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Free-electron lasers operating in the UVor x-ray radiation spectrum require peak beam currents that are

generally higher than those obtainable by present electron sources, thus making bunch compression

necessary. Compression, however, may heighten the effects of collective forces and degrade the beam

quality. In this paper we provide a framework for investigating some of these effects in rf compressors by

focusing on the longitudinal dynamics of small-amplitude density perturbations, which have the potential

to cause the disruptive appearance of the so-called microbunching instability. We develop a linear theory

valid for low-to-moderate compression factors under the assumption of a 1D impedance model of

longitudinal space charge and provide validation against macroparticle simulations.
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I. INTRODUCTION

Electron beam applications, and in particular those for x-
ray free-electron lasers (FELs), often require high peak
currents that can only be obtained through compression
downstream of the beam source. The conventional tech-
nique for compression exploits the energy dependence of a
particle orbit path length through magnetic chicanes.
While effective, magnetic compression can spoil the
beam transverse emittance because of coherent radiation
emission in the bends. In contrast, compression by velocity
bunching (or rf compression, RFC) taking place as the
beam travels through an rf structure is immune to radiation
effects, and represents a potentially attractive alternative
[1]. Recent measurements [2] have demonstrated that there
exist useful ranges of beam parameters for which rf com-
pression can be achieved without compromising emittance
compensation, suggesting that it could be a viable option
for generation of high-brightness beams. Indeed, compres-
sion schemes relying at least in part on rf compression are
currently under active investigation in the design of next
generation light sources [3].

An important, but still unexplored, aspect of rf compres-
sion concerns the preservation of longitudinal phase-space
quality. It is known that beam compression through chi-
canes can trigger the so-called microbunching instability
causing small density perturbations to evolve into large and

undesirable fluctuations in phase space [4–7]. In principle,
microbunching can also affect rf compression as the two
basic ingredients for the instability, collective forces and
non-negligible dependence of a particle time of flight on
energy, are both present. The low beam energy at which rf
compression takes place causes space charge to be fairly
strong, while at the same time generating significant dis-
persion even in the absence of bending magnets (indeed it
is this very feature that makes rf compression possible).
In this paper we present a linear theory for the evolution

of small-amplitude density perturbations in the beam lon-
gitudinal phase space through an rf compressor. The
method we apply is similar to that developed for the study
of the microbunching instability in magnetic compressors
[5,6]. A number of approximations are introduced in order
to keep the problem in manageable form. First, the single-
particle motion of an electron in the rf structure is treated in
the linear approximation, which limits the applicability of
the model to low or moderate compression factors (say up
to a factor 3 or 4). A second approximation results from
adopting a 1D model for the space charge impedance
describing collective effects, which at smaller wavelengths
and low energy is known to be problematic [8,9]. Finally a
coasting beam approximation is assumed, which limits the
applicability to particle dynamics in the longitudinal core
of the physical electron bunches.
To validate the analytical model and provide a check on

the simplifying approximations, we also present a com-
parison against macroparticle simulations. We find that a
reasonable agreement with the theory can be obtained over
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a wide spectrum of perturbation wavelengths provided that
certain empirical modifications in the parameters for the
longitudinal space charge impedance be introduced. We
ascribe the need for this adjustment to the limitations of the
adopted 1D model for space charge.

The paper is organized as follows. After deriving in
Sec. II the transfer map for single-particle motion through
an rf structure in the linear approximation, in Sec. III we
present the small-amplitude perturbation theory. The main
result is the derivation of an integral equation obeyed by
the beam bunching function expressing the evolving am-
plitude of an initial sinusoidal density modulation through
the compressor. We follow with a discussion of the nu-
merical model used for the macroparticle simulations and a
comparison of simulations against theory (Sec. IV).

II. SINGLE-PARTICLE DYNAMICS THROUGH AN
RF COMPRESSOR

We assume that compression takes place in a traveling
wave rf structure. The longitudinal motion of an electron in

such a structure is described by the Hamiltonian H ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2

sc
2

p � e�ðs; tÞ, where �e is the electron
charge, s the longitudinal coordinate, and � ¼ ðE0=krfÞ�
cosðkrfs�!rftþ c 0Þ the electric potential, yielding the
longitudinal electric field Es ¼ �@�=@s ¼ E0 sinðkrfs�
!rftþ c 0Þ. For simplicity, in the following we assume a
phase velocity !rf=krf ¼ c for the traveling wave. The

canonical equations are readily written: ds=dt ¼
psc

2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2

sc
2

p
and dps=dt ¼ �eE0 sinc , where

we have introduced the phase c ¼ krfs�!rftþ c 0.
We then change the dynamical coordinates from s and

ps to t and the relativistic factor � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2

sc
2

p
=mc2,

while turning s into the independent variable. The resulting
equations for tðsÞ and �ðsÞ read

dt

ds
¼ �

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p ; (1)

d�

ds
¼ ��krf sinc ; (2)

where we have introduced the parameter � ¼
eE0=ðmc2krfÞ.
The orbit for the reference particle is a particular solu-

tion of (1) and (2), which we denote as ðtr; �rÞ. The orbit of
any other particle can be described in terms of the devia-
tion variables �t ¼ t� tr and �� ¼ �� �r, where ðt; �Þ
are also solutions of (1) and (2). It is convenient to intro-
duce the space separation�z ¼ z� zr between an electron
and the reference particle, in place of �t. We have �z ¼
�c�ðsÞ�t, where c�ðsÞ is the beam velocity. The negative
sign results from the convention that for a particle in the
head of the bunch �z > 0. In the following for the purpose
of determining �z from �t, we will assume that the beam
is sufficiently relativistic so that � ’ 1, yielding �z ’
�c�t.
The equations of motion for the deviation variables �z

and �� read

d�z

ds
¼ �rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
r � 1

p � �r þ ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�r þ ��Þ2 � 1
p ; (3)

d��

ds
¼ �krf½sinðkrfs�!rftr þ c 0Þ

� sinðkrfs�!rftr þ krf�zþ c 0Þ�: (4)

The first-order solution of the above linear system can be
expressed in terms of the transfer matrix M: xðsÞ ¼ Mx0,
where xðsÞ ¼ ½�zðsÞ;��ðsÞ� and x0 ¼ xðs0Þ, with matrix
M obeying

dM

ds
¼ AM (5)

with initial condition Mðs0Þ ¼ 1 and matrix A defined by

A ðsÞ ¼ 0 ½�2
rðsÞ � 1��3=2

��k2rf cosðkrfs�!rftrðsÞ þ c 0Þ 0

 !
: (6)

Incidentally, the form of the matrix (6) allows us to infer
immediately that the transformation M is symplectic.

Examples of solutions of (1), (2), and (5) for the refer-
ence orbit and entries of the transfer matrixM are shown in
Figs. 1 and 2, respectively. Here and in the examples to
follow we make reference to a 3 m long, S-band, SLAC-
type, traveling wave section currently in use for the SPARC
experiments [10]. The rf structure frequency is 2856 MHz
(corresponding to �rf ¼ 10:5 cm or krf ¼ 59:8 m�1). We
assume a E0 ¼ 25 MeV=m peak accelerating gradient

(yielding � ¼ 0:82). The rf structure is preceded by a
0.6 m long drift and the electron beam injected with
5.6 MeV kinetic energy (�r0 ’ 12). The reference orbit is
best represented in terms of the variable �r, defined as �r ¼
s� ctr (Fig. 2, right). This quantity expresses the relative
longitudinal distance between the reference electron and
an imaginary particle traveling at the speed of light. The
initial conditions were specified so that as the reference
particle enters the structure (s ¼ 0:6 m) we have �r ¼ 0,
i.e., the rf phase is c ¼ c 0.
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III. LINEAR THEORY

In the following we will refer to the dynamical variables
in vector notation as x ¼ ð�z;��Þ. Moreover, to simplify
notation, we will use z to denote�z and denote��with p,
i.e. x ¼ ðz; pÞ.

We assume that the beam distribution fðx0; s0Þ ¼
f0ðx0; s0Þ þ f1ðx0; s0Þ at the entrance of the rf compressor
s ¼ s0 consists of a zero-order smooth density, uniform in
z and Gaussian in p with a chirp h0,

f0ðx0; s0Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
�p

e�ðp0�h0z0Þ2=2�2
p ; (7)

and a first-order perturbation f1ðx0; s0Þ. The normalization
of the distribution function is chosen so that
n0dz

R1
�1 dp0fðx; sÞ yields the number of particles in the

interval dz, where n0 is the beam line density.
Let us consider the evolution of the unperturbed beam

density first. The beam density function f0ðxs; sÞ at s is

related to the beam density f0ðx0; s0Þ at s0 by fðxs; sÞ ¼
fðM�1xs; s0Þ. Here and in the following we use M, MðsÞ,
orMðs0 ! sÞ interchangeably to denote the transfer matrix
solution of (5) from s ¼ s0 to s and use the notation
Mðs0 ! sÞ to represent the matrix advancing the linear
solutions of (3) and (4) from s0 � s0 to s � s0, i.e.Mðs0 !
sÞ ¼ MðsÞM�1ðs0 ! s0Þ.
The normalized charge density evolves from 	ðz0; s0Þ ¼R1

�1 dp0f0ðx0; s0Þ ¼ 1 at s ¼ s0 to

	ðzs; sÞ ¼
Z 1

�1
f0ðxs; sÞdps ¼ 1

jM11ðsÞ þ h0M12ðsÞj
� CðsÞ: (8)

The last equality in the above equation identifies the com-
pression factor C ¼ CðsÞ. In writing (8) we made use of the
symplectic property of the matrix M.
The effect of collective forces described by an imped-

ance Zðk; sÞ (to be specified later) is to change the particle

FIG. 2. Entries of the transfer matrix M for krf ¼ 59:8 m�1, � ¼ 0:82, c 0 ¼ �8 deg , and �r0 ¼ 12.

FIG. 1. Example of electron reference orbit through an rf compressor obtained by numerical solution of Eqs. (1) and (2). The left
picture shows the evolution of the relativistic � factor, the right picture the relative longitudinal distance between the reference electron
and an imaginary particle traveling at the speed of light. (The relevant parameters are krf ¼ 59:8 m�1, � ¼ 0:82, c 0 ¼ �8 deg , and
�r0 ¼ 12.)

DYNAMICS OF LONGITUDINAL PHASE-SPACE . . . Phys. Rev. ST Accel. Beams 13, 080703 (2010)

080703-3



energy according to

dp

ds
¼ Fð~	; zs; sÞ � � 4�I0

IAZ0

Z 1

�1
dkeikzsZðk; sÞ~	ðk; sÞ;

(9)

where I0 ¼ ecn0 is the electron beam current, IA ¼
ce=re ’ 17 kA the Alfvén current, and Z0 the vacuum
impedance, with

~	ðk; sÞ ¼ 1

2�

Z 1

�1
dzse

�ikzs
Z 1

�1
dpfðxs; sÞ (10)

being the Fourier transform (FT) of the charge density
	ðzs; sÞ at s.

The starting point of our analysis is the linearized
Vlasov equation expressed in the integral form [6]:

f1ðxs; sÞ ¼ f1ðx0; s0Þ �
Z s

s0

ds0Fð~	1; zs0 ; s
0Þ @f0ðxs0 ; s

0Þ
@ps0

;

(11)

with the collective force F depending on the FT ~	1 of the
first-order density perturbation.

Starting from (11) our goal is to derive an equation for
~	1. To this end it is convenient to think of both sides of (11)
as functions of the dynamical variables at current position
s:

f1ðxs; sÞ ¼ f1½x0ðxsÞ; s0� �
Z s

s0

ds0Fð~	1; zs0 ; s
0Þjzs0¼zs0 ðxsÞ

� @f0ðxs0 ; s0Þ
@ps0

��������xs0¼xs0 ðxsÞ
; (12)

where x0ðxsÞ denotes the linear transformation
x0 ¼ ½Mðs0 ! sÞ��1xs and similarly xs0 ðxsÞ ¼ ½Mðs0 !
sÞ��1xs.

The next step is to make a more definite assumption
about the form of the initial perturbation. We assume an

expression of the form

f1ðx0; s0Þ ¼ Aeik0z0
e�ðp0�h0z0Þ2=2�2

pffiffiffiffiffiffiffi
2�

p
�p

; (13)

i.e. consisting of a sinusoidal perturbation to the charge
density (while the p density is the same as in the unper-
turbed distribution). As usual in this kind of calculation,
the physically meaningful component is the real part of the
complex quantity (13).
We are now ready to integrate both sides of Eq. (12) over

the phase space after multiplying by e�ikzs . By definition,
the FT of the left-hand side of Eq. (12) yields ~	1ðk; sÞ. The
FTof the first term on the right-hand side (RHS), which we
denote with I1, requires more work. First, we carry out the
transformation of variables xs ! x0 and exploit symplec-
ticity d2xs ¼ d2x0 to write

I1 ¼ 1

2�

Z 1

�1
dz0

Z 1

�1
dp0f1ðx0; s0Þe�ikzsðx0Þ; (14)

where zsðx0Þ ¼ ½Mx0�1 ¼ M11z0 þM12p0. We then insert
expression (13) into (14),

I1 ¼ A

2�
ffiffiffiffiffiffiffi
2�

p
�p

Z 1

�1
dp0

Z 1

�1
dz0e

�ðp0�hz0Þ2=2�2
peik0z0

� e�ikðM11z0þM12p0Þ; (15)

and introduce the change of variable t ¼ p0 � h0z0, yield-
ing

I1 ¼ A

2�
ffiffiffiffiffiffiffi
2�

p
�p

Z 1

�1
dz0e

iz0ðk0�k=CÞ Z 1

�1
dte�t2=2�2

peikM12t

¼ A
½k0 � k=CðsÞ�e�ðkM12�pÞ2=2; (16)

with 
ð�Þ denoting the Dirac function.
As for the second term on the RHS of Eq. (12) we have

I2 ¼ � 1

2�

Z
d2xse

�ikzs
Z s

s0

ds0Fð~	1; zs0 ; s
0Þjzs0¼zs0 ðxsÞ

@f0ðxs0 ; s0Þ
@ps0

��������xs0¼xs0 ðxsÞ

¼ � 1

2�

Z
d2xs0e

�ikzsðxs0 Þ
Z s

s0

ds0Fð~	1; zs0 ; s
0Þ @f0ðxs0 ; s

0Þ
@ps0

¼ � ik

2�

Z s

s0

ds0M12ðs0 ! sÞ
Z

d2xs0Fð~	1; zs0 ; s
0Þf0ðxs0 ; s0Þe�ikzsðxs0 Þ: (17)

The second equality above follows from a change of variables, the third from an integration by parts and zsðxs0 Þ ¼
M11ðs0 ! sÞzs0 þM12ðs0 ! sÞps0 . A further change of variables xs0 ! x0 yields

I2 ¼ � ik

2�

Z s

s0

ds0M12ðs0 ! sÞ
Z

d2x0f0ðx0; s0ÞF½~	1; zs0 ðx0Þ; s0�e�ikzs½xs0 ðx0Þ�; (18)

where we have made use of f0ðxs0 ; s0Þ ¼ f0ðx0; s0Þ. Observe that in the argument of the exponential function of the above
expression we have zs½xs0 ðx0Þ� ¼ ½Mðs0 ! sÞx0�1 ¼ M11z0 þM12p0.
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Using the expression (9) for the collective force we find

I2 ¼ 4�i
I0

IAZ0

k

2�

Z 1

�1
dk0

Z s

s0

ds0M12ðs0 ! sÞZðk0; s0Þ

� ~	1ðk0; s0Þ
Z 1

�1
dz0

Z 1

�1
dp0f0ðx0; s0Þ

� eik
0zs0 ðx0Þ�ikzsðx0Þ: (19)

Again, we introduce the change of variable p0 ! p0 ¼
tþ hz0 and observe that

k0zs0 ðx0Þ � kzsðx0Þjp0!p0¼tþhz0

¼
�

k0

Cðs0Þ �
k

CðsÞ
�
z0 þ

�
k0

M12ðs0Þ �
k

M12ðsÞ
�
t: (20)

The integral on z0 in (19) yields a Dirac function,
allowing for a straightforward integration on k0. After
integration on t, we obtain

I2 ¼ 4�i
I0k

IAZ0

Z s

s0

ds0Cðs0ÞM12ðs0 ! sÞZðk0; s0Þ

� ~	1ðk0; s0Þe�½k0M12ðs0Þ�kM12ðsÞ�2�2
p=2jk0¼kCðs0Þ=CðsÞ: (21)

Finally, upon combining the various expressions eval-
uated so far, we arrive at the following integral equation for
the Fourier components of the first-order density perturba-
tion:

~	 1ðk; sÞ ¼ e�½CðsÞk0M12�p�2=2A
½k0 � k=CðsÞ�
þ
Z s

s0

ds0K̂ðs0; sÞ~	1ðk0; s0Þ (22)

with kernel

K̂ðs0; sÞ ¼ 4�i
Iðs0Þ
IA

kM12ðs0 ! sÞZðk
0; s0Þ
Z0

� e�½k0M12ðs0Þ�kM12ðsÞ�2�2
p=2jk0¼kCðs0Þ=CðsÞ; (23)

where Iðs0Þ ¼ I0Cðs0Þ is the beam current at s0. We look for
solutions of (22) in the space of generalized functions
(distributions). Such solutions will have the form

~	 1ðk; sÞ ¼ bðk; sÞ

�
k0 � k

CðsÞ
�

¼ bðk; sÞCðsÞ
½CðsÞk0 � k�; (24)

with the ordinary functions b obeying the equation

b½CðsÞk0; s� ¼ Ae�½CðsÞk0M12�p�2=2

þ
Z s

s0

ds0Kðs0; sÞb½Cðs0Þk0; s0�; (25)

with kernel Kðs0; sÞ obtained from (23) with the substitu-
tion k0 ! k0Cðs0Þ.

The integral equation (25) is our main result. Somewhat
unexpectedly, but not too surprisingly, (25) turns out to be
formally identical to the equation describing bunching in

magnetic compressors [5,6]. We define the linear gain as
the ratio of the amplitude of the perturbation at the exit s ¼
sf to that at the entrance (s ¼ s0):

gðk0; sfÞ ¼
jb½CðsÞk0; sf�j

jAj : (26)

To summarize the meaning of the calculation carried out
in this section: in linear approximation a sinusoidal per-
turbation with wave number k0 to a beam charge density at
the entrance of an rf compressor will maintain its sinusoi-
dal form while the wave number evolves according to k ¼
CðsÞk0. The quantity bðk; sÞ or ‘‘bunching function,’’ rep-
resenting the amplitude of the sinusoidal perturbation rela-
tive to the local beam density 	ðsÞ ¼ CðsÞ	ðs0Þ, is
determined by solving the integral equation (25), where
A ¼ bðk0; s0Þ is the perturbation initial amplitude.
Collective effects in an rf compressor are largely domi-

nated by space charge. We model these effects by means of
an effective impedance [9,11] relating the longitudinal
component of the electric field and longitudinal charge-
density fluctuations in the frequency domain. In our model
we neglect the possible dependence of the longitudinal
component of the electric field on the radial coordinate
and adopt a 1D expression for the space charge impedance
of the form [12]

Zðk; sÞ ¼ iZ0

��rb

1� 2I1ð�ÞK1ð�Þ
�

���������¼krb=�
; (27)

where Z0 ’ 120� is the vacuum impedance, and I1 and K1

are the modified Bessel functions of the first and the second
kind.
Expression (27) is obtained [12] from transverse aver-

aging of the longitudinal component of the electric filed of
an infinitely long beam with circular cross section of radius
rb (and uniform transverse density) perturbed by a small
longitudinal modulation of wave number k. In principle,
the radial dependence of the longitudinal electric field
could be accounted for in the present framework but at
the cost of increasing the dimensionality [8] of the integral

FIG. 3. Compression factor along the beam line. The value at
exit is 1.87.
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equation (25). Notice that in (27) the dependence on the
longitudinal coordinate s is through the parameter rb ¼
rbðsÞ, assumed to be known.

In Figs. 3 and 4 we show a numerical example for a
model of beam line consisting of a 1 m drift followed by a
3 m rf compressor. The beam is injected at 5.6 MeVenergy
with I0 ¼ 100 A peak current and vanishing uncorrelated
energy spread. We assume a beam transversely uniform
with circular cross section with radius rb ¼ 0:5 mm re-
maining constant through the beam line. The compression
factor at the exit of the rf structure is 1.87. The gain curve
as a function of the wavelength of the initial perturbation is
reported in Fig. 4, and shows a maximum value of about
0.7 in the � ’ 300 �m region. The gain is<1 in the whole
range of modulation wavelengths considered. Gains larger
than unity could be observed but only in the presence of
substantially higher current or compression factor.

Because of space charge an initial modulation in the
charge density will induce an energy modulation along the
beam. We are interested in determining to first order the
amplitude of this latter modulation. To this end we intro-
duce a new set of dynamical variables to remove the (in
general nonvanishing) correlation energy/position

~z ¼ z ~p ¼ p� hsz; (28)

and express the distribution function fðx0; sÞ in terms of
these new variables. In the above equation hs is the energy/
position correlation at s, which is related to the initial
correlation h0 at s0 by hs ¼ ðM21 þ h0M22Þ=ðM11 þ
h0M12Þ.
Following the assumptions made in the previous section,

we consider a beam distribution function f ¼ f0 þ f1
in the form of the sum of a uniform zero-order density
f0 and a first-order perturbation f1. The amplitude of
the energy modulation is obtained by taking the FT
of the energy centroid along the beam h~pi ¼R
fð~z; ~p; sÞ~pd~p=R fð~z; ~p; sÞd~p, a function of ~z:

�~p ¼ 1

2�

Z
d~ze�ik~zh~pi

’ 1

2�

Z
d~ze�ik~z

R
f1ð~z; ~p; sÞ~pd~pR
f0ð~z; ~p; sÞd~p ; (29)

where the last equation follows from first-order approxi-
mation and

R1
�1 f0ð~z; ~p; sÞ~pd~p ¼ 0 [see Eq. (7)]. The

normalization factor
R
f0ð~z; ~p; sÞd~p is just the compression

factor CðsÞ. To calculate
R
f1ð~z; ~p; sÞ~pd~p we make use of

the first-order perturbation equation (11) for f1, yielding

�~p ¼ � 1

2�CðsÞ
Z

~psd~ps

Z
d~zse

�ik~zs
Z s

s0

ds0Fð~	1; zs0 ; s
0Þ

� @f0ðxs0 ; s0Þ
@ps0

: (30)

After some algebra, here omitted for brevity, we find

�~p ¼ 4�I0
IAZ0


½k� k0CðsÞ�CðsÞ
Z s

s0

ds0bðk0; s0ÞZðk0; s0Þe�½k0M12ðs0!sÞ�p�2f1� ½k0M12ðs0 ! sÞ�p�2gjk0¼k0Cðs0Þ; (31)

FIG. 4. (a) Linear gain at the exit of the rf compressor. (b) Linear gain as a function of the longitudinal position for a selected
(� ¼ 100 �m) modulation wavelength.

FIG. 5. Amplitude of the energy modulation amplitude along
the rf compressor resulting from an initial density modulation
with 10% amplitude relative to an initial current I0 ¼ 100 A.
Other beam and rf compressor parameters are as in Figs. 3 and 4.
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with the bunching factor b½k0Cðs0Þ; s0� determined by solv-
ing Eq. (25).

In Fig. 5 we show two examples of energy modulations
resulting from sinusoidal density perturbations with initial
relative amplitude A ¼ 0:1 and wavelengths � ¼ 75 and
150 �m.

IV. VALIDATION AGAINST MACROPARTICLE
SIMULATIONS

As a way to validate the model presented in the previous
section, we carried out macroparticle simulations using the
code TSTEP [13], a derivative of PARMELA [14]. We con-
sidered the evolution of a 1 nC idealized flattop beam
spanning a 10 deg rf phase at 2856 MHz (corresponding
to about 3 mm and I0 ¼ 100 A peak current) and a range of
initial charge-density sinusoidal perturbations with wave-
length � between 50 and 300 �m. The upper limit of this
range is determined by the need to consider wavelengths
small enough compared to the bunch length so that the
coasting beam approximation assumed in the analytical
model may apply. The smallest modulation wavelength is
limited by the statistical noise associated with use of a
relatively small number of macroparticles. In the simula-
tions we used up to 4:5� 106 macroparticles, resulting in
an acceptable compromise between numerical accuracy
and computation time. The amplitude of the initial sinu-
soidal perturbation was set to A ¼ 10%.

The electron beam has vanishing initial energy-phase
correlation and uncorrelated energy spread [i.e. h0 ¼ 0 and
�p ¼ 0, see Eq. (7)].

We considered the 3 m long rf structure mentioned at the
end of Sec. II preceded by a 0.6 m long drift. The presence
of the drift is a realistic feature of any physical setup as the
rf structure for compression compressor requires a certain
separation from the exit of the gun. However, in these
simulations, the exact value of the drift length was chosen
to correspond (in the range of wavelength we considered
and adopted initial beam conditions) to roughly a quarter

wavelength of longitudinal plasma oscillation as this
choice tends to maximize the amplitude of the modulation
amplitude at the exit of the compressor (having started
with pure density perturbations, i.e., no initial energy
modulation).
The linear gain is calculated as the ratio between the

amplitudes of the charge-density perturbation at the exit of
the compressor and entrance of the leading 0.6 m drift.
Care was taken to limit the analysis of the numerical data to
the core of the bunch to minimize edge effects. The space
charge forces were calculated by solving the Poisson equa-
tion on a grid with a 5 mm longitudinal span and number of
mesh cells varying between 1200 and 2400 along the
longitudinal coordinate.
We start the simulations with a beam with transverse

uniform density and circular cross section of initial radius
rb ¼ 2�x ¼ 2�y ¼ 2 mm and a convergent envelope

drb=ds < 0. It turns out that the plasma oscillation wave-
length has a fairly strong dependence on the beam trans-
verse radius rb and is therefore affected by the exact value
of the initial beam convergence. This is exemplified in
Fig. 6 where we show how different choices of the initial
transverse conditions for the beam envelope affect the
subsequent evolution of the beam radius (picture to the
left) and the location of the first minimum for the linear
gain for an initial perturbation of wavelength � ¼ 100 �m
(figure to the right). The minimum in the linear gain
corresponds to a quarter of plasma oscillation wavelength
from the entrance of the drift, which is where the initial
density modulation is converted into energy modulation.
See evidence of this in Fig. 7. For the remaining simula-
tions presented in this paper we adopted the initial con-
ditions for the beam envelope corresponding to the solid
line in the left picture of Fig. 6. For simplicity, in the
simulations we did not include solenoidal focusing along
the rf structure, which would be required for emittance
compensation [2], and let the beam expand freely.
Compression is controlled by moving the linac rf phase

away from the crest toward the zero crossing of the rf field.

FIG. 6. Left: evolution of the transverse rms beam size �x for a converging (solid line) and diverging (dashed line) beam. Right:
corresponding linear gains for an initial modulation of wavelength � ¼ 100 �m.
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In this section we refer to the rf phase as defined as
�ðdegÞ ¼ �90� c , where c is the phase defined in
Sec. II.

To highlight the importance of a full account of space
charge effects, we show a comparison between results
obtained with two different settings where collective forces
are turned on and off in the rf structure (while they are
included through the leading drift in both cases), see Fig. 8.
The initial rf phase is �0 ¼ �82 deg , corresponding to a
compression factor �2). It is seen that neglecting space
charge in the rf structure (data points with round markers)
leads to a gross overestimate of the gain.

As the beam size variation affects in a sensitive way the
results (see Fig. 6), it is important that when we make a
comparison with the theory we account for the evolution of
the beam radius along s. To this end, a high-order poly-
nomial interpolation for the rms transverse size as a func-
tion of s was carried out from data points extracted from
the simulations. From analysis of the simulation data, it
was found that the best agreement between the analytical
model of Sec. III and simulations is obtained when in the
expression for the impedance (27) we use the relationship
rb ¼ a�x with the factor a defined as a ¼ 1:95–0:001�
� ½�m� instead of a ¼ 2, as would be expected for trans-
versely uniform beams. The good agreement between
simulations (solid line) and theory (dots), including the
empirically adjusted factor a, is shown in Fig. 9. The good
agreement also extends to the determination of the com-
pression factor, Fig. 10 (with the compression factor from
the simulation data calculated as the ratio �z0=�z between
the initial �z0 and final �z rms bunch lengths).
Further simulation-vs-theory comparisons are reported

in Figs. 11 and 12. In particular, in Fig. 11 we show the
linear gain at the exit of the compressor over a range of
perturbation wavelengths for a uncompressed (�0 ¼
0 deg ) and compressed C ¼ 2 (�0 ¼ �82 deg ) beam.
Finally, in Fig. 13 we report the evolution of the amplitude
of the energy modulation induced by an initial density
modulation with 74 �m wavelength. The energy modula-
tion amplitude was retrieved from the simulation data by

FIG. 8. Gain vs z for rf phase �0 ¼ �82 deg (C� 2) with
space charge on and off in the rf structure.

FIG. 7. Longitudinal phase space (left and center pictures) and bunch current distribution at the entrance of the leading drift (upper
pictures) and entrance of the rf structure located 0.6 m downstream (lower pictures). The wavelength of the initial density modulation
is � ¼ 150 �m. The longitudinal space coordinate is expressed in terms of rf phase with 10 deg rf phase corresponding to about 3 mm.
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first removing the correlation phase energy in a window
selected around the beam core in the longitudinal phase
space and then carrying out a sinusoidal fit. An example of
longitudinal beam phase space exhibiting the energy
modulation is shown in Fig. 7. Notice that as it evolves
the beam develops a finite energy spread due to the radial
dependence of the space charge fields, which is missed by
the 1D model of impedance adopted in our linear model.

Nonetheless, the linear model, including the empirical
adjustment of the a factor mentioned earlier, appears to
reproduce quite well the amplitude of the energy
modulation.

V. CONCLUSIONS

In this paper we have derived a linear theory for the
amplitude gain of charge-density modulations of a beam
passing through an rf compression system and have dis-
cussed a comparison against results from macroparticle
simulations carried out with the code TSTEP. A satisfactory
agreement with the linear theory is found when a parameter
in the adopted 1D model for space charge effects is ad-
justed to account for an empirically determined depen-
dence on the perturbation wavelength.
The numerical solutions of the linearized equations and

the TSTEP simulations indicate that, for parameters of
interest in typical FEL applications, the amplification of
small initial density perturbations through an rf compressor
tends to be quite modest (relative to the peak current) if not
outright smaller than unity (i.e. implying damping of the
initial perturbation) even in the absence of any uncorre-
lated energy-spread induced mixing. This result is not
completely unexpected. We know, for example, that in a
low-energy beam drifting in free space, and hence without
compression, the amplitude of longitudinal plasma oscil-

FIG. 10. Compression factor along the beam line (TSTEP simu-
lations vs linear theory) for rf phase �0 ¼ �82 deg .

FIG. 9. Comparison between TSTEP simulations and linear theory for�0 ¼ �82 deg rf phase. The linear gain along the compressor
is shown for four different initial modulation wavelengths: (a) 50 �m, (b) 75 �m, (c) 100 �m, and (d) 150 �m. The dashed line and
solid lines were obtaining by setting a ¼ 2 and a ¼ 1:95–0:001� ½�m�, respectively, in the linear theory.
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lations remains constant. It turns out that, for moderate
compression, velocity bunching changes the dynamics of
longitudinal plasma oscillations from the case of free-
space drifting only mildly—the main difference being in
the adiabatic lengthening of the plasma oscillation wave-
length and reduced strength of the space charge forces as

the beam undergoes acceleration during compression.
These results do not imply that the dynamics of small-
amplitude density perturbations in the rf compressor
should be neglected altogether as these perturbations can
seed an instability downstream if further compression by
magnetic chicanes is applied. Indeed, a scenario in which rf
compression is supplemented by magnetic compression
represents the most likely mode of operation envisioned
for the accelerator drivers of FEL-based 4th generation
light sources [3]. We expect that the theory elaborated in
this paper will represent a useful tool in the evaluation of
the compression schemes for these FEL sources. Finally,
we should mention the possible relevance of our finding in
connection with recent investigations of noise suppression
in FEL injectors, see Gover et al. [15] and Nauser et al.
[16].
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FIG. 13. Evolution of the amplitude of the energy modulation
induced by an initial charge-density perturbation with wave-
length � ¼ 74 �m. The prediction from linear theory (solid
line) reproduces quite well the results from macroparticle simu-
lations (dots).

FIG. 12. Linear gain along the rf compressor for perturbation wavelengths (a) � ¼ 200 �m and (b) � ¼ 250 �m and two values of
the initial rf phase.

FIG. 11. Comparison between TSTEP simulations and linear theory for the linear gain through the bunch compressor over a spectrum
of perturbation wavelengths; (a) is for a beam accelerated ‘‘on crest’’ (uncompressed), C ¼ 1, �0 ¼ 0 deg , (b) is for a compression
factor C ¼ 2, �0 ¼ �82 deg .
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