, which is described by the SDE method
subject to the interaction with electron beams, is given by
[30]

1
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where �Xh and �Yh are given in terms of the source terms by
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The relativistic 3D Lorentz force equation of motion for the electrons of the slow (superscript s) and fast (superscript f)
beams are given, respectively, by
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The averaging operator is defined by
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The initial distributions are assumed to be subject to the
normalized conditionsZZ
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Equation (23) is an average over a beamlet of electrons
which cross the entry plane within one wave period.

III. NUMERICAL ANALYSIS

Equations (8), (13), and (14) together with Eqs. (17)–
(22) form a set of

6Np1 þ 6Np2 þ
XNh

h¼1

2ðMh þ 1Þ; (26)

self-consistent first-order nonlinear differential equations,
where Np1 stands for the number of macroparticles in the

slow electron beam, Np2 is the number of macroparticles

for the fast electron beam, and Nh is the number of wave-
lengths in the system. For example, if the fundamental
resonance and its harmonic up-conversion at third har-
monic are considered then we will have Nh ¼ 2 or if the

fundamental resonance and its fifth harmonic are consid-
eredNh will be 3. Furthermore,Mh is the number of modes
which is used for each radiation wavelength. These equa-
tions may be solved numerically using the fourth-order
Runge-Kutta algorithm subject to the appropriate initial
conditions. The quantities that are averaged in the dynami-
cal equations are functions of the instantaneous values of
the momenta and phases, which are implicit functions of
the initial phases of the electrons [32]. It is the initial phase
which appears in the averaging operator and represents a
convenient method of discretizing the electron beams
based upon their initial phase relative to the wave. The
number of Gauss-Hermite modes that are needed in the
code depends on each particular example. Diffraction over
the Rayleigh length is opposed by optical guiding due to
the beam, and the balance depends on the Rayleigh length,
the growth rate, and the evolution of the beam envelope.
Therefore, the specific number of modes used in each case
is determined by an empirical procedure in which succes-
sive simulation runs are madewith an increasing number of
modes until convergence of the saturation power and satu-
ration length do not change with the number of modes.
An electron beam with an energy of 219.5 MeV, a

current of 150 A, and an initial radius of 0.02 cm is chosen
as a low energy electron beam. An electron beam with an
energy of 380.185 MeV, a current of 300 A, and an initial
radius of 0.02 cm is exploited as a fast electron beam. The
wiggler field amplitude is Bw ¼ 10:06 kG, period is �w ¼
3:3 cm, and an entry taper region is Nw ¼ 10 wiggler
period in length. The initial condition of the radiation fields
is chosen such that the fundamental wavelength is seeded
with a 10 W of optical power which is also assumed to be
totally in the lowest mode of fundamental resonance. The
harmonic has started from zero initial power. The initial
radiation waists are 0.05 cm and the initial alpha parame-
ters are chosen to be zero. For the chosen parameters of the
electron beam and wiggler magnetic field, the 1D reso-
nance formula yields a wavelength of 496.1 nm. Because
of three-dimensional effects, fundamental resonance takes
place at 500.5 nm and the third harmonic is at 166.84 nm.
The averages in the dynamical equations for the wave
modes are performed by means of an Nth-order Gaussian
quadrature technique in each of the variables. The initial
state of electron beams is chosen to model the injection of a
monoenergetic and axisymmetric electron beams with the
flattop density profiles, i.e., �? ¼ 1. For unbunched elec-
tron beam the particles are uniformly distributed in phase.
On the other hand, for the prebunched case, the beam is
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modeled by the following distribution in initial phase [33]:

�ðc 0Þ ¼
� ð4�=c widthÞsin2ð�c 0=c widthÞ 0� c 0 � c width;
0 otherwise;

(27)

where c 0 ¼ �!t0. The electron positions are chosen by
means of the Gaussian algorithm within the ranges 0 �
c 0 � 2�, 0 � �0 � 2�, and 0 � r0 � Rb, where �0 is the

polar coordinate. In the absence of an energy spread, pz0 ¼
mcð�2

0 � 1Þ1=2, where �0 is the relativistic factor corre-

sponding to the total beam energy. It is important to
recognize, however, that the subsequent evolution of the
beam is integrated self-consistently, and the beam may
bunch in axial phases as well as develop both energy and
pitch angle spreads due to the nature of the interaction. For
each wavelength in the system, 36 modes are used with a
total of 4096 particles for each electron beam; therefore the
total number of particles is 8192. The code is run on the
AMD PhenomTM X3 Triple Core processor. In order to
check the validity of our code parameters of Ref. [30] for a
single beam is used and identical results are obtained.

In two-beam FEL, the external seed for low energy
electron beam is used. Therefore, it is irrelevant to consider
the effect of shot noise for fundamental resonance of the
low energy electron beam. The third harmonic in the
system is started from the shot noise but in the nonlinear
regime the harmonic bunching due to the fundamental
resonance creates seed for it. Therefore, the effect of shot
noise is not important which is also stated in Ref. [12]. It is
worth mentioning that the effect of slippage must be con-
sidered for a system in which radiation pulse moves out of
the electron pulse, considerably. In our system, the wiggler
length is 13.4 m. After each wiggler period, i.e., each
3.3 cm, radiation slips one wavelength over the electron
pulse. Therefore, for fundamental resonance the slippage
length is 200 	m. If the length of the electron beam is
about 2 mm, only one-tenth of the radiation pulse can
escape the electron beam. Therefore, slippage is negligible
and the steady-state simulation can be applied.

The power of the fundamental resonance and harmonic
up-conversion at the third harmonic for water bag distri-
butions of entry times are plotted in Fig. 1(a) as a function
of the distance through the system. In contrast to the non-
linear harmonic generation [30,34], the intensity of the
shorter wavelength is larger than the intensity of funda-
mental wavelength [12]. This means that by seeding the
fundamental resonance of the lower energy beam, energy
will be up converted to the higher frequency third harmonic
leading to higher power. The fundamental resonance, in
Fig. 1(a), has three distinct regime, i.e., small signal regime
that ends at around z � 2 m, exponential growth, and
saturation at z ¼ 10:76 m. These three regimes for the
third harmonic, on the other hand, are not distinctly well
separated and saturation is at z ¼ 13:48 m. The reason is
that the third harmonic is driven by both beams and it is the

FIG. 1. (Color) (a) Evolution of the power for fundamental
resonance (solid line) and its harmonic up-conversion at third
harmonic (dashed line). (b) Bunching parameter for fundamental
resonance wavelength (solid line), its third harmonic (dash-
dotted line) for low energy electron beam, and fundamental
resonance of high energy electron beam (dashed line).
(c) Phase of bunching parameter for third harmonic of low
energy electron beam with longitudinal coordinate.
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superposition of two different types of amplifying radia-
tion; the fundamental resonance of the high energy beam
and the third harmonic of the low energy beam.

Note that the points of saturation vary for wavelength, as
is evident in Fig. 1(a) as well as in Fig. 2 in more detail.
Saturated power of the fundamental frequency is 2:05�
108 ðWÞ and third harmonic power saturates at 9:86�
108 ðWÞ. Bunching parameter of fundamental resonance
and its third harmonic for the low energy electron beam
together with the bunching parameter of fundamental reso-
nance of high energy electron beam are plotted in Fig. 1(b).
In Fig. 1(c), the phase of bunching parameter of the third
harmonic of low energy electron beam is plotted. The first
peak of bunching parameter for fundamental resonance
wavelength of low energy electron beam that occurs at z ¼
9:67 m is 0.73. For the third harmonic of low energy
electron beam, the first peak of bunching parameter is
0.52 that takes place at z ¼ 9:27 m. The saturated value
of bunching parameter for fundamental resonance of the
high energy electron beam is 0.8 that occurs at z ¼ 12:9 m.
In Figs. 2(a) and 2(b) evolution of the radiation amplitude
in the transverse plane is shown as a function of z for the
fundamental mode and the third harmonic, respectively.
All transverse profiles are normalized to the peak intensity
of 1. Therefore these figures do not show the amplification
of the radiation. It can be seen that the amplitude profile of
the radiation in the transverse plane becomes narrower as
the radiation travels along the wiggler. Narrowing of the
transverse intensity profile is evident as the radiation prop-
agates toward the point of saturation and this mode nar-
rowing is greater for the third harmonic. Although the
approximate position of saturation points can be seen
from the intensity profile of Fig. 1, its more precise posi-
tion can be inferred from the point where mode narrowing
stops and the intensity profile widens. This is because
radiation waist begins to grow at saturation since the so-
called gain guiding is no longer effective. To determine the
exact position of saturation, on this basis, an extensive
numerical investigation is necessary with this code to
read out many more modal maps in z. Before the saturation
point, strong Gaussian profiles with gentle ripples on their
outskirts indicate that TEM00 is the dominant mode in this
region. However, additional modes tend to grow, beyond
the saturation point.

In Fig. 3, the spot size or the radiation waist of funda-
mental resonance and third harmonic up converted radia-
tion are compared. The radiation spot size for fundamental
resonance is observed to expand, from its initial size of
w1ð0Þ ¼ 0:05 cm, during the initial stage of interaction as
predicted by vacuum diffraction. However, the radiation
spot size experiences rapid focusing at the onset of expo-
nential growth, and undergoes a few oscillations during
this phase before expanding rapidly as saturation occurs.
The radiation spot size for the third harmonic behaves to
some extent differently, compared to the fundamental

resonance, but is always smaller, especially at saturation
which becomes very small. In the single beam FEL, the
spot size of the third harmonic is larger than that of the
fundamental resonance in the region of the exponential
growth but remains small in the small signal regime and
beyond saturation [30].

FIG. 2. (Color) Transverse intensity profile of fundamental reso-
nance wavelength (a) and third harmonic wavelength (b) in the x
direction for y ¼ 0.
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Although the presence of higher order modes are evident
in Fig. 2 beyond the saturation point, they only constitute
about 20% of the total power and the other 80% is con-
centrated in the lowest order TEM00 mode. These points
are illustrated in Fig. 4 where the evolution of the total
power, due to all modes, and that of the lowest order
TEM00 mode for the fundamental resonance and for the
third harmonic are shown. It can be seen that the lowest
order mode is dominant. Therefore our assumption that the
lowest order mode is dominant is justified. Among the 35
other modes, TEM02, TEM04, TEM20, TEM22, TEM24,
TEM40, TEM42, and TEM44 modes have a noticeable con-
tribution and the rest are negligible.

The evolution of�, which represents the curvature of the
phase front, is shown in Fig. 5. Both fundamental reso-
nance and the third harmonic, which are plane waves at the
entrance to the undulator at z ¼ 0, deviate from plane
waves as radiation moves forward and increases abruptly
once saturation is passed.
In Fig. 6(a), the effect of sinusoidal distribution in entry

times for low energy electron beam on the evolution of
radiation power in the system is illustrated. It can be seen
that for sinusoidal distribution the evolution of radiation
power has three regimes which are over exponential, ex-
ponential, and saturation. By decreasing the prebunching
width, the exponential regime disappears and saturation
length decreases dramatically. For shorter wavelengths
more complicated means is required for the production of
a prebunched electron beam and also the degree of pre-
bunching is reduced. For these reasons, the effect of pre-
bunching is only considered for the low energy electron
beam. For sinusoidal distribution of the low energy elec-
tron beam with c width ¼ 2�, saturated power of funda-
mental resonance wavelength is 4:2� 108 W which takes
place at z ¼ 3:57 m and saturated power of the third
harmonic is 9:9� 108 W and saturation length is 6.51 m.
Because of the significant reduction of saturation length
the effect of slippage, in this case, is less important. The
electron-beam pulse in this case can be reduced to
0.98 mm. The bunching parameter of fundamental reso-
nance and its third harmonic for the low energy electron
beam together with the bunching parameter of fundamental
resonance of the high energy electron beam are plotted in
Fig. 6(b). In Fig. 6(c), the phase of bunching parameter of
third harmonic of low energy electron beam is plotted. The
first peak of bunching parameter for fundamental reso-
nance wavelength of low energy electron beam that occurs
at z ¼ 3:12 m is 0.81. For the third harmonic of the low

FIG. 4. (Color) Evolution of the total power (solid line) and that
of the TEM00 mode (dashed line) for the fundamental resonance
and the third harmonic.

FIG. 5. (Color) Evolution of �1 and �3 with longitudinal coor-
dinate.

FIG. 3. (Color) Evolution of radiation spot size for fundamental
wavelength (solid line) and its harmonic up-conversion at third
harmonic (dashed line) with longitudinal coordinate.
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energy electron beam, the first peak of bunching parameter
is 0.82 that takes place at z ¼ 2:89 m. The saturated value
of the bunching parameter for fundamental resonance of
the high energy electron beam is 0.71 that occurs at z ¼
5:46 m. For the prebunched electron beam with c width ¼
2� the evolution of radiation waist and radiation amplitude
in the transverse plane are illustrated in Figs. 7 and 8.
For the second example, an electron beam with an

energy of 470 MeV, a current of 300 A, and an initial
radius of 0.1495 mm is chosen as a low energy electron
beam. An electron beam with an energy of 799 MeV, a
current of 600 A, and an initial radius of 0.1495 mm is
exploited as a fast electron beam. The wiggler parameters
are as before. The fundamental resonance wavelength is
seeded with a 10 W of radiation which is also assumed to
be totally in the lowest mode of fundamental resonance.
The harmonic wavelength starts from zero initial power.
The initial radiation waists are 0.37 mm and the initial
alpha parameters are chosen to be zero. For the chosen
parameters of the electron beam and wiggler magnetic field
the fundamental resonance takes place at 107.5 nm and the
third harmonic is at 35.8 nm. The variation of power for
fundamental resonance wavelength versus wavelength at
z ¼ 10 m is plotted in Fig. 9.
The power of the fundamental resonance and harmonic

up-conversion at the third harmonic for water bag distri-
butions of entry times are plotted in Fig. 10(a) as a function
of the distance through the system. The saturated power of
the fundamental frequency is 5:88� 108 ðWÞ which oc-
curs at z ¼ 11:14 m and the third harmonic power satu-
rates at 1:81� 109 ðWÞ which takes place at z ¼ 13:63 m.
The bunching parameter of fundamental resonance and its
third harmonic for the low energy electron beam together
with a bunching parameter of fundamental resonance of the

FIG. 6. (Color) (a) Evolution of the power for fundamental
resonance (solid line) and its harmonic up-conversion at third
harmonic (dashed line). (b) Bunching parameter for fundamental
resonance wavelength (solid line), its third harmonic (dash-
dotted line) for low energy electron beam, and fundamental
resonance of high energy electron beam (dashed line).
(c) Phase of bunching parameter for third harmonic of low
energy electron beam with longitudinal coordinate when low
energy electron beam is prebunched with sinusoidal distribution.

FIG. 7. (Color) Evolution of radiation spot size for fundamental
wavelength (solid line) and its harmonic up-conversion at third
harmonic (dashed line) when low energy electron beam is
prebunched with sinusoidal distribution.
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high energy electron beam are plotted in Fig. 10(b). In
Fig. 10(c), the phase of the bunching parameter of the third
harmonic of the low energy electron beam is plotted. The

first peak of the bunching parameter for fundamental reso-
nance wavelength of the low energy electron beam that
occurs at z ¼ 10:15 m is 0.77. For the third harmonic of the
low energy electron beam, the first peak of the bunching
parameter is 0.55 that takes place at z ¼ 9:62 m. The
saturated value of the bunching parameter for fundamental
resonance of the high energy electron beam is 0.73 that
occurs at z ¼ 12:41 m. In Fig. 11 evolution of radiation
waists is presented. For comparison, the evolution of ra-
diation waist for the fundamental resonance wavelength in
the absence of electron beams is also plotted. The effect of
gain guiding due to the electron beam is evident.
The transformation matrix for symmetric quadruple

triplet or FODO (F and D correspond to the focusing and
defocusing quadruple magnet, respectively, and O is for the
drift space) lattice that starts at the middle of a focusing
quadruple is [35,36]

M FODO ¼ M1=2QFMOMQDMOM1=2QF ¼ C S
C0 S0

� �
;

where M1=2QF is the transformation matrix for quadruple

focusing, MO is for drift space between quadruples, and
MQD is for quadruple defocusing. In the FODO lattice the

matched electron beam has the periodicity of the lattice.
Therefore, the beam envelope must satisfy

rbðzþ LpÞ ¼ rbðzÞ;
where Lp is the lattice period, i.e.,


ðzþ LpÞ ¼ 
ðzÞ;
where 
 is the lattice function. The value of 
 in terms of
magnetic field gradient and electron beam energy can be
written as [37]

FIG. 9. (Color) Variation of power for fundamental resonance
wavelength for low energy electron beam versus wavelength at
z ¼ 10 m.

FIG. 8. (Color) Transverse intensity profile of fundamental reso-
nance wavelength (a) and third harmonic wavelength (b) in the x
direction for y ¼ 0 when low energy electron beam is pre-
bunched with sinusoidal distribution.
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̂ ¼ eB0
q

�b�bmc
:

Therefore, different electron beams see different FODO
lattice function with the same periodicity. The �Twiss for
the full FODO lattice can be calculated numerically. In thin
lens approximation, however, it can be found analytically.
In this approximation it is assumed that the length of a
quadruple magnet is small compared to its focal length.
The elements of the transformation matrix of FODO lattice
in this approximation reduce to C ¼ 1� 2L2f�2, S ¼
2Lð1þ L=fÞ, C0 ¼ �1=f�, and S0 ¼ 1� 2L2f�2. Here
f is the focal length, L is the half length of the lattice,
and f��1 ¼ 2ð1� L=fÞL=f2. In this approximation, for
�Twissð0Þ ¼ 0, the ratio of �Twiss for electron beams is

�f
Twiss

�s
Twiss

¼ 
̂s


̂f
:

Therefore the ratio of the electron beam radius (r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�Twiss

p
) can be written as

rs

rf
¼

ffiffiffiffiffi
"sn

"fn

s
;

where "n with superscript s (f) is the normalized emittance
of slow (fast) electron beam. Therefore two different elec-
tron beams can be matched to one FODO lattice. As shown
in [38], in a single undulator, the matched radius of elec-
tron beam is proportional to

ffiffiffiffiffi
"n

p
. If the normalized emit-

tance for electron beams is chosen to be 3� mmmrad, the
matched radius for electron beams is 0.1495 mm.
Therefore two electron beams with different energy not

FIG. 10. (Color) (a) Evolution of the power for fundamental
resonance (solid line) and its harmonic up-conversion at third
harmonic (dashed line). (b) Bunching parameter for fundamental
resonance wavelength (solid line), its third harmonic (dash-
dotted line) for low energy electron beam, and fundamental
resonance of high energy electron beam (dashed line).
(c) Phase of bunching parameter for third harmonic of low
energy electron beam with longitudinal coordinate.

FIG. 11. (Color) Evolution of radiation spot size for fundamen-
tal wavelength (solid line), its harmonic up-conversion at third
harmonic (dashed line), and evolution of radiation spot size for
fundamental wavelength in the absence of electron beam (dash-
dotted line) with longitudinal coordinate.
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only match to the same wiggler but also can be matched to
the FODO lattice.

IV. CONCLUSION AND SUGGESTION

A nonaveraged and 3D simulation of harmonic up-
conversion in a FEL amplifier operating simultaneously
with two cold and relativistic electron beams with different
energy is presented in the absence of slippage. The varia-
tion of radiation waists, curvatures, and amplitudes for
fundamental and its harmonic up-conversion are studied.
Transverse mode evolution of fundamental and the har-
monic up-conversion at the third harmonic are investigated
in more detail. The radiation power of harmonic up-
conversion is larger than that of the fundamental reso-
nance. This is in contrast to the nonlinear harmonic gen-
eration. It is also in contrast to the radiation up-conversion
method in which the wiggler is filled by plasma [39]. The
waist of harmonic up converted radiation is focused to a
smaller spot size than that of the fundamental resonance.
At the point in which the harmonic up converted radiation
saturates the fundamental radiation loses its quality, be-
cause it has passed beyond its own saturation point. The
effect of prebunching of low energy electron beam on the
evolution of radiation in the system is studied. Using low
energy prebunched electron beam dramatically reduced
saturation length.

The numerical simulation, with the SDE technique in
three dimensions, of the two-beam FEL shows that by
seeding the lower energy beam considerable seeding of
both the radiation field and the electron bunching of the
higher energy beam is possible. This proposed seeding
method may find application in the FELs in extreme ultra-
violet or x-ray domain where direct coherent seeding is not
possible.

Extension of this work to study the optical properties of
harmonic up converted radiation by using the M2 parame-
ter [40] for the two-beam FEL is in progress. The effect of
wiggler contouring for efficiency enhancement will be
studied in the future.

APPENDIX

Here, a detailed derivation of Eq. (5) is presented. For
simplicity harmonics are not considered. The radiation
amplitude, for the fundamental resonance, is

A rðx; tÞ ¼ 1
2Arðx; tÞ expðikz� i!tÞêx þ c:c:;

where Arðx; tÞ is the radiation amplitude that varies slowly
with z and t, but we do not impose any restriction on x and
y. Substituting this form of the radiation amplitude in the
hyperbolic wave equation,

�
r2

? þ @2

@z2
� 1

c2
@2

@t2

��
1

2
Arðx; tÞ expðikz� i!tÞêx þ c:c:

�

¼ � 4�

c
J; (A1)

leads to

eiðkz�!tÞr2
?
Ar

2
þDþD�

�
Ar

2
eiðkz�!tÞ

�
þ e�iðkz�!tÞr2

?
A�
r

2

þDþD�
�
A�
r

2
e�iðkz�!tÞ

�
¼ � 4�

c
Jx; (A2)

where Dþ ¼ @=@zþ c�1@=@t and D� ¼ @=@z�
c�1@=@t. Applying DþD� gives

DþD�fAre
iðkz�!tÞg ¼ eiðkz�!tÞðDþ 2ikDþÞAr:

Here, D can be neglected because it is proportional to the
second order derivatives of amplitude with respect to z and
t. Therefore,

DþD�fAre
iðkz�!tÞg ffi 2ikeiðkz�!tÞDþAr: (A3)

By using the above relation, Eq. (A2) reduces to

eiðkz�!tÞ½r2
? þ 2ikDþ�Ar

2
þ e�iðkz�!tÞ½r2

? þ 2ikDþ�A
�
r

2

¼ � 4�

c
Jx: (A4)

Multiplying the above equation by e�iðkz�!tÞ, and integrat-
ing the resulting equation over one wave period, removes
the second term which has rapid oscillation and the para-
bolic equation is obtained:

ðr2
? þ 2ikDþÞAr ¼ � 8�

c

!

2�

Z 2�=!

0
Jxe

�iðkz�!tÞdt:

(A5)

In the absence of slippage Dþ reduces to @=@z and Eq. (5)
will be obtained for h ¼ 1.
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