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The emittance of a photocathode is evaluated using a distribution function (‘‘Moments’’) approach to

calculate the moments of the momentum. The effects of temperature and field, which affect the electron

distribution and transmission probability, respectively, of electrons incident on the surface barrier, are

found. The resulting formulations of emittance are compared to the asymptotic limit found by D.H.

Dowell and J. F. Schmerge [Phys. Rev. ST Accel. Beams 12, 074201 (2009)], and their formulation is

shown to be more generally applicable than the approximations within it would indicate for metals. The

methodology is extended to develop an asymptotic emittance estimate for semiconductor photocathodes.
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I. INTRODUCTION

The emittance of a photocathode is evaluated using a
distribution function approach to calculate the moments of
the momentum: it therefore accounts for material proper-
ties (e.g., work function and electron affinity) as well as the
effects of temperature and applied field. Intense electron
beams for high power and short wavelength free-electron
lasers entail restrictions on the tolerable emittance from the
electron source, typically a photocathode, to enable very
short bunches of a desired shape [1]. Models of emittance
share a methodology with the calculation of quantum
efficiency, or QE [2]. In the distribution function approach
used here, QE is proportional to the first moment of the
longitudinal momentum hk1zi, whereas emittance considers
the square of the transverse momentum component hk2�i.
The Moments approach was the basis for the evaluation of
emittance of a photocathode in earlier treatments [3–5].
Differences between it and the Spicer three-step model
employed by Dowell and Schmerge (DS) were suggested
to be due to differences in their respective approximations,
but Dowell and Schmerge demonstrated that the difference
instead was due to the neglect of the photon energy con-
tribution to the transverse momentum in the Moments
approach: when included, the two formulations agree in
their asymptotic limits.

Given the equivalence of the Moments approach and the
DS-Spicer approach, the present work reconstructs the
Moments formulation without making the approximations
leading to the elegant and simple asymptotic limit. These
approximations are (i) the dominance of forward (into the
surface barrier) transport or, alternately, the neglect of the
angular dependence of the scattering probability, (ii) the
energy independence of the mean free path, (iii) the step-
function nature of the transmission probability, (iv) the

temperature independence of all factors and, in particular,
the zero temperature limit of the Fermi-Dirac distribution
that characterizes electrons in metals, (v) the effect of
electric field manifesting itself only in the Schottky barrier
lowering factor

ffiffiffiffiffiffiffiffiffiffi
4QF

p
rather than in the transmission

probability, and (vi) the presumed closeness of the photon
energy @! to the work function�. The nomenclature is as
given in Table I. It shall be shown that the DS formula of
the emittance of a metal photocathode remains good even
when all other complications (in spite of their complexity)
are considered, and over a larger range of values than
otherwise expected. The methodology is then used to
develop expressions for the emittance of semiconductor
photocathodes, for which such approximations have
greater consequence: a similar, but not as simple, formu-
lation is found that shows greater differences with the
numerically evaluated moments than is the case for metals.

II. ZEROTH ORDER MOMENTS
APPROXIMATION

In terms of the conjugate position and momentum terms
x and kx, respectively, the normalized rms emittance is
given by [6]

"n;rms ¼ @

mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihk2xi � hxkxi2

q
: (1)

It is often the case that the cross term hxkxi2 is negligible by
comparison to the term hx2ihk2xi (but not always, as in the
case of field emitters [7]), and that approximation holds
here. For uniform emission, hx2i ¼ h�2i=2 ¼ �2

c=2, where
�c is the radius of the emission area. As noted by Dowell
and Schmerge, considerations of emittance therefore re-
volve around the behavior of hk2xi ¼ hk2�i=2. Moments are

weighted averages over the distribution fðr;kÞ of emitted
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electrons and of the form [5]

Mnðk�Þ /
Z

kn�fðr;kÞdrdk; (2)

where the n subscript on M reflects the power k is raised
to—it is not related to the conventional n subscript on " in
Eq. (1) to indicate ‘‘normalized.’’ The evaluation involves
the ratio of the 2nd to the 0th moment of the radial
momentum: compared to the DS nomenclature, their ‘‘di-
mensionless rms transverse momentum’’ [Eq. (26) of [1] ]

is equivalent to our ð@=mcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðk�Þ=2M0ðk�Þ

q
—albeit that

minor differences related to the transformation of the
volume element in phase space being converted to an
energy integration by assuming that Ek � ð@kÞ2=2m oc-
cur—but to leading order such differences are negligible if
the photon energy is comparable to the work function and
slowly varying energy-dependent terms are evaluated at
the Fermi level � ¼ @

2k2F=2m.
More importantly, as pointed out by Dowell and

Schmerge, while the Moments approach references the
momentum inside the metal, conservation of momentum
in the transverse direction across the metal-vacuum barrier
demands that k� outside be augmented by the photon

energy via k2� ! k2? � k2� þ k2!, where k2! ¼ 2m!=@2,

and that emittance uses hk2?i. The conservation of momen-

tum argument of DS is equivalent to the demand of con-
tinuity of the wave function and its first derivative across
the metal-vacuum interface. Therefore, earlier Moments
treatments [specifically, Eq. (699) in Ref. [4] or Eq. (53) in
Ref. [5] ] must replace Mnðk�Þ by Mnðk?Þ when applying

the Moments approach to the emittance problem, other-

wise the formula for emittance is a factor of kF=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þ k2!

q
too small (e.g., 80% for Cu and UV light) compared to the
DS asymptotic limit.

The evaluation of the Moments contains terms for ab-
sorption, transport to the surface, and emission over a
surface barrier. For metals, the Moments are

Mnðk?Þ ¼ ð2�Þ�3
Z

dkðkn?ÞDfðEk þ @!Þcos2�g
� f�ðcos�; Ek þ @!ÞfFDðEÞ
� f1� fFDðEk þ @!Þg; (3)

where transport is governed by the scattering factor f�,
emission over the barrier is governed by the transmission
probabilityD, and the absorption of the photon is governed
by the Fermi-Dirac functions fFD and is in proportion to
the occupation of its initial state and dependent on whether
its final state is occupied. Importantly, the scattering factor
is given by f�ðcos�; EÞ ¼ cos�=½cos�þ pðEÞ�, where
pðEÞ is the ratio of the laser penetration depth �! to the
distance between scattering events [i.e., the product of the
velocity of the electron with its characteristic scattering
time �ðEÞ].
If the Fermi-Dirac distribution and the transmission

probability are taken as step functions (a zero temperature
and field approximation for metals), if the window of
energy allowed by the Fermi-Dirac functions the pðEÞ
term allows it to be replaced by po � pð�þ�Þ, and if
the ‘‘forward dominated’’ approximation—that is, only
those electrons pointing almost directly at the surface
escape when the photon energy is near the effective work
function �—is made, then the scattering factor is approxi-
mated by f�ðcos�; EÞ � cos�=ðpo þ 1Þ (though different
than the equivalent DS approximation the leading order
outcome is the same). The angular integration is then
analytic and so

TABLE I. Parameters and representative values.

Symbol Definition Value Unit

m Electron mass (vacuum) 510 999 eV=c2

c Speed of light 299.792 nm=fs
@ Planck’s constant 0.658 212 eV fs

	fs Fine structure constant 1=137:036 � � �
Q 	fs@c=4 0.359 991 eV nm

T Temperature 300 K

F Electron charge � electric field 0.1 eV=nm
� Work function 4.5 (Cu), 4.52 (Ag) eV

� Chemical potential 7 (Cu), 5.48 (Ag) eV

kF ð2m�Þ1=2=@ � � � 1=nm
@! Photon energy 4.661 eV

�c Laser illumination radius 1 mm

�! Laser penetration depth 12 nm

Ea Electron affinity 0.3 (Cs3Sb), 0.2 (Cs2Te) eV

Eg Band gap 1.6 (Cs3Sb), 3.5 (Cs2Te) eV
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Mnðk?Þ � 1

ð8�2Þ
�
2m

@
2

�ðnþ3Þ=2 1

ðnþ 2Þðpo þ 1Þ

�
Z 0

��@!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ s

p ðsþ @!��Þðnþ2Þ=2

�þ sþ @!
ds;

(4)

where s is a dummy integration variable. For metals such
as copper,� is 7 eV, whereas @!�� is a fraction of an eV
for wavelengths longer than UV. Therefore �þ s � � in
the integrand, giving

Mnðk?Þ � �1=2

4�2ð�þ @!Þðpo þ 1Þðnþ 4Þðnþ 2Þ
�
�
2m

@
2

�ðnþ3Þ=2ð@!��Þðnþ2Þ=2: (5)

When applied to emittance it follows

"n;rms ¼ �c

2

@

mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðk?Þ
2M0ðk?Þ

s
� �c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!��

3mc2

s
� "0n;rms; (6)

where the ‘‘0’’ superscript indicates the leading, or zeroth,
order approximation, and is equivalent to Eq. (33) of
Ref. [1]: what is now to be done is to not approximate
the Fermi-Dirac distributions and the transmission proba-
bilities as step functions, and retain the energy dependence
of the integrand terms.

III. CORRECTIONS TO THE ZEROTH ORDER
APPROXIMATION

Regarding the transmission probability as a step func-
tion and incorporating its effect on the angular integration
part of Mn results in integrals that can be analytically
evaluated without recourse to the forward approximation
or the relative constancy of the laser penetration depth
�!ðEÞ factor. Using the concise notation [see Eq. (697)
of Ref. [4] or Eq. (62) of Ref. [5], but referred to as the
function G therein],


0ðsÞ ¼ 1� sþ p ln

�
pþ s

pþ 1

�


2ðsÞ ¼ 1

6
ð1� sÞ½3pð1þ sÞ þ 2ð2þ sÞð1� sÞ � 6p2�

þ pð1� p2Þ ln
�
pþ s

pþ 1

�
; (7)

where the energy dependence of sðEÞ ¼ Eþ @! and
pðEÞ ¼ m�ð!Þ=½@kðEÞ�ðEÞ� has been hidden for clarity,
then

Mnðk?Þ � 1

8�2

�
2m

@
2

�ðnþ3Þ=2 Z �þ@!

�þ�
sn=2ðs� @!Þ1=2

� 
n

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ�

s

s �
ds; (8)

where p is a function of energy, and therefore a function of
s. Electron-electron relaxation times in metals (which
dominate for photoexcited electrons) are well approxi-
mated by a power-law relation �eeðEÞ � �o½�=ðE��Þ�j
(e.g., Refs. [3,5]), where �o ¼ 1:23 fs and j ¼ 1:9 for
copper (or 3.44 fs and 1.85, respectively, for silver), sug-
gesting that if �ð!Þ ¼ 12 nm, then

pðEÞ � 6:22

�
�

E

�
1=2

�
E

�
� 1

�
1:9
: (9)

In particular, pð�þ�ÞjCu � 2:10. Therefore, when step
functions are used to approximate the Fermi-Dirac distri-
bution and the transmission probability, emittance takes
the form

"n;rms ¼ �c

2

1

mc2

�R�þ@!
�þ� sðs� @!Þ1=2
2ð

ffiffiffiffiffiffiffiffiffi
�þ�
s

q
ÞdsR�þ@!

�þ� ðs� @!Þ1=2
0ð
ffiffiffiffiffiffiffiffiffi
�þ�
s

q
Þds

�
1=2

:

(10)

Explicit evaluation shows that the integrands of the nu-
merator and denominator of Eq. (10) are smoothly varying:
to a good approximation the integrand of the numerator
behaves as a quadratic, and that of the denominator as a
linear, function in s, and in both cases, the integrands
evaluated at the lower bounds vanish as a consequence of

nð1Þ ¼ 0. Using the linear and quadratic approximations
in the denominator and numerator, respectively, the inte-
grals can be trivially evaluated and are expressible in terms
of the integrands evaluated at the upper bounds to give

"n;rms

"0n;rms
¼ 2
2ð�Þ

ð1��2Þ
0ð�Þ
; (11)

where � ¼ ½ð�þ�Þ=ð�þ @!Þ�1=2 has been introduced,
the square of which is equal to the ratio of the height of the
barrier to the energy of an electron excited from the Fermi
level. When � ¼ 1, the right-hand side (RHS) of Eq. (11)
is identically unity, and is understood to be the asymptotic,
or DS, approximation. However, to a good approximation,
the right-hand side of Eq. (11) is close to unity over a range
of �, indicating that the DS approximation is good even
when, first, the photon energy is not necessarily close to the
height of the barrier above the Fermi level and, second, the
energy dependence of the relaxation time is accounted for.
The behavior is shown in Fig. 1 for typical copper parame-
ters (albeit that the laser penetration depth factor �! is
assumed fixed at 12 nm) using the energy-dependent re-
laxation time for both a clean (� ¼ 4:5 eV) and partially
cesiated (� ¼ 1:8 eV) surface. While a range of � values
are shown, in practice, � is close to unity as laser wave-
lengths longer than UV are generally used [e.g., for a
wavelength of 240 nm, �ðCuÞ ¼ 0:972 and �ðCs-CuÞ ¼
0:850].
A comparison of the DS approximation to measure-

ments of the emittance of copper are definitively examined
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by Dowell and Schmerge [1,2,8], who compare their for-
mulation with other treatments in the literature and provide
a brief discussion of potential causes of differences be-
tween theory and experiment for metals, such as neglect of
polarization effects, surface roughness, emission from a
tilted surface, effects of field orientation, and field en-
hancement effects. We would augment this discussion by
observing that crystal faces with their attendant work
function differences and the nontrivial impact of adsor-
bates would tend to increase theoretical emittance esti-
mates: patch fields created close to the photocathode
surface create transverse field components. A comparable
effect alluded to by Dowell and Schmerge concerning
surface roughness and field enhancement is that electrons
emitted from such surfaces are launched at their creation
with velocity components parallel to the surface. In all,
such factors increase photocathode ‘‘intrinsic’’ emittance
from the start, and models that neglect such factors there-
fore underestimate the emittance by an amount difficult to
anticipate. Simple models may provide qualitative esti-
mates (and are underway).

IV. FIRST ORDER TEMPERATURE AND FIELD
CORRECTIONS

The step-function approximations to the transmission
probability and the Fermi-Dirac distributions are now re-
laxed, and the consequences on "n;rms assessed. To do so,

introduce a function f"ðxÞ, where " is a small parameter, of
the form

f"ðxÞ � ð1þ eðx�xoÞ="Þ�1: (12)

Clearly, in the limit " ! 0, f"ð�xÞ becomes a step func-
tion (0 for x < xo and 1 for x > xo). For smoothly and
slowly varying functions hðxÞ, the relation

Z a

b
hðxÞf"ðxÞdx �

Z a

xo

hðxÞdxþ 1

6
ð�"Þ2h0ðxÞ; (13)

where the upper and lower bounds satisfy ða� xoÞ=" � 1
and ðxo � bÞ=" � 1 and h0ðxÞ ¼ dh=dx. Because both the
Fermi-Dirac distribution for temperature and the transmis-
sion probability for field give rise to functions of the form
of Eq. (12), small parameters "T and "F arise, and so to
leading order, the moments are

Mnðk?Þ � M0
nðk?Þ þ �MF

n þ �MT
n ; (14)

where the 0 superscript denotes the step-function approxi-
mation, where F and T in the superscripts denote field and
temperature, respectively, and where terms of order
ð"F"TÞ2, "4F, "4T , and smaller are neglected. Application
of Eq. (13) to Eq. (3) gives rise to approximations of �MF

n

and �MT
n .

For the Fermi-Dirac distribution, "T ¼ 1=�T ¼ kBT,
xo ¼ �, and f"T ðxoÞ $ 1� fFDðEÞ. It follows

�MT
n ¼ �ðkBTÞ2

96kF

�
2m

@
2

�ðnþ4Þ=2ð�þ @!Þðn�2Þ=2

� ½ðnþ 1Þ�þ @!�
nð�Þ; (15)

where @kF ¼ ffiffiffiffiffiffiffiffiffiffiffi
2m�

p
, or, alternately,

�MT
2

M0
2

¼ � ð3�þ @!Þð�kBTÞ2
4�ð�þ @!Þð@!��Þ

�MT
0

M0
0

¼ � ð�kBTÞ2
6�ð@!��Þ ;

(16)

where the quadratic and linear approximations for the step-
function approximations to M2 and M0, respectively, have
been used in the denominators. For copper parameters at an
elevated T ¼ 600 K and fields of 100 MV=m, the ratios
are �MT

2 =M
0
2 ¼ �0:0019 and �MT

0 =M
0
0 ¼ �0:0006, and,

therefore, the insensitivity of the DS approximation to
temperature is reasonable.
To extend such an analysis to the impact of fields, we

first note that, for a number of potential barriers encoun-
tered in electron emission, the transmission probability can
be well approximated by f"ðxÞ [9]. Barriers for which this
is true include the image charge and quadratic barrier
potentials when they are described using the Kemble ap-
proximation to the transmission probability, but with the
additional modification that the argument of the exponen-
tial (the ‘‘theta’’ or ‘‘area under the curve’’ term) is linear
in energy [4,5,10,11]. The forms of "F and xo require
greater examination, but will require the evaluation of �F

which in turn depends on whether tunneling or over-the-
barrier emission dominates [10]: if the latter is assumed,

then �F � ð�=@Þ ffiffiffiffiffiffiffi
2m

p ðQ=F3Þ1=4, where the terms, their
definitions, and their values are summarized in Table I.
However, unlike the case for temperature, the behavior of
transmission probability ties the limits of the angular in-
tegration to the value of the energy, and therefore, deriva-

FIG. 1. Behavior of the ratio of emittance approximations,
given in Eq. (11), for copper parameters.
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tives with respect to the scattering factor arise, making the
application of Eq. (13) require greater scrutiny. Making a
change of integration variables to s ¼ E�� and x ¼
cos2�, Eq. (3) becomes

Mnðk?Þ ¼ 1

8�2

�
2m

@
2

�ðnþ3Þ=2 Z 1

��
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ�

p
� ðsþ�þ @!Þn=2f"T ðsÞf"T ð�s� @!Þ

�
Z 1

0

ð1� xÞn=2
2½x1=2 þ pðsþ�þ @!Þ�

� f"F ½xoðsÞ � x�dx; (17)

where again s is a dummy integration variable not to be
confused with similar usage in Eq. (4). It is deduced that

"FðsÞ ¼ 1

�Fðsþ�þ @!Þ xoðsÞ ¼ �þ�

sþ�þ�
:

(18)

Because terms of order ð"F"TÞ2 and higher are neglected to
evaluate �MF

n , the thermal terms in Eq. (17) are replaced
with step functions that simply alter the limits of integra-
tion for s. It follows

�MF
n ¼ 1

8�2

�
2m

@
2

�ðnþ3Þ=2 Z 0

�ð@!��Þ
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ�

p
� ðsþ�þ @!Þn=2 1

6
½�"FðsÞ�2h0nðsÞds; (19)

where h0nðsÞ is the x derivative of the coefficient of f"F in

Eq. (17) evaluated at x ¼ xoðsÞ. The values of s tend to be
smaller than the additive terms with which s appears, and
so the integral of Eq. (19) may be approximated by the
product of the integrand at its upper limit with the width of
the integration region, or

�MF
n � 1

48
½"Fð0Þ�2

�
2m

@
2

�ðnþ3Þ=2ð@!��Þ
� ffiffiffiffi

�
p ð�þ @!Þn=2h0nð0Þ: (20)

The general form for n is cumbersome, and so the explicit
forms for n ¼ 2 and 0 are given instead, where use has
been made of xoð0Þ ¼ �2 and po ¼ pð�þ @!Þ, from
which

�MF
2 � 1

192�2
F

�
2m

@
2

�
5=2 �1=2ð1��2Þð1þ 2po�þ �2Þ

�ðpo þ �Þ2

�MF
0 � 1

192�2
F

�
2m

@
2

�
3=2 �1=2�ð1��2Þ

ð�þ�Þðpo þ �Þ2 : (21)

Concise ratios with the zeroth order moments are not
available because common factors which canceled in the
ratios for the thermal case do not arise here. Direct nu-
merical evaluation using copper parameters, a wavelength
of 240 nm, and a field of 100 MV=m, for which � ¼
0:956, po ¼ 2:65, and �F ¼ 70:1, show that �MF

2 =M
0
2 �

0:0019 and �MF
0 =M

0
0 � 7:7� 10�6. It follows that, as for

temperature before, the moments are relatively insensitive
to field effects apart from the Schottky barrier lowering
factor.

V. EXTENSION TO SEMICONDUCTORS

The Moments formulation applied to positive electron
affinity (PEA) semiconductors differs from that of metals
because: the barrier at the surface is small making the
transmission probability different than a step function;
the distribution of photoexcited electrons differs; effective
mass considerations arise; and band bending occurs.
Doped semiconductors experience, like metals, an image
charge potential modified barrier [12–14] in which the
image charge term Q is multiplied by a factor ðKs �
1Þ=ðKs þ 1Þ, where Ks is the static dielectric constant
(e.g., for Ks ¼ 5, the factor is 2=3 and the Schottky low-

ering factor therefore
ffiffiffiffiffiffiffiffi
2=3

p
of what it would be for a

metal). If semiconductors are not sufficiently doped, then
the effects on image charge and band bending are of greater
complexity—the image charge appearing, for example,
more triangular. If n-type layers are atop p-type bulk
material (e.g., Cs3Sb on Na2KSb as in Fig. 6 of
Ref. [15]), then the potential can be elaborate. Narrow
triangular barriers can exist at the surface due to CsO
even for negative electron affinity photocathodes [16].
The smallness of the PEA barrier is such that the adequacy
of the Kemble approximation and a dielectric modified �F

should not be presumed. While undeniably important, such
issues are quite outside the present focus, and a model
which allows us to divorce the two is desired. We take a cue
from the observation that, for external fields on the order of
1 MV=m, the barrier visually resembles a triangular bar-
rier (albeit with a rounded apex), and that ‘‘triangular’’
permeates the discussion in general. Given that the trans-
mission probability for the triangular barrier is well ap-
proximated analytically for arbitrary field for energies
above the barrier maximum [17], the simplicity of the
resulting theory commends its usage, as the impact of field
is easy to accommodate even when the barrier height is
small. Parenthetically, the triangular transmission proba-
bility in the zero field limit is the same as for a wide
rectangular barrier of the same height [4], the form of
which is better suited to the linearized Kemble approxima-
tion, but the use of a rectangular barrier transmission
probability would require the adjustment of both height
and width to mimic field effects, and therefore its utility is
less. The triangular approximation will allow us to judge
the relative impact of field effects compared to a zeroth
order approximation, even as we note that the zeroth order
approximation will intuitively be different, perhaps larger,
than it would if the transmission probability were evaluated
numerically from Schrödinger’s equation.
The Moments formulation for semiconductors, given

previously [18], is
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Mnðk?Þ ¼ ð2�Þ�3
Z kmax

0
2�k2dk

Z �=2

0
ðkn?Þ

� sin�f�ðcos�; EsÞDðkzÞd�; (22)

where k is measured with respect to the conduction band
minimum, kz ¼ k cos�, and Es is the energy of the electron
inside the semiconductor ð@2k2=2m�Þ wherein the electron
effective mass m� can be different than m (m� ¼ 0:118m
for Cs3Sb as calculated using the alpha semiconductor
model [18,19]). In contrast to the procedure in metals,
where the energy Ek in Eq. (3) is prior to the absorption
of a photon, the k terms in Eq. (22) are after photon
absorption—and this reflects differences in the formula-
tions because the conduction band of p-type semiconduc-
tors is free of carriers which would otherwise affect final
state occupation factors giving rise to Fermi-Dirac func-
tions present in the metal formulation. Rather, for semi-
conductors, such concerns are accounted for by using kmax,
(the maximum photoexcited electron energy) given by
@
2k2max=2m ¼ @!� Eg. The scattering factor f�, referring

as it does to transport within the semiconductor, requires
m�: this shall be implicitly included in the pðEsÞ factor but,
as shall be seen below and as anticipated by the metal
formulation, the final result does not depend greatly on p.
Therefore, in the vacuum,

Mnðk?Þ � 1

16�2

�
2m

@
2

�ðnþ3Þ=2 Z @!�Ea�Eg

0
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ Ea

p
� ðsþ @!þ EaÞn=2

Z 1

xoðsÞ
ð1� xÞn=2

� 1

x1=2 þ pðsþ EaÞ
D½ðsþ EaÞx�dx; (23)

where Ea and Eg are the electron affinity and band gap,

respectively, xo is redefined as xoðsÞ ¼ Ea=ðsþ EaÞ, and
to zeroth order, the transmission probability may be ap-
proximated by its zero field limit [see Eq. (205) of Ref. [4]
or Eq. (10) of Ref. [18] ]

DðE> EaÞ � 4½EðE� EaÞ�1=2
½E1=2 þ ðE� EaÞ1=2�2

: (24)

As with metals, the nonzero field extension of Eq. (24)
results in a small contribution that primarily affects elec-
trons near the conduction band minimum, and therefore, it
will not contribute significantly unless the fields are sub-
stantial. Therefore, as with the DS approximation, the
zeroth order approximation to the Moments for the evalu-
ation of semiconductor photocathode emittance is ade-
quate, albeit that the behavior of the scattering factor and
the transmission probability change the analysis.

The smallness of the electron affinity Ea (0.3 eV for
Cs3Sb) undercuts accurate analytical approximations to
Eq. (23): therefore, it shall be evaluated numerically.
However, a DS-like approximation is instructive, in which
the transmission probability is replaced by a step function

and a trapezoidal approximation is made for the energy
integral for all moments, albeit that in contrast to metals,
the behavior of the integrand is not as well characterized by
a polynomial, and so the trapezoidal approximation will
not be as accurate. We find

M0
nðk?Þ ¼ ð16�2Þ�1E3=2

a

�
2m

@
2

�ðnþ3Þ=2
��ðnþ3Þ

s

� ð2Ea þ Eg�
2
sÞn=2ð1��2

sÞ
nð�sÞ; (25)

where �s ¼ ½Ea=ð@!� EgÞ�1=2 and is not necessarily

close to unity. Therefore, the DS-like approximation for
emittance from semiconductors is

"0n;rmsðsemiÞ ¼ �c

2

�ð2@!� EgÞ
mc2


2ð�sÞ

0ð�sÞ

�
1=2

: (26)

This may be simplified by using 
2ð�sÞ=
0ð�sÞ � ð1�
�2

sÞ=2 (as for metals) to give

"0n;rmsðsemiÞ � �c

2

�
1

2mc2
ð2@!� EgÞ
ð@!� EgÞ ð@!� Eg � EaÞ

�
1=2

:

(27)

The evaluation of emittance requires the dependence of
pðEÞ for semiconductors, though in practice its determi-
nation may be difficult and its representation by a power
law or polynomial of a simplicity comparable to metals is
unlikely due to the dependencies on the optical parameters
and the scattering rates involved. However, for the pur-
poses of comparing the numerical quality of the approx-
imations, only a representative value pðEÞ is required (e.g.,
analogous to the factor po for metals): approximating pðEÞ
by a constant is sufficient to determine the adequacy of
Eqs. (26) and (27) in approximating Eq. (23), and shall be
how the approximations are judged. Two instances of
semiconductor parameters shall be considered: the first
shall be for Cs3Sb, the second for Cs2Te parameters (a
candidate that has generated interest in the literature
[20,21]) suggested by Flöttman [22] and Sertore et al.
[23]. In both cases, three different constant values of p
shall be considered, reflecting the wide differences semi-
conductors show for penetration depth and mean-free
paths.
For Cs3Sb, as per Ref. [18], let � ¼ 532 nm, and �c ¼

0:1 cm and otherwise assume Table I parameters. For p ¼
0:1, 0.5, and 1.0, then Eq. (23) predicts "n;rms ¼ 0:577,
0.572, and 0.568 mmmrad, whereas Eq. (26) predicts
0.686, 0.679, and 0.675 mmmrad, respectively, and
Eq. (27) (which is independent of p) predicts 0.664 mm
mrad. Therefore, although reasonable, the DS-like ana-
logue for semiconductors shows greater differences (on
the order of 20%) from the numerical evaluation compared
to metals.
For Cs2Te, both Flöttman [22] and Sertore et al. [23] use

the approximation "0fl€ot ¼ ð�c=2Þ½2Ekin=3mc2�1=2. As

Flöttman argues, Ekin is similar to, albeit not identical
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with, @!� Eg � Ea. Assuming that relation anyway,

Flöttman finds that a Cs2Te photocathode with a radius
of 0.15 cm and with Eg ¼ 3:5 eV, Ea ¼ 0:2 eV and a

photon energy satisfying @!� Eg � Ea ¼ 0:55 eV (i.e.,

� ¼ 292 nm), that "0fl€ot ¼ 0:635 mmmrad. Similarly,

Sertore et al., finds that, with a radius of 0.1 cm at a
wavelength of � ¼ 211 nm, then "0fl€ot ¼ 0:84 mmmrad,
which compares well with their experimental measurement
of 0:7	 1 mmmrad. For Cs2Te we shall use the parame-
ters Eg ¼ 3:5 eV, Ea ¼ 0:2 eV, � ¼ 211 nm, and �c ¼
0:1 cm. For p ¼ 0:1, 0.5, and 1.0, then Eq. (23) predicts
"n;rms ¼ 1:31, 1.28, and 1.27 mmmrad, whereas Eq. (26)

predicts 1.46, 1.42, and 1.40 mmmrad, respectively, and
Eq. (27) (which is independent of p) predicts
1.36 mmmrad.

While the approximate DS-like formulas are reasonable
compared to the numerical evaluation, clearly the behavior
of the integrands in the Moments matter, and for semi-
conductors, the approximations are more consequential
when comparing to experiment. Differences between the-
ory and measurement may include: rounding the potential
barrier as per the image charge approximation; presence of
nonzero transmission probabilities for tunneling below the
barrier maximum; dependencies of pðEÞ in the moments
evaluation on optical penetration depth and the electron
energy dependence of the scattering rates; effects of band
bending when fields are present; presence of higher elec-
tron affinities (as anticipated by Flöttman) caused by ad-
sorbates or the impact of patchy areas of emission on the
surface; and uncertainties in the experimental measure-
ments. All will have an impact, the determination of which
requires a comprehensive numerical study, but it is equally
clear that, in the face of such uncertainties, the closeness of
theoretical estimates herein to the experimental values
cited is (we argue) notable and comparable to metal
theory-experiment differences.

For effects due to temperature, consider the Cs3Sb case
in greater detail. The ratio of the emittance calculated
using Eq. (25) is compared with the leading order
Eq. (26) and shown in Fig. 2. For semiconductors, in
particular, the laser penetration depth and scattering rates
are complex functions of wavelength and energy: there-
fore, for the comparison in Fig. 2 and as done previously,
only representative and constant values of p were consid-
ered. Observe that the relative insensitivity to the precise
value of p could have been anticipated from metals: the
general goodness of the ‘‘forward’’ approximation, in

which pþ x1=2 � pþ 1 in the denominator of the x in-
tegral in Eq. (23), means that ratios of Moments cause the
(1þ p) factors to cancel and render the result insensitive to
p. Therefore, temperature effects, which would make their
presence known via changes to values of the relaxation
times, are expected to be small.

For differences due to field, the transmission
probability below the barrier maximum has an exponen-

tially decaying behavior so that, as with metals, the
Moments should increase when nonzero fields are encoun-
tered. However, a detailed examination of the triangular
barrier potential [17,24] shows that the effects of field
are governed by a field-dependent energy parameter given

by ð4@2F2=125mÞ1=3: even for fields comparable to
100 MV=m, this energy parameter is of the size
0.007 eV, and therefore the emittance from a semiconduc-
tor, as with the DS approximation before it, is expected to
be relatively insensitive to field corrections apart from
Schottky barrier lowering, a conclusion supported by nu-
merical studies [25].

VI. SUMMARY

A derivation of the emittance of metal and semiconduc-
tor photocathodes using the Moments approach was given.
The contributions of both temperature and field–dependent
effects via changes to the Fermi-Dirac distribution govern-
ing electron statistics in a metal, or the transmission proba-
bility of a triangular barrier as for a semiconductor, were
found. It has been demonstrated that the Dowell-Schmerge
(DS) asymptotic expression for the emittance of a metal
photocathode is better over a wider range of incident
photon energies than its derivation would imply and re-
mains excellent even when temperature and field effects
are included. An asymptotic expression was derived for
semiconductors and shown to have analogous features to
the DS approximation for metals, but which is modified to
a greater extent by the behavior of the transmission proba-
bility, and which tends to be less accurate compared to
numerical results than for the case of metals. The derived
formulas were applied to calculate the emittance of copper,

FIG. 2. Behavior of the ratio of emittance calculated numeri-
cally from Eq. (23) with its leading order trapezoidal approxi-
mation given by Eq. (26) for cesium antimonide parameters for
various values of p � constant.
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cesium antimonide, and cesium telluride photocathodes as
representative cases.
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[22] K. Flöttmann, TESLA FEL-Report No. 1997-01, 1997.
[23] D. Sertore, D. Favia, P. Michelato, L. Monaco, and P.

Pierini, European Particle Accelerator Conference,
Lucerne, Switzerland (2004), pp. 408–410, MOPKF045
[http://accelconf.web.cern.ch/AccelConf/e04/default.
htm].

[24] K. L. Jensen, and E. J. Montgomery, J. Comput. Theor.
Nanosci. 6, 1754 (2009).

[25] K. L. Jensen, D.W. Feldman, E. J. Montgomery, N. A.
Moody, and J. Petillo, in Proceedings of the IEEE
Particle Accelerator Conference (IEEE, New York,
2007), pp. 1206–1208, TUPMS091 [http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=4441031&
isnumber=4439905].

JENSEN, O’SHEA, AND FELDMAN Phys. Rev. ST Accel. Beams 13, 080704 (2010)

080704-8

http://dx.doi.org/10.1103/PhysRevSTAB.12.074201
http://dx.doi.org/10.1103/PhysRevSTAB.12.074201
http://dx.doi.org/10.1142/S0217751X07037640
http://dx.doi.org/10.1063/1.2387968
http://dx.doi.org/10.1063/1.2786028
http://dx.doi.org/10.1063/1.2786028
http://dx.doi.org/10.1103/PhysRevE.57.1081
http://dx.doi.org/10.1063/1.3267288
http://dx.doi.org/10.1103/PhysRevSTAB.9.063502
http://dx.doi.org/10.1103/PhysRevSTAB.9.063502
http://dx.doi.org/10.1103/PhysRevB.3.2125
http://dx.doi.org/10.1103/PhysRevB.3.2125
http://dx.doi.org/10.1063/1.2752122
http://dx.doi.org/10.1063/1.2937077
http://dx.doi.org/10.1103/PhysRev.125.67
http://dx.doi.org/10.1088/0022-3727/3/8/203
http://dx.doi.org/10.1002/pssb.2220470105
http://dx.doi.org/10.1002/pssb.2220470105
http://dx.doi.org/10.1016/S0040-6090(97)00082-5
http://dx.doi.org/10.1016/S0039-6028(99)00612-3
http://dx.doi.org/10.1016/S0039-6028(99)00612-3
http://dx.doi.org/10.1116/1.1573664
http://dx.doi.org/10.1063/1.2967826
http://dx.doi.org/10.1063/1.2967826
http://dx.doi.org/10.1166/jctn.2009.1242
http://dx.doi.org/10.1166/jctn.2009.1242
http://dx.doi.org/10.1063/1.359188
http://dx.doi.org/10.1016/S0168-9002(00)00089-9
http://dx.doi.org/10.1016/S0168-9002(00)00089-9
http://accelconf.web.cern.ch/AccelConf/e04/default.htm
http://accelconf.web.cern.ch/AccelConf/e04/default.htm
http://dx.doi.org/10.1166/jctn.2009.1241
http://dx.doi.org/10.1166/jctn.2009.1241
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4441031&isnumber=4439905
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4441031&isnumber=4439905
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4441031&isnumber=4439905

