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Because of the long synchrotron period between the two barriers, bunch compression in a barrier bucket

is usually relatively slow. The conservation of the phase space area requires that the compression is

performed adiabatically, that is much slower than the synchrotron period. We will show that the presence

of longitudinal space charge can considerably improve the efficiency of the barrier compression. An

optimized scheme using a novel ‘‘shock’’ compression is presented. The corresponding analytic model

relies on the exact solution for shock waves in a cold beam. Results obtained from this model are

compared with Vlasov simulations.
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I. INTRODUCTION

Barrier buckets are routinely employed in storage rings
for the accumulation of antiprotons [1,2]. In synchrotrons
for high intensity ion beams, barrier buckets are presently
not a routine technique. In part this is due to beam loading
and other high intensity effects that are of concern. Low Q
magnetic alloy (MA) rf cavities are often used to generate
single barrier pulses in the form of sinus half waves [3]. By
moving one of the pulses one can, for example, compress
the stored beam and open an empty gap for the next
injection. At low and medium beam energies space charge
effects play an important role. In Ref. [4] it was shown that
space charge has the positive effect of increasing the
threshold for the microwave instability in barrier buckets.
It is the aim of the present study to point out additional
beneficial effects of space charge below transition energy.
More precisely we will show that space charge can reduce
beam-loading effects and that it can significantly improve
the performance of the barrier compression. As an example
case, we consider the proposed precompression of an in-
tense U28þ bunch at 1 GeV=u using two rf barrier pulses in
the projected SIS-100 synchrotron [5]. The precompres-
sion is the most demanding rf manipulation during the SIS-
100 cycle. It prepares the bunch for the subsequent fast
(0.1 ms) bunch rotation just before extraction. The total
cycle time of SIS-100 is 1 s, roughly. The precompression
should be completed in about T ¼ 100 ms in order to meet
the required average beam intensities on the production
target. Alternative precompression schemes for SIS-100
based on batch compression and conventional rf buckets
at different harmonics were studied in Ref. [6] for low
beam intensities. In the barrier compression scheme, one
starts from a long bunch of length l0 � 0:8L (SIS-100 ring
circumference L ¼ 2�R ¼ 1080 m) confined between
two rf barrier half waves. One of the barriers is moved
inside the bunch for precompression up to l1 � 0:4L.
Because of the expected low momentum spread of initially
ð�p=pÞrms � 10�4 and the corresponding small synchro-

tron period of Ts � 300 ms, the compression cannot be
truly adiabatic. However, for low momentum spreads and
high beam intensities (N ¼ 5� 1011 U28þ ions), space
charge effects play an important role in SIS-100. A novel
‘‘shock’’ compression scheme for space charge dominated
beams will be described and applied to the conditions in
SIS-100. Although the present study focuses on parameters
that are of relevance for the SIS-100 project, the presented
compression scheme and especially the shock wave solu-
tions for space charge dominated beams are also of more
general interest. The structure of this paper is as follows: In
Sec. II the distortion of the rf barrier potential due to space
charge is analyzed. In Sec. III the combined effect of beam
loading and space charge in a stationary bunch is treated.
Section IV deals with the nonadiabatic barrier compression
of a low intensity bunch. In Sec. V the shock compression
is presented and compared to Vlasov simulation. Barrier
compression schemes with space charge are presented in
Sec. VI. The conclusions are in Sec. VII.

II. POTENTIAL DISTORTION DUE TO SPACE
CHARGE

The stationary line density profile for a bunch that is
confined between two barrier rf half waves is obtained
assuming a local elliptic distribution [7]. The local elliptic
distribution has the main advantage that the local space
charge voltage is directly proportional to the local rf volt-
age. For strong space charge the bunch profiles obtained
from an elliptic and from a Gaussian distribution agree (see
e.g. [8], page 412). Let z and v be the deviations in position
and velocity from the particle at rest in the bucket center,
then the longitudinal equation of motion is

_v ¼ 1

m�
qV

L
; _z ¼ v (1)

with the effective mass m� ¼ ��0m=�0, the relativistic
parameter �0, the slip factor �0 ¼ 1=�2

t � 1=�2
0, the tran-

sition parameter �t, the ring circumference L, the charge q,
the mass m, and the voltage profile VðzÞ. The equation of
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motion in the ðz; vÞ coordinates can be derived from the
‘‘Hamiltonian’’

H ¼ v2

2
� qV0

m�L
YðzÞ: (2)

The potential function is

YðzÞ ¼ 1

V0

Z z

0
Vdz; (3)

where V0 is the rf voltage amplitude. The line density
resulting from an elliptic bunch distribution is [7,9]

�ðzÞ ¼ �0

�
1� YðzÞ

YðzmÞ
�
: (4)

�0 is the line density in the bunch center. The potential
function at the bunch ends z ¼ zm can be obtained from
Eq. (2) as

YðzmÞ ¼ �Lm�v2
m

2qV0

; (5)

where vm ¼ ��0�0c�p=p is the maximum velocity of
the particle at the bunch boundary and�p=p the maximum
momentum spread in the bunch.

The voltage profile VðzÞ can be divided into the external
(rf) voltage part and the space charge part. The rf voltage
profile for a conventional rf bucket is VrfðzÞ ¼
V0 sinðhz=RÞ, where h is the harmonic number of the rf
wave. In a barrier bucket the right part of the half wave is
shifted towards positive z and the left part towards negative
z (see the black curve in Fig. 1). Below transition the total
focusing voltage applied to the beam is then V ¼ �Vrf þ
Vsc, where the space charge voltage is defocusing. Here we
will focus on the case below transition, above transition
V ¼ Vrf þ Vsc would apply. The space charge voltage is
given through [9,10]

VscðzÞ ¼ �q�0cXscR
@�

@z
(6)

and the corresponding space charge potential is

YscðzÞ ¼ q�0c
RXs

V0

ð�0 � �Þ; (7)

where Xsc is the space charge reactance

Xsc ¼ g

2�0�0c�
2
0

(8)

and g ¼ 0:5þ 2 lnðb=aÞ is the g factor. The space charge
factor defined as

� ¼ 1
Vrf

Vsc
� 1

(9)

describes the space charge induced voltage reduction in-
side a matched bunch. For an elliptic bunch distribution,
the local space charge voltage is directly proportional to
the local rf voltage and �, as defined above, is constant.
From Eqs. (4) and (6) the space charge factor can be
derived as

� ¼ 2
c2s0
v2
m

(10)

with

cs0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qXscI0
2�m�

s
; (11)

where I0 is the current in the bunch center. Equation (10)
applies also to the region between rf barriers. In this case I0
is the current between the barriers and the space charge
factor � can be interpreted in terms of the ratio of the
coherent phase velocity cs0 of space charge waves and the
incoherent velocity vm [4]. Between two rf barriers the
force is zero (Y ¼ 0) and the line density is constant
�ðzÞ ¼ �0, if we only account for space charge effects.
Equation (6) implies a constant space charge impedance
Zsc ¼ �inXsc, with the harmonic number n. Close to the
cutoff frequency of the beam pipe (at harmonic nc) the
space charge impedance drops according to [11]

Zsc ¼ � inXsc

1þ ðn=ncÞ2
� �inXsc

�
1� n2

n2c

�
(12)

and the resulting first correction term to the space charge
voltage in Eq. (6) is (see also Ref. [12])

�VscðzÞ ¼ q�0cXsc

R3

n2c

@3�

@z3
: (13)

As we will see later in Sec. V, this correction term causes
dispersion effects in the equation of motion. However, for
the calculation of the potential deformation we will assume
a constant space charge impedance, which is a valid ap-
proximation if the shoulders of the bunch are long com-

FIG. 1. (Color) Matched bunch and voltage profiles between
two barrier rf half waves (harmonic number h ¼ 5) for � ¼ 2.
Shown are the bunch profile (red curve), the external rf voltage
(black curve), and the total voltage (blue curve).
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pared to the cutoff wavelength L=nc. The matched bunch
profile for parameters relevant at the SIS-100 extraction
energy (see Table I) is shown in Fig. 1. The deformation of
the total voltage profile is clearly visible.

III. BEAM-LOADING EFFECTS

Beam loading in the rf cavities is a major reason for the
asymmetric bunch form distortion at high beam intensities
(see, e.g., Refs. [13,14]). Especially in barrier buckets
beam loading can have a dramatic effect on the bunch
form, because of the missing rf force between the barriers.
Here we assume a broadband MA cavity with a constant
impedance Zbl � Rs (shunt impedance Rs). This approxi-
mation applies to the MA cavities that are projected for the
barrier bucket generation in SIS-100. The corresponding
beam-loading potential is

YblðzÞ ¼ �q�0c
Rs

V0

Z z

0
�dz: (14)

Between the barriers Yrf ¼ 0 holds and from Eq. (4) one
obtains the following differential equation for the line
density:

�0 ¼ ���0 � �0�r�; (15)

where � is the space charge parameter and �r is the beam-
loading coefficient

�r ¼ 2q2�0cRs

Lm�v2
m

: (16)

The resulting expression for the line density between the
barriers is

�ðzÞ ¼ �0 exp

�
� �0�r

1þ�
z

�
: (17)

For small arguments we obtain for the line density pertur-
bation �� ¼ �� �0,

��ðzÞ
�0

� � �0�r

1þ �
z: (18)

If we equate zwith the half-bunch length zm, we can define
a beam-loading parameter including space charge

�r ¼ �0�rzm
1þ �

: (19)

For �r & 1 beam-loading effects can be assumed to be
weak. This criterium also defines the tolerable Rs for the
SIS-100 barrier rf cavities. In Fig. 2 we plot the bunch
forms and the voltage functions with space charge and
beam loading (blue curves) and for beam loading without
space charge (red curves). The results were obtained via
numerical iteration of Eq. (4). By adjusting the shunt
impedance Rs the beam-loading parameter in Fig. 2 is
chosen as �r ¼ 2 for the space charge parameter � ¼ 2.
The beam parameters are the same as those used for Fig. 1.

We see that space charge acts as a kind of passive feedback
mechanism that tends to restore a symmetric bunch profile.
It is important to note that Eq. (19) is valid also for a
Gaussian bunch distribution. In the following sections we
will always assume that beam-loading effects can be
ignored �r � 1.

IV. NONADIABATIC BARRIER COMPRESSION

In order to compress the bunch, the phase of one barrier
rf wave is varied (see e.g. [1]) and the barrier moves with

the velocity ub ¼ _l into the beam. l is the distance between
the barriers. Adiabatic barrier compression requires that
the barrier velocity is much slower than the incoherent
velocity ub � vm [1]. An adiabatic compression ramp
can be derived from

1

l

dl

dt
¼ � �

TsðlÞ ; (20)

where �, as defined in the above equation, is the adiaba-
ticity parameter and Ts � 2l=vm is the synchrotron period
for particles at the bunch boundary. Adiabatic compression
requires � � 1. If Ts0 is the synchrotron period of a
boundary particle before compression, then the synchro-
tron period during compression is TsðlÞ ¼ Ts0l

2=l20, where
l0 is the initial barrier distance. During adiabatic compres-
sion the bunch area Ab � 2vml remains constant and there-
fore Ts decreases with l2=l20 because the velocity of a

particle at the bunch boundary increases according to vm �
l0=l. With these definitions, Eq. (20) yields

l ¼ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

t

Ts0

s
: (21)

As an example, for a final barrier distance l1 ¼ l0=2 the
corresponding compression time is T=Ts0 ¼ 3=ð8�Þ. If we
chose a ramp time T ¼ Ts0 the resulting adiabaticity pa-
rameter is� ¼ 3=8. In SIS-100 the compression should be

FIG. 2. (Color) Matched bunch and voltage profiles between two
barrier rf half waves for � ¼ 2 and �r ¼ 2 (blue curves). The
red curves represent the results for � ¼ 0 and �r ¼ 2.
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completed within T � 100 ms, but the initial synchrotron
period is already Ts0 ¼ 300 ms. Therefore an adiabatic
compression is not possible and we deliberately attempt
an optimized nonadiabatic compression scheme with a
constant barrier velocity ub & vm. Let us first neglect
space charge effects by assuming � ¼ 0. The maximum
velocity vm changes at the moving barrier to vm1 ¼
�ðvm þ 2ubÞ. In the proposed scheme the compression
stops exactly at the time the particle with initial velocity
�ðvm þ 2ubÞ and initial position at the barrier zm is re-
flected at the stationary barrier and reaches the moving
barrier again. In this way no particle hits the moving barrier
more than once. The compression time for this scheme is

T ¼ �l

ub
¼ l0 þ l1

vm þ 2ub
; (22)

where �l ¼ l0 � l1 is the compression length. From the

above equation we obtain

ub ¼ vm

�
2l0
�l

� 3

��1
; (23)

which yields ub=vm ¼ 1 and T � 70 ms for �l ¼ l0=2
and SIS-100 parameters (see Table I). The scheme can be
applied in SIS-100 because the precompressed bunch will
be rotated and extracted in less than a millisecond. Figure 3
shows the final beam distribution obtained from a Vlasov
simulation [4]. The increase of the bunch area due to the
emerging voids in the occupied phase space area is clearly
visible. During compression the rms bunch area increases
by roughly the factor 1.5, which is in agreement with the
analytic estimate

Ab1

Ab0

¼
�
1� �l

l0

��
1þ 2

ub
vm

�
; (24)

where Ab0 � 2vml0 is the initial bunch area and Ab1 �
2ðvm þ 2ubÞl1 is the final bunch area. It is important to
note that alternative fast barrier compression schemes exist
(see, e.g., Ref. [15]).

V. SHOCK COMPRESSION

In this section we will study the barrier compression of
beams affected by space charge. First we will obtain an
analytic solution for shock waves in space charge domi-
nated beams. In the limit of a space charge dominated
beamwith cs0 � vm, the Vlasov equation for the evolution
of the distribution function can be reduced to the cold fluid
equations for the line density �ðzÞ and the local velocity
uðzÞ (see Refs. [8,16]):

@�

@t
þ @

@z
ð�uÞ ¼ 0

@u

@t
þ u

@u

@z
þ 	

@�

@z
¼ 0 (25)

with

	 ¼ qXsc�0c

2�m� : (26)

The cold fluid equations can be obtained directly from the
equation of motion du=dt ¼ qV=ðLm�Þ and Eq. (6) for the
space charge voltage V ¼ Vsc. The cold fluid equations
comply with Euler’s fluid equations for the equation of
state p ¼ 	��=2 with � ¼ 2. It is well known that for a
piston moving into a gas Euler’s fluid equations exhibit a
shock wave solution [17]. In our compression scheme the
barrier moving with the constant velocity ub acts like a
piston. The resulting shock velocity is cs. In Fig. 4 the
shock front propagation is depicted. �1 is the line density in
front of the moving barrier. �0 is the unperturbed line
density. The cold fluid equations (25) can be rewritten in
the following form reflecting the conservation of the par-
ticle number and momentum:

FIG. 3. (Color) Snapshots of the bunch distribution during bar-
rier compression obtained from the simulation. The barrier
velocity is ub ¼ vm and space charge effects are neglected.
The dotted rectangles indicate the initial bunch boundary (top)
and the final one (bottom), assuming that the bunch area is
conserved Ab0 ¼ Ab1.
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@�

@t
¼ � @

@z
ð�uÞ @ð�uÞ

@t
¼ � @

@z

�
	

2
�2 þ �u2

�
:

(27)

The integration of the above equations across the shock
front, assuming an infinitely thin shock layer, yields

�0u0 ¼ �1u1
	

2
�2
0 þ �0u

2
0 ¼

	

2
�2
1 þ �1u

2
1; (28)

where u0 ¼ cs and u1 ¼ cs � ub are the velocities in the
unperturbed beam and in the compressed beam relatively
to the shock layer. Eliminating the compressed density �1

in Eqs. (28) leads to

2csðcs � ubÞ2 ¼ c2s0ð2cs � ubÞ: (29)

For weak shocks with ub � cs0 we obtain cs � cs0. For
larger ratios we can use the exact expression

c0s ¼ 2
ffiffiffiffiffiffiffiffiffi�Q

p
cos

�



3

�
þ 2

3
u0b; (30)

where c0s ¼ cs=cs0 is the normalized shock velocity and
u0b ¼ ub=cs0 is the normalized barrier velocity or Mach

number. The other quantities are


 ¼ arccos

�
Rffiffiffiffiffiffiffiffiffiffiffi�Q3

p
�

and

R ¼ � 1

27
u03b þ 1

12
u0b; Q ¼ � 1

9
u02b � 1

3
:

The resulting curve for c0sðu0bÞ is shown in Fig. 5. The curve
can be well approximated by a linear dependence c0s ¼
1þ �u0b with � � 0:8. The symbols represent results ob-

tained from a self-consistent Vlasov simulation code [4]
for different space charge parameters. In the simulation we
moved the right barrier with a constant velocity ub into the
bunch. The velocity of the resulting shock front cs was
obtained from the simulation. One can observe in Fig. 5
that the agreement between the simulation results and
Eq. (30) improves with increasing �. For moderate space
charge (� ¼ 2) the shock velocity cs obtained from the
simulation is underestimated by Eq. (30). For large � and
low barrier Mach numbers u0b the shock front decays into

localized coherent structures. The shock solutions obtained
from the simulations will be analyzed in the following.
Figures 6–9 show the shock fronts for different � and u0b
indicated by the vertical red dashed lines. The shock front
for � ¼ 4 and u0b ¼ 0:4 is shown in Fig. 6. In front of the

shock wave (moving to the left), we observe a filament of
particles that are reflected from the space charge field of
the shock front. In a cold beam the particle velocity drops
from u0 to u1 (in the frame moving with the shock front)
when a particle penetrates the shock front. In a ‘‘warm’’
beam with a finite momentum spread the kinetic energy of
particles at the lower edge of the velocity distribution at
u0 � vm can be too low to penetrate the shock front;
instead they are reflected. The density of reflected particles
can be expected to increase with the barrier velocity (see
Fig. 7), because the relative height of the shock front �1=�0

increases with ub. With increasing � the shock front
velocity increases and for cs0 � vm the beam again be-
haves like a cold beam. The reflected particles are poten-
tially lost from the rf bucket provided by the barriers. The
reflected particles are a possible reason for the discrepancy

FIG. 5. (Color) Shock velocity cs as a function of the barrier
velocity ub obtained from Eq. (30) and from simulations for
three different space charge parameters.

FIG. 6. (Color) Snapshot of the shock front for � ¼ 4 and ub ¼
0:4cs0 from the simulation.

FIG. 4. Shock front moving with the velocity cs from the
barrier (velocity ub) into the undisturbed beam.

RF BARRIER COMPRESSION WITH SPACE CHARGE Phys. Rev. ST Accel. Beams 13, 034202 (2010)

034202-5



between the analytic result and the simulation result in
Fig. 5 for larger u0b. For low barrier velocities (u0b & 0:2)
and large �, the shock front decays into localized coherent
structures (see Fig. 8). This is due to the dispersion induced
by the drop-off of the space charge impedance [12,18]. In
Fig. 9 the simulation result for � ¼ 2 and u0b ¼ 0:5 is

shown. For lower � the line density behind the shock front
(to the right) starts to develop a slope, similar to the result
for � ¼ 0 (see Fig. 3).
In summary we find from our Vlasov simulations that,

for space charge parameters � * 1 and � & 10, shock
solutions exist that can be used for barrier compression,
provided that the relative number of reflected particles
remains tolerable. For � * 3 the shock velocities cs ob-
tained from the simulations agree rather well with the
analytic result for a cold beam Eq. (30).

VI. BARRIER COMPRESSION SCHEMES WITH
SPACE CHARGE

After the analytical and numerical analysis of shock
waves in space charge dominated beams we turn again to
the barrier compression schemes. We focus on the parame-
ters and requirements for the bunch precompression in SIS-
100 that are summarized in Table I. The most simple
approach would be to move one barrier with constant
velocity ub until the shock front reaches the opposite
barrier. The compression time for this scheme is

T ¼ �l

ub
¼ l0

cs
: (31)

The resulting barrier Mach number for a given compres-
sion factor �l=l0 is

u0b ¼
�
l0
�l

� �

��1
; (32)

where we used the approximate expression c0s ¼ 1þ �u0b
found in the previous section. For the compression factor
�l=l0 ¼ 0:5 required in the SIS-100, the barrier Mach
number is u0b � 0:83. For � ¼ 2 one has to use the exact

numerical values for c0s (see Fig. 5) instead of the analytic
result. Still the obtained barrier Mach number of u0b � 0:86
is very similar. For these Mach numbers the relative num-
ber of particles reflected from the shock front is already
high (see Sec. V). In addition the final compressed bunch
has an undesired velocity offset of �ub (see, e.g., Fig. 7).
Therefore we use a compression scheme similar to the one
presented in Sec. IV. In this scheme the compression time
is tuned exactly in such a way that the shock front returns
back to the moving barrier after being reflected at the fixed
barrier. The resulting compression time is

T ¼ �l=ub � ðl0 þ l1Þ=cs; (33)

where the last relation is only approximative because the
reflected shock front moves through an increased bunch
density. The resulting barrier Mach number is

FIG. 9. (Color) Snapshot of the shock front for � ¼ 2 and ub ¼
0:6cs0 from the simulation.

FIG. 8. (Color) Snapshot of the shock front for � ¼ 8 and ub ¼
0:2cs0 from the simulation.

FIG. 7. (Color) Snapshot of the shock front for � ¼ 4 and ub ¼
cs0 from the simulation.
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u0b �
�
2l0
�l

� 1� �

��1
; (34)

which gives u0b � 0:45 for �l=l0 ¼ 0:5. For � ¼ 4 the

resulting compressing time is T � 110 ms. For larger �
the compression time T can be shorter relative to the� ¼ 0
case, because the relevant velocity in Eq. (34) is cs0 and not
vm, like in Eq. (23). However, the more important aspect is
that during the shock compression the growth of the bunch
area is very small, provided that the barrier Mach number
remains below & 0:6. This will be demonstrated using
Vlasov simulations. Figure 10 shows snapshots of the

barrier compression using the parameters given in
Table I. The steep shock front launched from the moving
barrier is clearly visible (top). In about T ¼ 140 ms, the
shock front returns back to the moving barrier and the
compression is completed (bottom). In this simulation
the slightly higher barrier Mach number of u0b ¼ 0:56
was used, which results from Eq. (31) if one uses the
numerically obtained exact c0s for � ¼ 2 from Fig. 5.
Using this exact c0s, Eq. (31) predicts a slightly shorter
compression time of T ¼ 135 ms. In Fig. 10 one can
observe that the phase space area occupied by the bunch
is very well conserved during the shock compression. The

FIG. 10. (Color) Snapshots of the beam distribution during
barrier compression obtained from a Vlasov simulation for � ¼
2 and ub ¼ 0:56cs0. The dotted rectangles indicate the initial
bunch boundary (top) and the final one (bottom), assuming that
the bunch area is conserved Ab0 ¼ Ab1.

FIG. 11. (Color) Snapshots of the beam distribution during
barrier compression obtained from a Vlasov simulation for � ¼
4 and ub ¼ 0:45cs0. The dotted rectangles indicate the initial
bunch boundary (top) and the final one (bottom), assuming that
the bunch area is conserved Ab0 ¼ Ab1.

TABLE I. SIS-100 parameter.

L [m] �t V0 [kV] h Ion N �0 ð�p=pÞ0 �0 cs0 [km=s] l0 l1

1080 15.6 16 5 U28þ 5� 1011 2.1 10�4 2 6 0:8L 0:4L
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particles reflected from the shock front are in a filament
outside the dotted rectangle in Fig. 10 (bottom). This
filament represents less than 5% of the total bunch inten-
sity. Figure 11 shows snapshots of the barrier compression
for the larger space charge parameter � ¼ 4. The barrier
Mach number is u0b ¼ 0:45. As also predicted by Eqs. (33)
and (34) in about T ¼ 110 ms the compression is com-
pleted. The particles outside the dotted rectangle in Fig. 11
(bottom) are in a filament that represents less than 2% of
the total bunch intensity. The shock compression for the
even larger space charge parameter � ¼ 8 is shown in
Fig. 12. Again the compression time of T ¼ 85 ms agrees
quite well with the analytic estimate from Eqs. (33) and
(34) (T ¼ 81 ms). For this large space charge parameter
the reflected particles outside the dotted rectangle in
Fig. 12 (bottom) represent only less than 1% of the total
bunch intensity.

VII. CONCLUSIONS

In this study we showed that longitudinal space charge
can act in beneficial ways. First, space charge can reduce
the asymmetric bunch deformation induced by beam load-
ing. This is particularly important in long barrier buckets.
Second, space charge can improve the efficiency of rf
manipulations. A barrier compression scheme for space
charge dominated bunches is presented. The scheme takes
advantage of the shock front that launches naturally if a
barrier moves into a space charge dominated beam. The
duration of the compression depends on the velocity of the
shock front cs and not on the incoherent velocity spread
vm. Vlasov simulation showed that for space charge domi-
nated beams the shock velocity cs is in good agreement
with the analytic result obtained for a cold beam. During
the shock compression the bunch area is conserved very
well. For barrier Mach numbers approaching u0b ¼ 1, the
bunch area increases due to particles that are reflected at
the shock front. For large space charge parameters disper-
sion effects can lead to a decay of the shock front into
localized coherent structures. Using the expected beam
parameters in SIS-100, the simulations demonstrate that
the scheme can potentially be employed for the precom-
pression step. Shocks generated by moving barriers might
have other applications, e.g., in low-energy, cooled ion
beams. As a next step, we would like to repeat experiments
[19] performed at GSI with a moving barrier, but with high
current ion beams in order to observe the shock wave.
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