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Radiation of a charged particle moving parallel to an inhomogeneous surface is considered. Within a

single formalism periodic and random gratings are examined. For the periodically inhomogeneous surface

we derive new expressions for the dispersion relation and the spectral-angular intensity. In particular, for a

given observation direction two wavelengths are emitted instead of one wavelength of the standard Smith-

Purcell effect. For a rough surface we show that the main contribution to the radiation intensity is given by

surface polaritons induced on the interface between two media. These polaritons are multiply scattered on

the roughness of the surface and convert into real photons. The spectral-angular intensity is calculated and

its dependence on different parameters is revealed.
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I. INTRODUCTION

Smith-Purcell radiation (SP) [1] is originated when a
charged particle travels parallel to a plane with diffraction
grating. Recent renewed interest in this problem is caused
by different applications. Among these applications are
length determination for short electron bunches [2], crea-
tion of monochromatic light source in the far infrared
region [3–8], etc. Various theoretical models were pro-
posed for describing the SP; [9–13], for a brief review of
recent theoretical works see [14,15]. Most of these models
deal with the periodical grating in the strong scattering
regime (see below). However, in many situations the inter-
face over which the charge travels is rough. As an example,
one can mention chamber walls in storage rings. Even the
best treated surfaces contain roughness. Radiation appear-
ing when a charged particle moves near a rough surface
could be useful for beam diagnostics [16]. The influence of
the surface roughness on the transition radiation (originat-
ing when particle crosses the interface between two media)
was discussed in [17,18]. Roughness-induced radiation for
a charged particle sliding over a surface was experimen-
tally observed in [19]. In the present paper we study
radiation emitted due to electromagnetic field scattering
on inhomogeneities of dielectric constant. We will see
below that in the weak scattering regime it is possible to
develop a rigorous theory describing both periodical and
random grating within a single formalism.

II. GENERAL RELATIONS

The geometry of the problem is shown in Fig. 1.
A charged particle moves uniformly in the vacuum at the

distance d from the plane z ¼ 0 separating vacuum and
isotropic medium. We are interested in the radiation field
far away from the charge and the interface. The Maxwell

equation for the electric field reads

r2 ~Eð ~r;!Þ� graddiv ~Eð~r;!Þþ!2

c2
"ð~r;!Þ ~Eð ~r;!Þ ¼ ~jð ~r;!Þ;

(1)

where ~j is the current density related to the charge

~jð ~r; !Þ ¼ � 4�ie! ~v

vc2
�ðz� dÞ�ðyÞei!x=v: (2)

Here ~v is the velocity of the particle moving on the 0x
direction and "ð~r; !Þ is the inhomogeneous dielectric per-
mittivity of the system which for a rough surface can be
chosen in the form

"ð~r; !Þ ¼ �½z� hðx; yÞ� þ "ð!Þ�½hðx; yÞ � z�; (3)

where �ðzÞ is Heaviside’s unit step function, and hðx; yÞ is
the amplitude of surface roughness. As it follows from

FIG. 1. Geometry of the problem. A charged particle moves
parallel to the 0x axis. The observation point is far away from the
system.*gevork@yerphi.am

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 070705 (2010)

1098-4402=10=13(7)=070705(6) 070705-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.13.070705


Eq. (3), the space z > hðx; yÞ is vacuum while the space
z < hðx; yÞ is occupied by a medium with isotropic dielec-
tric constant "ð!Þ. Assuming hðx; yÞ small and expanding
Eq. (3), one gets [20]

"ð~r; !Þ ¼ "0ðz;!Þ þ "rð ~r; !Þ; (4)

where

"0ðz; !Þ ¼
�
1; z > 0
"ð!Þ; z < 0

(5)

and

"rð ~r; !Þ ¼ ½"ð!Þ � 1��ðzÞhðx; yÞ: (6)

Thus, the total " is presented as a sum of a regular part "0
and an irregular part "r. To separate the radiation field,

we decompose electric field ~E ¼ ~E0 þ ~Er analogous to

Eq. (4). Here ~E0 and ~Er are the background and radiation
fields, respectively. They obey the following equations:

r2 ~E0ð ~r; !Þ � graddiv ~E0ð ~r; !Þ þ!2

c2
"0ðz;!Þ ~E0ð~r; !Þ

¼ ~jð ~r; !Þ (7)

r2 ~Erð ~r; !Þ � graddiv ~Erð~r; !Þ þ!2

c2
"0ðz;!Þ ~Erð~r; !Þ

þ!2

c2
"rð ~r; !Þ ~Erð~r; !Þ ¼ �!2

c2
"rð~r; !Þ ~E0ð~r; !Þ: (8)

Note that, although the term "rEr in Eq. (8) is small, one
should keep it because it causes multiple scattering of the
electromagnetic field. We will see that multiple scattering
effects are very important in radiation from the rough
surface. Multiple scattering effects in SP radiation for a
cluster of dielectric particles were discussed in [21]. At
large distances from the system, the electromagnetic field
can be treated as a plane wave in which electric and
magnetic fields are equal to each other. Therefore the
intensity of radiation at the frequencies ½!;!þ d!� and
at solid angles ½�;�þ d�� can be determined as follows:

dIð!; ~nÞ ¼ c

2
j ~Erð ~RÞj2R2d�d!; (9)

where ~n is unit vector on the direction of observation point
~R, � is the corresponding solid angle; see Fig. 1 and also

[14]. As usual at large distances j ~Erð ~RÞj2 behaves as 1=R2;
therefore intensity does not depend on R. The expression
Eq. (9) should be averaged over the realizations of random
roughness hðx; yÞ. For this reason it is convenient to in-
troduce the Green’s functions of Eqs. (7) and (8):

�
"0ðz;!Þ!

2

c2
��� � @2

@r�@r�
þ ���r2

�
G0

��ð ~r; ~r0; !Þ

¼ ����ð ~r� ~r0Þ (10)

�
"0ðz; !Þ!

2

c2
��� � @2

@r�@r�
þ ���r2 þ "rð ~r; !Þ!

2

c2
���

�

�G��ð ~r; ~r0; !Þ ¼ ����ð ~r� ~r0Þ: (11)

In Eqs. (10) and (11) a summation over the repeated
indices is supposed. Solutions of inhomogeneous Eqs. (7)
and (8) can be expressed through the Green’s functions
Eqs. (10) and (11). Using Eqs. (7), (8), (10), and (11), one
can represent the averaged radiation intensity tensor

hIijð ~RÞi ¼ hErið ~RÞE�
rjð ~RÞi in the form

hIijð ~RÞi ¼ !4

c4

Z
d~rd~r0hGi�ð ~R; ~rÞ"rð~rÞG�

�jð ~r0; ~RÞ"rð~r0Þi
� E0�ð ~rÞE�

0�ð~r0Þ; (12)

where the background electric field E0�ð~rÞ is expressed

through the bare Green’s function

E0�ð ~rÞ ¼
Z

d~r1G
0
��ð ~r; ~r1Þj�ð~r1Þ: (13)

Here h� � �i means averaging over the surface random
profile hðx; yÞ. Note that in the original Smith-Purcell
experiment [1], as well as in subsequent works on SP, a
periodical grating in one direction is used. In this case
hðx; yÞ � hðxÞ is some periodical function of one coordi-
nate. In the present paper within a single approach we
consider both periodical and random gratings. In the ran-
dom case we suppose that h is a Gaussian stochastic
process characterized by two parameters,

hhð ~�Þi ¼ 0 hhð ~�1Þhð ~�2Þi ¼ �2Wðj ~�1 � ~�2jÞ; (14)

where ~� is the two-dimensional vector in the xy plane, and
�2 ¼ hh2ð ~�Þi is the average deviation of surface from the
plane z ¼ 0. Correlation function W is characterized by a
correlation length � at which it is essentially decreased.
The Maxwell equations for electric fields, Eqs. (7) and

(8), and Green’s functions, Eqs. (10) and (11), should be
amended by boundary conditions. As usual, it is required
that tangential components of electric field be continuous
across the plane z ¼ 0. The exact field, of course, will
satisfy the boundary conditions across the surface z ¼
hðx; yÞ rather than the plane. However, this approximation
seems reasonable for small roughness � � � and is widely
used in the literature. The Green’s function G��ð ~r; ~r0; !Þ,
when considered a function of z for fixed z0, satisfies the
same boundary condition as the �th Cartesian component
of the electric field.

III. GREEN’S FUNCTIONS

The equation for the bare Green’s function, Eq. (10),
with correct boundary conditions for arbitrary "ð!Þ was
solved in [20]. To obtain radiation intensity in vacuum, we
will need Green’s functions in the half space z > 0. In
order to simplify the problem, we will consider the case
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when an isotropic medium is a metal with very large
negative dielectric constant j"ð!Þj � 1. Using expressions
for Green’s functions from [20], we find the following
basic components:

G0
zzð ~pj0; zÞ ¼ G0

zzð ~pjz; 0Þ ¼ ip2

k2
"ð!Þeiqz

k1 � "ð!Þq

G0
xzð ~pjz; 0Þ ¼ �G0

zxð ~pj0; zÞ ¼ � ipx

k2
"ð!Þqeiqz
k1 � "ð!Þq ;

(15)

where G0
ijð ~pjz; z0Þ is the two-dimensional Fourier trans-

form of G0
ijð ~r; ~r0Þ and z > 0. In the coordinate representa-

tion

G0
ijð~r; ~r0Þ ¼

Z d ~p

ð2�Þ2 e
i ~pð ~�� ~�0ÞG0

ijð ~pjz; z0Þ; (16)

Here ~p and ~� are two-dimensional vectors with
Cartesian components px; py; 0 and x; y; 0. Also k ¼
!=c, k1 and q are determined as follows:

q ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � p2
p

; k2 > p2

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � k2

p
; k2 < p2

(17)

k1 ¼ �½"ð!Þk2 � p2�1=2: (18)

In Eq. (18) a branch cut for the square root along the
negative real axis is assumed [20]. Other components of
Green’s function are small over the parameter 1=j"j. To
determine radiation intensity we will need asymptotics of
Green’s functions at large distances. Substituting Eq. (15)
into Eq. (16), one finds

G0
zzð ~R; ~�; 0Þ � 1

2�
ffiffiffi
2

p
R

�
nz

ffiffiffiffiffiffi
n�

p
cos

�
kðR� ~n� ~�Þ � �

4

�
þ nzffiffiffiffiffiffi

n�
p cos

�
kðR� ~n� ~�Þ þ �

4

��

þ i

2�
ffiffiffi
2

p
R

� ffiffiffiffiffiffi
n�

p
cos

�
kðR� ~n� ~�Þ þ �

4

�
� 1ffiffiffiffiffiffi

n�
p cos

�
kðR� ~n� ~�Þ � �

4

��

G0
xzð ~R; ~�; 0Þ ¼ �G0

zxð ~�; 0; ~RÞ � 1

2�
ffiffiffi
2

p
R

�
nx

ffiffiffiffiffiffi
n�

p
sin

�
kðR� ~n� ~�Þ þ �

4

�
þ nxffiffiffiffiffiffi

n�
p sin

�
kðR� ~n� ~�Þ � �

4

��

þ i

2�
ffiffiffi
2

p
R

� ffiffiffiffiffiffi
n�

p
nxnz sin

�
kðR� ~n� ~�Þ � �

4

�
� nznxffiffiffiffiffiffi

n�
p sin

�
kðR� ~n� ~�Þ þ �

4

��
;

(19)

where ~n is the unit vector on the direction of the observa-

tion point ~R ¼ ~nR, nx;z and n� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y

q
are its corre-

sponding components. When obtaining Eq. (19) we use
asymptotics of Bessel functions for large argument [22].
Equation (19) is correct provided that kR � 1, R� � �
and we use approximate equation j ~R� ~rj � R� ~n ~r .

IV. RADIATION INTENSITY

Spectral-angular radiation intensity, Eq. (12), can be

represented as a sum of two contributions, Ið ~R;!Þ ¼
I0ð ~R;!Þ þ IDð ~R;!Þ, where I0 and ID are single scattering
and diffusive contributions, respectively [23]. First con-
sider the single scattering contribution to the radiation
intensity. Substituting the Green’s functions in Eq. (12)
by the bare ones, we obtain

I0ijð ~RÞ ¼ ð"� 1Þ2�2k4
Z

d ~�d ~�0G0
izð ~R; ~�; 0Þ

G�0
zj ð ~�0; 0; ~RÞWðj ~�� ~�0jÞE0zð ~�; 0ÞE�

0zð ~�0; 0Þ;
(20)

where ðijÞ � ðxzÞ. The background electric field in the
limit j"ð!Þj � 1 can be found from Eqs. (2), (13), and
(15),

E0zð ~�; 0Þ ¼ � 4eeik0x

v

dk0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ d2

p K1

�
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ d2

p
�

�
; (21)

where k0 ¼ !=v, � ¼ ð1� v2=c2Þ�1=2 is the Lorentz fac-
tor of the particle, and K1 is the first order Macdonald
function. As it follows from Eq. (21) the background
electric field and correspondingly radiation intensity is
exponentially small when !d=v� � 1, see also [24].
One can expect essential intensity provided that!d=v� 	
1. Far away from the system at the observation point, one
can use asymptotic expressions for Green’s functions,
Eq. (19). Substituting Eqs. (19) and (21) into Eq. (20),

for the spectral-angular radiation intensity Ið!;�Þ ¼
cR2Iiið ~RÞ=2, one obtains

I0ð!;�Þ ¼ e2

c	2

gLxð1� n2xÞð1þ n2zÞð1þ n2�Þ
16�n�d

; (22)

where Lx is the system size in the x direction, g ¼ ð"�
1Þ2�2�2k4 and 	 ¼ v=c. When obtaining Eq. (22) we
neglect strongly oscillating terms in the limit kR � 1
and suppose that Wð ~�� ~�0Þ � �2�ð ~�� ~�0Þ. Beside that
we substitute the Macdonald function by its asymptotics
for small argument assuming that k0d=� 	 1. In the op-
posite limit, as was mentioned above, radiation intensity is
negligible. The components of unit vector ~n are determined
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through the polar 
 and azimuthal � angles of observation
direction: nz ¼ cos
, n� ¼ sin
, nx ¼ sin
 sin�. We con-

sider radiation into the half space z > 0 (vacuum) which
means 
 < �=2. Note that the coupling constant g ¼
k4ð"� 1Þ2�2�2 in Eq. (22) is a dimensionless parameter.
From the condition R� � �, one obtains a restriction on

angles sin
 � L=R, where L is a characteristic size of the
system. To avoid misunderstanding note that 1=	2 depen-
dence of radiation intensity, Eq. (22), is correct in an
intermediate regime for not very low velocities !d=v� 	
1. When 	 ! 0, as was mentioned above, radiation
disappears.

Note that the background field ~E0 can originate radiation
without any roughness provided that Cherenkov condition
v2" > c2 is fulfilled. Cherenkov radiation is possible for
dielectric surfaces with positive large ". For metallic sur-
faces in the optical region we are interested in, the present
paper dielectric constant is negative and Cherenkov radia-
tion is absent.

V. PERIODICAL CASE

Analogously, one can consider the case when surface
grating is a periodical function. For simplicity we will
assume that hð ~�Þ � � sin2�x=b, where b is the period of
grating. Substituting Wðj ~�� ~�0jÞ by sin2�x=b sin2�x0=b
in Eq. (20) and using Eq. (19), after integration, for
spectral-angular radiation intensity, one has

ISPð ~n;!Þ ¼ e2

c	2

g1ð1þ n2zÞð1� n2xÞð1þn2�ÞLx

8�n�

�
�
�

�
knx þ k0 � 2�

b

�
þ�

�
k0 � knx � 2�

b

��

�FðknyÞ; (23)

where g1 ¼ k4ð"� 1Þ2�2 and F is determined as follows:

FðknyÞ ¼
��������
dk0
�

Z 1

0
dy

K1ðk0
ffiffiffiffiffiffiffiffiffiffi
y2þd2

p
� Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ d2
p eikny

��������
2

: (24)

When obtaining Eq. (23) we keep only the terms propor-
tional to Lx. In the most interesting case ny 
 0 and

dk0=� 	 1, substituting K1 by its asymptotic expression,
one finds from Eq. (24), Fð0Þ 
 �2=4. As follows from
Eq. (23), because of the � functions, for a given observa-
tion direction, only two discrete wavelengths are emitted:

�� ¼ b

�
1

	
� nx

�
: (25)

This is a generalization of well-known Smith-Purcell dis-
persion relation [1] to the weak scattering (see below) case.
For an arbitrary periodical grating, one can expand the
surface profile hðxÞ into Fourier series and for each term
one can obtain analogous dispersion relation with b sub-
stituted by b=m, where m is the diffraction order. Note that

the dispersion relation, Eq. (25), and the spectral-angular
radiation intensity, Eq. (23), differ from reported earlier.
The reason of those differences are following. First, we are
considering the weak scattering regime instead of the
strong one considered in the above-mentioned papers.
Our theory is applicable provided that ½"ð!Þ �
1�2�2=�2 	 1 although j"ð!Þj � 1. Probably this regime
was realized in the experiment on SP radiation in the
optical region for shallow gratings [25]. As mentioned in
[25], the traditional formula of SP radiation failed to ex-
plain the results of the experiment in the shallow grating
case. The second reason is the boundary conditions. As

follows from Eqs. (7) and (8), Maxwell equations for ~E0

and ~Er contain the same disruptive function "0ðz; !Þ.
Therefore both of them should satisfy the same boundary
conditions at z ¼ 0. In our consideration this goal is
achieved automatically because the Green’s functions,
Eqs. (15) and (19), satisfy the correct boundary conditions
[20]. To the contrary, in traditional consideration [11], only

the total field ~E0 þ ~Er satisfies the boundary conditions at
z ¼ 0. Probably this difference leads to a different disper-
sion relation, Eq. (25).

VI. DIFFUSIVE CONTRIBUTION, SURFACE
POLARITONS

Using Eq. (12), one finds diffusive contribution to the
radiation intensity in the form

IDij ð ~RÞ ¼ g
Z

d ~�1d ~�2d ~�Gimð ~R; ~�1; 0ÞGhzð ~�2; ~�Þ
� Pmnhsð ~�1 � ~�2ÞG�

zsð ~�; ~�2ÞG�
njð0; ~�1; ~RÞ

� jE0zð ~�; 0Þj2; (26)

where Gijð ~�2; ~�1Þ � Gijð ~�2; 0; ~�1; 0Þ, and where diffusive

propagator P is determined by the sum of ladder diagrams;
see Fig. 2 and [26].
All integrations over z coordinates make them equal to 0

because of �ðzÞ in the fluctuation part of the dielectric
constant, Eq. (6). Averaged two-dimensional surface polar-
iton Green’s function [27] satisfies the Dyson equation

FIG. 2. The dashed line is the correlation function of rough-
ness g�ð ~�1 � ~�2Þ and the solid line is the averaged over the
randomness two-dimensional Green’s function of the surface
polariton.
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G��ð ~pÞ ¼ G0
��ð ~pÞ þ gG0

�mð ~pÞ
Z d ~p1

ð2�Þ2 G
0
mnð ~p1ÞGn�ð ~pÞ:

(27)

Remember that G��ð ~pÞ � G��ð ~pj0; 0Þ, see Eq. (15).

Bare Green’s functions are determined by Eq. (15).
Further, we will be interested in the behavior of Green’s
function close to the pole. These values play a main role in
the limit g ! 0. As it follows from Eq. (15), the two-
dimensional Green’s functions of surface polariton have
a pole at p2 ¼ k2"=ð"þ 1Þ, see [27]. The corresponding

velocity of a surface polariton is equal to c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið"þ 1Þ="p

< c.
Remember that we consider the case when " 	 �1. When
electron velocity becomes equal to this velocity, a super-
radiant emission is possible provided that the grating is
periodical [6,8]. Close to the pole and for large negative
j"ð!Þj � 1, the Green’s functions of the surface polariton
can be represented in the form

G0
zzðpÞ ’ �kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�"1ð!Þp 1

k2 � p2 � i�

G0
zxð ~pÞ ’ ipxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�"1ð!Þp 1

k2 � p2 � i�
;

(28)

where � ¼ k2"2="
2
1, " ¼ "1 þ i"2, and "2 	 j"1j. In

Eq. (28) � describes the damping of the surface polariton
on the flat surface due to the inelastic processes in the
medium, i.e. "2ð!Þ. It follows from Eq. (28) thatR
d ~p ~pG0

zxð ~pÞ � 0. Therefore only G0
zz gives a contribu-

tion to the integral in Eq. (27). Solving the Dyson equation,
Eq. (27), one can represent the averaged Green’s functions
in the form

GzzðpÞ ’ �kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�"1ð!Þp 1

k2 � p2 � i�

Gzxð ~pÞ ’ ipxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�"1ð!Þp 1

k2 � p2 � i�
;

(29)

where � ¼ R d ~p
ð2�Þ2 ImG0

zzðpÞ ¼ gk2=4"1ð!Þ. The real part
of the integral leads to renormalization of the parameters
and does not play any role. The integral is calculated in the
limit "2 ! 0. � describes the damping of the surface
polariton by its roughness-induced conversion into radia-
tive modes [27]. It is convenient also to introduce the
polariton mean-free path on the rough surface l ¼ k=�.
Note that the neglected terms in diagram expansion are
small on parameter �=l 	 1 [26].

Using Eqs. (29), one sees that the main contribution to
the diffusive radiation intensity, Eq. (26), gives the term
proportional to Pzzzz which contains a diffusive pole at
small momentums. Summing the ladder diagrams in
Fig. 2, one finds a Bethe-Salpeter equation for diffusive
propagator PðKÞ � PzzzzðKÞ:

PðKÞ ¼ fðKÞ þ gfðKÞPðKÞ; (30)

where

fðKÞ ¼
Z d ~p

ð2�Þ2 GðpÞG�ðj ~p� ~KjÞ: (31)

Here GðpÞ � GzzðpÞ. Using Eq. (29) and calculating the
integral in Eq. (31) in the limit g ! 0, one finds PðKÞ at
small Kl 	 1:

PðKÞ ¼ 2

K2l2
: (32)

Substituting Eq. (19) into Eq. (26), for the diffusive con-
tribution to the radiation intensity, one has

IDð!;�Þ ¼ cðn2z þ 1Þð1� n2xÞð1þ n2�Þ
64�2n�

� PðK ! 0Þ
Z

d ~�jE0zð ~�; 0Þj2: (33)

As follows from Eqs. (32) and (33) radiation intensity
diverges. This divergence is caused by the infinite size of
the system, see also [23,28]. If one takes into account the
finite size of the system, the minimal momentum will be of
order
1=L. As was mentioned above, the radiation inten-
sity is exponentially small provided that d � �=k0. In the
opposite limit d 	 �=k0 substituting K1 by its asymptotic
expression and integrating Eq. (33), we finally obtain

IDð!;�Þ ¼ e2

c	2

ð1þ n2zÞð1� n2xÞð1þ n2�Þ
8�n�

LxL
2

dl2
: (34)

In this consideration weak l 	 lin, where lin ¼ k=� ¼
"21=k"2 is the inelastic mean-free path of surface polariton,
absorption can be taken into account as follows [29]. When

L > ðllinÞ1=2, L in Eq. (34) should be substituted by

ðllinÞ1=2. Comparing single scattering, Eq. (22), and diffu-
sive, Eq. (34), contributions, one has ID=I0 
 L2=gl2 � 1.
Therefore the diffusion of surface polaritons is the main
mechanism of radiation. Let us make some numerical

estimates for the optical region. For Ag at �
 4500 �A,

"1 
�7:5 and "2 
 0:24. Taking �
 50 �A and �

1000 �A [27], one has g
 0:68, l
 7:7�, and lin 

47:94�. Thus the conditions for diffusive mechanism � 	
l 	 lin, L are fulfilled. Evidently, depending on grating
parameters �, � emission in other wavelength regions is
possible too.
We have considered multiple scattering effects in radia-

tion for uncorrelated roughness. However, they are very
important for the periodical as well as correlated grating
cases too. These cases are more complicated and will be
discussed elsewhere later. Our result, Eq. (23), for SP
radiation intensity with only single scattering contribution
is correct in the cases when the multiple scattering con-
tribution is negligible. Such a situation can occur for the
metals with relatively large absorption when the condition
of multiple scattering of polaritons lin � l is not fulfilled.
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