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In pulsed-beam free-electron devices, longitudinal space-charge fields result in collective effects

leading to an expansion of short electron bunches along their trajectory. This effect restricts an application

of intense ultrashort electron pulses in free-electron radiation sources. A careful theoretical treatment is

required in order to achieve an accurate description of the self-fields and the resulted electron beam

dynamics. In this paper, longitudinal space-charge fields are considered in the framework of a three-

dimensional, space-frequency approach. The model is based on the expansion of the total electromagnetic

field (including self-fields) in terms of transverse eigenmodes of the (cold) cavity, in which the field is

excited and propagates. The electromagnetic field, originally obtained in the model as a solution of the

wave equation, is shown to satisfy also Gauss’s law. We applied the theory to derive an analytical

expression for the longitudinal electric field of a pointlike charge, moving along a waveguide at a constant

velocity. This enables consideration and study of the role played by different terms of the resulted

expressions, such as components arising from forward and backward waves, propagating waves, and

under cutoff frequencies, and so on. Possible simplifications in evaluation of longitudinal space-charge

fields are discussed.
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I. INTRODUCTION

Development of laser induced photocathodes and of
electron bunch compression techniques enables applica-
tion of intensive, ultrashort electron pulses in free-electron
radiation sources. In free-electron lasers, a highly efficient
superradiant emission can be achieved with such pulses,
providing a strong coherent radiation with intensity being
proportional to the pulse charge squared [1]. However,
space-charge fields give rise to microbunching instabilities,
restricting applications of intense ultrashort electron pulses
[2–4]. In most electron devices, the electron beam is kept
focused along the beam line so as the transverse compo-
nents of the space-charge forces are compensated. The
residual longitudinal space-charge field causes an expan-
sion of short electron pulses along their trajectory. In a
finite cross-section beam, there is a fringing field near the
edges of the beam, which causes a decrease in the axial
self-field. When the e-beam propagates in a waveguide,
this reduction effect is even stronger due to the presence of
conducting walls as shown schematically in Fig. 1.

In the present work, the self-fields are considered in the
framework of a three-dimensional, space-frequency ap-
proach [5,6]. The model is based on the expansion of the
total electromagnetic field in terms of transverse eigen-
modes of the (cold) cavity, in which the field is excited and
propagates. This approach has been applied for the analysis
of wideband interactions in free-electron lasers operating
in the linear and nonlinear regimes [7,8]. Based on this
modal expansion, the three-dimensional theory for electro-

magnetic field and plasma wave propagation in a wave-
guide filled with a continuous electron beam was
developed [9–11]. It is now extended to describe space-
charge fields arising in a pulsed-beam configurations.
The electromagnetic field, originally obtained in the

model as a solution of the wave equation for an uniform
waveguide, is shown to satisfy also Gauss’s laws for elec-
tric and magnetic fields. The longitudinal electric field was
found in the model analytically for a pointlike charge,
moving along a waveguide at a constant velocity. This
enables analysis of the role played by the different terms
of the resulted expression for the longitudinal electric field,
i.e., the components arising from forward and backward
waves, above and under cutoff frequencies, and so on.
Possible approximations for a simplified evaluation of
longitudinal space-charge fields in a pulsed-beam device
are discussed.
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FIG. 1. (Color) Schematic illustration for fringing field.*ylurie@ariel.ac.il
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II. MODAL PRESENTATION OF
ELECTROMAGNETIC FIELD IN THE

FREQUENCY DOMAIN

In the approach, transverse components of the total
electromagnetic field are expanded in the positive-
frequency domain in terms of a complete set of transverse
forward and backward eigenmodes of the medium in which
the field is excited and propagates:

~E?ðr; fÞ ¼
X

�q

C�qðz; fÞe�jkzqz ~E�q?ðr?Þ

~H?ðr; fÞ ¼
X

�q

C�qðz; fÞe�jkzqz ~H�q?ðr?Þ;
(1)

where Cqðz; fÞ is the scalar amplitude of the qth mode with

electric field ~Eq?ðr?Þ and magnetic field ~Hq?ðr?Þ profiles,
and the axial wave number is

kzqðfÞ ¼
8
><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2?q

q
; k > k?q ðpropagatingÞ

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2?q � k2

q
; k < k?q ðcutoffÞ:

(2)

Here k ¼ w=c and c ¼ 1=
ffiffiffiffiffiffiffi
��

p
is the velocity of light.

Expressions for the longitudinal component of the elec-
tric and magnetic fields are obtained after substitution of
the modal representation (1) into Maxwell’s curl equations,

where the electric current density ~Jðr; fÞ of the source
electron beam is introduced:

~Ezðr; fÞ ¼
X

�q

C�qðz; fÞe�jkzqz~E�qzðr?Þ � 1

jw�
~Jzðr; fÞ

~Hzðr; fÞ ¼
X

�q

C�qðz; fÞe�jkzqz ~H�qzðr?Þ: (3)

In the time domain, the electromagnetic field is given as
inverse Fourier transform of (1) and (3):

Eðr; tÞ ¼ <
�Z 1

0

~Eðr; fÞeþjwtdf

�

Hðr; tÞ ¼ <
�Z 1

0

~Hðr; fÞeþjwtdf

�
:

(4)

Evolution of the amplitudes of the excited modes is
described by a set of coupled differential equations of the
first order:

d

dz
C�qðz; fÞ ¼ � 1

2N q

e�jkzqz

�
ZZ ��

Zq

Z�
q

�
~J?ðr; fÞ � ẑ~Jzðr; fÞ

�

� ~E�
qðr?Þdr?: (5)

The field amplitude of each mode is normalized via the
complex Poynting vector:

N q ¼
ZZ

½~Eq?ðr?Þ � ~H�
q?ðr?Þ� � ẑdr? (6)

and the mode impedance is

Zq ¼
8
><
>:

ffiffiffi
�
�

q
k
kzq

¼ w�=kzq for TE modes
ffiffiffi
�
�

q
kzq
k ¼ kzq=w� for TM modes:

(7)

The spectral energy distribution of the electromagnetic
field can also be expressed in terms of the excitation
coefficients Cqðz; fÞ of propagating and cutoff modes:

dW ðzÞ
df

¼ X

q
propagating

1

2
½jCþqðz; fÞj2 � jC�qðz; fÞj2�<fN qg

þ X

q
cutoff

=fCþqðz; fÞC��qðz; fÞg=fN qg: (8)

Equations (1) and (3)–(5) define the electromagnetic
field in a waveguide as a solution of the wave equation
for an uniform waveguide, obtained from Maxwell’s curl
equations. The divergence of the magnetic field can be
presented in the frequency domain in the form

r � ~Hðr; fÞ ¼ r? � ~H?ðr; fÞ þ @

@z
~Hzðr; fÞ

¼ �X

q

h~Eqz j~Jzi
N q

~H qzðr?Þ; (9)

where we define

h~Eqz j~Jzi �
ZZ

~Jzðr; fÞ � ~E�
qzðr?Þdr?: (10)

Since one of the longitudinal field components, ~Eqzðr?Þ or
~H qzðr?Þ, is always equal to zero, i.e. ~Eqzðr?Þ ¼ 0 for TE

modes and ~H qzðr?Þ ¼ 0 for TM modes, the Gauss’s law

for the magnetic field

r �Hðr; tÞ ¼ 0 (11)

is also satisfied.
The divergence of the electric field can be expressed as

follows:

r � ~Eðr; fÞ ¼ r? � ~E?ðr; fÞ þ @

@z
~Ezðr; fÞ

¼ �X

q

iqðzÞ~Eqzðr?Þ �
1

jw�

@

@z
~Jzðr; fÞ; (12)

where

iqðzÞ � 1

N q

�
Zq

Z�
q

�ZZ
~J?ðr; fÞ � ~E�

q?ðr?Þdr?: (13)

Note that the summation in (12) actually includes only

forward TM modes. Substituting ~Eqzðr?Þ according to the

relation

~E qzðr?Þ ¼
1

jkzq
r? � ~Eq?ðr?Þ; (14)
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the first term in (12) can be rewritten as follows:

�X

q

iqðzÞ~Eqzðr?Þ ¼ � 1

jkzq
r? �X

q

iqðzÞ~Eq?ðr?Þ

¼ � 1

jw�
r? � ~J?ðr; fÞ: (15)

Using this result, the electric field is shown to satisfy the
Gauss’s law:

r � ~Eðr; fÞ ¼ � 1

jw�
r � ~Jðr; fÞ ¼ ~�ðr; fÞ

�
; (16)

while applying the continuity equation

r � ~Jðr; fÞ ¼ �jw~�ðr; fÞ; (17)

where ~�ðr; fÞ is the charge density in the positive-
frequency domain.

III. ONE-DIMENSIONAL LONGITUDINAL TERM

The last term in Eq. (3) introduces the one-dimensional,
longitudinal field. In the time domain, the term corre-
sponds to the field given by

�Ezðr; tÞ ¼ �<
�Z 1

0

1

jw�
~Jzðr; fÞeþjwtdf

�

¼ �>ðrÞ � �<ðrÞ
2�

; (18)

where

�>ðr; tÞ �
Z þ1

t
Jzðr; �Þd� (19)

and

�<ðr; tÞ �
Z t

�1
Jzðr; �Þd� (20)

are the corresponding charge densities per unit square,
originating from all the charges crossing the point r ¼
ðr?; zÞ before and after the moment t. Within the transverse
cross section of the electron beam pulse, these charge
densities remain constant at all distances z outside the
pulse. Therefore, the field �Ezðr; tÞ under consideration
is actually independent of z outside the beam pulse, and
schematically looks like as shown in Fig. 2.

According to (3), the longitudinal electric field is given
as a summation of the longitudinal field term (18) and the
superposition of all TMmodes. Expanding the longitudinal
current density ~Jzðr; fÞ in terms of the complete set of

eigenmodes ~Eqzðr?Þ,

~J zðr; fÞ ¼
X

q

w�kzq
k2?q

N qh~Eqz j~Jzi~Eqzðr?Þ; (21)

the expression for the longitudinal electric field can be
presented as a modal expansion:

~E zðr; fÞ ¼
X

q

�
Cþqðz; fÞe�jkzqz � C�qðz; fÞeþjkzqz

� kzq
jk2?q

N qh~Eqz j~Jzi
�
~Eqzðr?Þ: (22)

IV. THE ELECTRON BEAM DYNAMICS

The state of a particle i is described by a six-components
vector, which consists of the particle’s position coordinates
ri ¼ ðr?i; ziÞ and velocity vector vi. The velocities of the
particles, in the presence of electric Eðr; tÞ and magnetic
Bðr; tÞ ¼ �Hðr; tÞ fields, are found from the Lorentz force
equation:

dvi
dz

¼ � e

m

Eðri; tiÞ þ vi � Bðri; tiÞ
�ivzi

� vi
�i

d�i

dz
; (23)

where e and m are the electron charge and mass, respec-
tively, and the Lorentz relativistic factor �i of each particle
is found from the equation for kinetic energy:

d�i

dz
¼ � e

mc2
1

vzi

vi �Eðri; tiÞ: (24)

The fields in Eqs. (23) and (24), represent the total (DC and
AC) forces operating on a particle, and include also the
self-field due to space charge.
The current distribution is determined by the positions

r?i, the times tiðzÞ, and the velocities vi of the particles in
the beam:

J ðr; tÞ ¼ �Q

N

XN

i¼1

vi
vzi

�ðr? � r?iÞ�½t� tiðzÞ�: (25)

Here Q is the total charge of the e-beam pulse, and

tiðzÞ ¼ t0i þ
Z z

0

dz0

vziðz0Þ
(26)

is the time it takes the ith particle to arrive at a position z
(t0i is the time when the particle entered at z ¼ 0). In the
positive-frequency domain, the current density of the beam
is given by

z

∆ E
z

v

FIG. 2. (Color) Schematic illustration of the longitudinal field
term (18).
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~Jðr; fÞ ¼ 2
Z þ1

�1
Jðr; tÞeþjwtdt

¼ �2
Q

N

XN

i¼1

vi
vzi

�ðr? � r?iÞeþjwtiðzÞ (27)

and the excitation equation (5) can be rewritten as follows:

d

dz
C�qðz; fÞ ¼ � 1

N q

Q

N

XN

i¼1

�
�
Zq

Z�
q

v?i
� ~E��q?ðr?iÞ

vzi

þ ~E��qzðr?iÞ
�

� exp½jðwtiðzÞ � kzqzÞ�: (28)

The resulted expression together with the field presen-
tation (1), (3), and (4), and with the beam dynamics equa-
tions (23), (24), and (26), form a close set of equations,
enabling a self-consistent solution for the electromagnetic
fields (radiation and space charge) and the beam trajectory
in free-electron devices. Note that, after substitution of the
current density (25) in (18), the longitudinal field term can
be given in the form

�Ezðr; tÞ ¼ 1

2�

Q

N

XN

i¼1

�ðx� xiÞ�ðy� yiÞsgn½t� tiðzÞ�;

(29)

where sgnðtÞ ¼ jtj=t is the sign function.

V. SINGLE CHARGE

To demonstrate the applicability of the modal expansion
(22) for evaluation of longitudinal electric space-charge
fields, we consider here a single pointlike charge, moving
along a waveguide of length L with a constant velocity vz.
Supposing no electromagnetic waves are entering the
waveguide through its open ends, i.e. Cþqðz ¼ 0; fÞ ¼ 0

and C�qðz ¼ L; fÞ ¼ 0, the field amplitudes C�qðz; fÞ can
be found analytically:

Cþqðz; fÞ ¼ Q~E�
qzðr?pÞð1� e�j�þqzÞ=ðj�þqN qÞ

C�qðz; fÞ ¼ Q~E�
qzðr?pÞðe�j��qL � e�j��qzÞ=ðj��qN qÞ:

(30)

Here r?p is transverse position of the particle, and ��q ¼
w=vz � kzq.

As a numerical example, we consider here a point charge
of 1 nC, moving with kinetic energy of 5.5 MeV along a
rectangular a� b ¼ 15� 10 mm2 waveguide of length
L ¼ 10 cm. The parameters are typical to free-electron
lasers operating in the millimeter wavelengths and the
THz regime [12]. The interaction length L was shortened
to several centimeters for simplification of the numerical
calculations. Figure 3 demonstrates the frequency depen-

dence of the field amplitudes (30) obtained in this case. The
field is considered at the moment when the charge crosses
the plain z ¼ L=2. Both forward and backward waves are
found to play a comparative role in the calculations, domi-
nating in the vicinity of the cutoff of each mode, and at zero
frequency. Longitudinal dependence of the field amplitude
C�qðz; fÞ of TM11 is shown in Fig. 4 as a function of the

relative longitudinal position �z ¼ z� zp in the vicinity

of the cutoff frequency of the mode fco 	 18 GHz.
Substitution of the field amplitudes (30) into (3) and (4)

results in the following tree-terms analytical expression for
the longitudinal electric field:

Ezðr; tÞ ¼
X

TMþq

fEðprÞ
zq ðr; tÞ þ EðcoÞ

zq ðr; tÞ þ �Ezqðr; tÞg;

(31)

where
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FIG. 3. (Color) Frequency dependence of the forward (top) and
the backward (bottom) field amplitudes (30) found at the point
z ¼ L=2 (only the first three modes are shown). Arrows show the
cutoff frequencies of the modes.
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EðprÞ
zq ðr; tÞ ¼ Qk2?q

2	�

~E�
qzðr?pÞ~Eqzðr?Þ
h~Eqzj~Eqzi

�Z 1

ck?q

sinðwt� kzqzÞ
ðw=vzÞ2 � k2zq

�
1

kzqvz

� 1

w

�
dw

�
Z 1

ck?q

sinðw½t� L=vz� � kzq½L� z�Þ
ðw=vzÞ2 � k2zq

�
1

kzqvz

� 1

w

�
dw� 2

Z 1

ck?q

sinðw½t� z=vz�Þ
ðw=vzÞ2 � k2zq

dw

w

�
(32)

is the field component corresponding to propagating waves, and

EðcoÞ
zq ðr; tÞ ¼ Qk2?q

2	�

~E�
qzðr?pÞ~Eqzðr?Þ
h~Eqzj~Eqzi

�Z ck?q

0

e�jkzqjz

ðw=vzÞ2 þ jkzqj2
�
cosðwtÞ
jkzqjvz

� sinðwtÞ
w

�
dw

�
Z ck?q

0

e�jkzqjðL�zÞ

ðw=vzÞ2 þ jkzqj2
�
cosðw½t� L=vz�Þ

jkzqjvz

� sinðw½t� L=vz�Þ
w

�
dw� 2

Z ck?q

0

sinðw½t� z=vz�Þ
ðw=vzÞ2 þ jkzqj2

dw

w

�
(33)

corresponds to cutoff modes. The third term is the longi-
tudinal field, given by

�Ezqðr; tÞ ¼ Q

2�

~E�
qzðr?pÞ~Eqzðr?Þ
h~Eqzj~Eqzi

sgnðt� z=vzÞ: (34)

Figure 5 demonstrates the field (31) found at the wave-
guide axis at the moment when the charge passes the plain
z ¼ L=2. The results are shown as obtained in the calcu-
lations with a single TM11 mode and with 5050 TMm;n

modes (mþ n 
 200) taken into account. Inspection of
Fig. 5 reveals that, at long distances from the charge, the
steplike longitudinal field term (18) is mainly compensated
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FIG. 4. (Color) Spatial (longitudinal) dependence of the forward
(top) and backward (bottom) field amplitude (30) of TM11 mode
in the vicinity of the cutoff.
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FIG. 5. (Color) Longitudinal electric field (31) obtained with a
single TM11 mode (top) and with 5050 TMm;n modes (bottom).
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by the field component originated from the cutoff modes,
while the propagating waves seem to play an important
role at short distances from the charge. Convergence of the
calculations is found to be extremely slow as demonstrated
in Fig. 6. We note that the total electric field found far of the
waveguide’s ends after the summation of all the modes is
of a short range, and it seems to be insensitive to the
waveguide’s length L; then the dependence of the total
field obtained inside the waveguide on the length L is
considered as an artificial.

VI. STATIC POINTLIKE CHARGE IN A
WAVEGUIDE

The Coulomb field given in Fig. 6 for a comparison was
obtained by Lorenz transformation of the free-space
Coulomb field of a point static charge

E ðCÞðrÞ ¼ Q

4	�

r� rp

jr� rpj3
(35)

from its rest frame to the laboratory system. Note that this
field does not fulfill the boundary conditions at the wave-
guide walls. Nevertheless, the resulted field is supposed to
be a good approximation in the vicinity of the waveguide
axis.

However, boundary conditions should be introduced in
calculations of the field far of the waveguide axis. To find
an analytic expression for the field, we first consider a
static pointlike charge in a point rp inside a waveguide.

The electric field of the charge can be found as a solution of
Poisson equation

r � EðrÞ ¼ Q

�
�ðr� rpÞ (36)

imposing the proper boundary conditions. This static so-
lution can be expressed as an expansion over the wave-

guide eigenmodes, taken at zero frequency:

E ðrÞ ¼ X

�q


�qðzÞ~E�qðr?Þjf¼0: (37)

Substitution of the expansion (37) into Eq. (36) and use

of the orthogonality of the transverse eigenmodes ~E�qðr?Þ
result in the following differential equation for the expan-
sion coefficients 
�qðzÞ:

d
þq

dz
þ k?q
þqðzÞ �

d
�q

dz
þ k?q
�qðzÞ

¼ Q

�

~Eqzðr?Þ
h~Eqzj~Eqzi

�ðz� zpÞ: (38)

Solution of this differential equation, while fulfilling
the obvious symmetry condition Ezðr?; ½zp þ �z�Þ ¼
�Ezðr?; ½zp � �z�Þ, can be presented in the form


þqðzÞ ¼ Q

2�

~Eqzðrp?Þ
h~Eqzj~Eqzi

e�k?qðz�zpÞuðz� zpÞ


�qðzÞ ¼ Q

2�

~Eqzðrp?Þ
h~Eqzj~Eqzi

eþk?qðz�zpÞuðzp � zÞ:
(39)

Here uðzÞ is the step function. Note that according to (39),
only TM modes should be included in the summation in
Eq. (37).
Substituting the coefficients (39) into the expansion

(37), the electric field of a static charge in a waveguide
can finally be given as follows:

EðrÞ ¼ Q

2�

X

TMq

~Eqzðrp?Þ
h~Eqzj~Eqzi

e�k?qjz�zpjfuðz� zpÞ~Eþqðr?Þjf¼0

þ uðzp � zÞ~E�qðr?Þjf¼0g: (40)

This expression enables more effective field evaluation
in comparison with direct calculations according to (31)–
(34); this is because of the simple analytic form which does
not include, in contrast to the direct calculations, integrals
of oscillating functions arising due to the inverse Fourier

transform. More of this, exponential term e�k?qjz�zpj in
Eq. (40) provides a much faster convergence of the calcu-
lations with a number of the eigenmodes taken into ac-
count, depending on the relative distance jz� zpj
considered.
Figure 7 presents the field obtained after Lorenz trans-

formation of (40) to the laboratory frame. The field is
found to be very close to the Coulomb one at the vicinity
of the waveguide axis and at small jz� zpj [see Fig. 7(a)].
However, it falls much faster than the Coulomb field at
long distances as shown in Fig. 7(b). Figure 7(c) demon-
strates the effects of the waveguide walls on the field.
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FIG. 6. (Color) Longitudinal electric field (31).
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VII. CONCLUSIONS

The space-frequency model is found to satisfy the full
set of Maxwell’s equations, including Gauss’s laws for
electric and magnetic fields. Expressions describing the
longitudinal electric field in the model include, in addition
to a simple steplike one-dimensional term, summation over
both forward and backward waves, which contributes
mainly at zero frequency and near cutoff. None of these
terms can be neglected in the calculations of the space-
charge field. The model enables a direct evaluation of
longitudinal space-charge fields associated with an elec-
tron beam in a waveguide according to Eq. (3) or Eq. (22).
Nevertheless, such direct calculations demonstrate an ex-
tremely slow convergence even in a simple case of a single
pointlike charge.
To improve the efficiency of the method, analytical 3D

approximation based on Lorenz-transformed fields (40) is
suggested. Application of Lorenz-transformed Coulomb
free-space field is found to be sufficient and reasonable
in configurations where the electron beam does not ap-
proach the waveguide’s walls.

[1] Y. Pinhasi and Yu. Lurie, Phys. Rev. E 65, 026501 (2002).
[2] E. L. Saldin, E. A. Schneidmiller, and M.V. Yurkov, Nucl.

Instrum. Methods Phys. Res., Sect. A 528, 355 (2004).
[3] T. Shaftan and Z. Huang, Phys. Rev. ST Accel. Beams 7,

080702 (2004).
[4] J. H. Wu, Z. R. Huang, and P. Emma, Phys. Rev. STAccel.

Beams 11, 040701 (2008).
[5] N. Marcuvitz and J. Schwinger, J. Appl. Phys. 22, 806

(1951).
[6] Y. Pinhasi, Yu. Lurie, and A. Yahalom, Phys. Rev. E 71,

036503 (2005).
[7] Y. Pinhasi, Y. Lurie, and A. Yahalom, Nucl. Instrum.

Methods Phys. Res., Sect. A 528, 62 (2004).
[8] Yu. Lurie and Y. Pinhasi, Phys. Rev. STAccel. Beams 10,

080703 (2007).
[9] Y. Pinhasi and A. Gover, Phys. Rev. E 48, 3925 (1993).
[10] A. Gover and E. Dyunin, Phys. Rev. Lett. 102, 154801

(2009).
[11] E. Hemsing et al., Phys. Rev. Lett. 102, 174801 (2009).
[12] E. Dyunin, Yu. Lurie, Y. Pinhasi, A. Gover, and H. Marks,

in Proceedings of IEEE 25th Convention of Electrical &
Electronics Engineers in Israel (IEEEI 2008), http://
dx.doi.org/10.1109/EEEI.2008.4736655, p. 825.

(a)

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−200

−150

−100

−50

0

50

100

150

200

250

∆ z [mm]

 E
z( 

y=
0 

) 
  [

kV
/m

m
]

 x / a ≈ 0.0083

 x / a = 0.025

 x / a = 0.25

Modal Expansion
Coulomb

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−4

10
−3

10
−2

10
−1

10
0

10
1

∆ z [mm]

 E
z( 

y=
0 

) 
  [

kV
/m

m
]

 x / a = 0.025

 x / a = 0.25

Modal Expansion
Coulomb

(c)

−0.5 −0.25 0 0.25 0.5
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

 x /  a

 E
z( 

y=
0 

) 
  [

kV
/m

m
]

∆ z ≈  8.5 µm

∆ z ≈ 42.5 µm

∆ z ≈ 85.0 µm

Modal Expansion
Coulomb

FIG. 7. (Color) Longitudinal electric field of a 1 nC charge,
moving with a constant 5.5 MeV kinetic energy along a rectan-
gular waveguide.
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