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Transverse Schottky spectra and beam transfer functions (BTFs) of coasting ion beams were measured

in the heavy ion synchrotron SIS-18 in order to study the impact of space charge on the transverse beam

dynamics. The particle number in the beam was varied to investigate the intensity dependence of the

space-charge effect. No cooling was applied to the beams throughout the experiment. The expected

deformation of the Schottky spectra and BTFs is observed. An analytic model with linear space charge is

employed to describe the deformed Schottky and BTF signals. In this model, the incoherent space-charge

force and the coherent forces due to impedances are treated separately. Using the model, the space-charge

induced tune shift is evaluated both from the position and the form of the signals. The data are well

described by the model, only in the high-intensity BTFs deviations are observed. The stability diagrams

are shifted according to the space-charge parameter obtained from the BTFs. In addition, the tune shift is

estimated by virtue of measured beam profiles and particle numbers. The estimated tune shift is of the

same order of magnitude but smaller than the measured one. Possible explanations for deviations between

the measurements, the model, and the estimation are discussed.
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I. INTRODUCTION

Collective effects often limit the intensity of charged
particle beams in accelerators. After several decades of
investigation [1,2], the theory of Landau damping and
impedances can be found mostly in the literature (see
e.g. [3,4]). However, the accurate prediction of stability
limits and the cure of instabilities is still being investigated
today due to the demand for increased beam intensities.
Particularly the dynamics of space-charge dominated
beams is still a subject of ongoing research, for instance
in the framework of the projected FAIR synchrotrons at
GSI [5,6].

With transverse beam transfer functions (BTFs) and
Schottky detection, two common tools for beam diagnos-
tics are available for the investigation of beam dynamics
with collective effects. Schottky measurements record the
power spectrum of the beam. Statistical fluctuations of the
beam current and its dipole moment give rise to bands in
the Schottky spectrum [7]. It is routinely used to determine
properties of low intensity beams, such as the incoherent
tune. A nice feature of this technique is that it is
nondestructive.

Measuring the same beam signal but while the beam is
excited transversally and dividing the output by the exci-
tation yields the BTF. It provides information on the beam
properties and accelerator parameters similar to Schottky
measurements, but with a better signal to noise ratio. In
addition the BTF gives information about the stability of a

beam [3]. The perturbation of the beam is usually negli-
gible. In the heavy ion synchrotron SIS-18 [8] at GSI, the
BTF technique has been applied to determine the momen-
tum distribution and Landau damping characteristics [9].
The fact that these methods are sensitive to collective

effects implies on the other hand, that for high beam
currents the output of these tools cannot be interpreted
properly without understanding the impact of high-
intensity effects. For instance, the tune cannot simply be
read from the location of the maximum of a BTF or
Schottky band if collective effects are present because
they distort the signals [3,7,10]. This is, besides the beam
stability, another concern for the operation of accelerators
with intense beams.
One type of collective effects is caused by the transverse

impedances of the accelerator environment. This can result
in a coherent tune shift and may drive an instability. In
contrary to impedances, space charge does not drive co-
herent instabilities. Nevertheless space charge is important
for the stability characteristics, particularly of low-
energetic ion beams, because it reduces the individual
particle tune. The resulting separation of the incoherent
spectrum from the coherent line suppresses Landau damp-
ing and thus reduces the stability limits [11]. Still, the
difference between the effects of impedances and space
charge is only scarcely discussed in the literature.
Modeling beam dynamics with space charge is difficult

because space charge exerts an incoherent nonlinear force
on each particle. The shape of the force field depends on
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the transverse particle distribution. Hence, the analysis
becomes quite involved, see, e.g., Ref. [6,12,13]—or sim-
plifications must be made. One approach, which assumes a
rigid beam, yields a dispersion relation allowing for space
charge and impedances, as derived in Ref. [14]. Assuming
a linear space-charge force, the dispersion relation was
solved for a Gaussian momentum distribution in Ref. [15].

However, the assumed model is arguable because of the
assumptions that the beam oscillates rigidly [16] and that
the space-charge force is linear. On the other hand. in
Ref. [6] self-consistent simulations are shown to compare
well to a model based on a rigid beam. The nonlinear
components of space charge are negligible for the weak
to moderate space charge, as present during our measure-
ment. In fact, measurements with a weakly relativistic ion
beam (velocity over speed of light � ¼ 0:15), and particle
tracking simulations demonstrate that the linear space-
charge model describes the shape of Schottky sidebands
deformed by moderate space charge [10].

In this study, we report about a new experiment per-
formed in SIS-18. BTFs and Schottky spectra, measured
with the same settings, are compared to each other. The
beam current was varied by more than 1 order of magni-
tude to study the dependence of space-charge effects on the
beam intensity quantitatively. Compared to our previous
measurements, a higher beam intensity was achieved. The
space-charge parameters from the Schottky and BTF data
are compared to an estimation based on measured beam
parameters.

The diagnostic methods and the linear space-charge
model are introduced in Sec. II. In Sec. III the realization
of our measurement is described. The results and their
comparison with the model follow in Sec. IV. Finally we
conclude with a summary in Sec. V.

II. SCHOTTKYAND TRANSVERSE BTF
DIAGNOSTICS

In synchrotrons and storage rings, Schottky diagnostics
is commonly used for the measurement of the momentum
distribution �ðpÞ of the particles that constitute the beam,
the revolution frequency f0, as well as the betatron tune
Q0. In the absence of collective effects, the shape of the
Schottky bands reflects the momentum distribution [7].
The rms width of a longitudinal band centered around
the revolution harmonic m is given by � ¼
mf0j�j�p=p, where we introduced the rms momentum
spread �p=p and the slip factor � ¼ 1=�2

T � 1=�2 with
the transition point �T and the Lorentz factor �. Schottky
sidebands P0ðfÞ are located at

f�m;0 ¼ f0ðm�Qf;0Þ; (1)

where Qf;0 is the fractional part of Q0. The ‘‘þ’’ sign

corresponds to the upper sideband and the ‘‘�’’ sign to
the lower one. The rms width of P0 reads

��
m ¼ jm�� ðQf;0��Q0�Þjf0 �pp ; (2)

where � is the chromaticity. Using the short notation z0 ¼
ðf�m;0 � fÞ=��

m , the transverse BTF of a low intensity beam

is given by [3]

r0ðz0Þ ¼ �
Z 1

�1
P0ðzÞ
z0 � z

dz: (3)

For a Gaussian � the integration yields the complex error
function [15]

r0ðz0Þ ¼ �
ffiffiffiffi
�

2

r
1

�
ie�z2

0
=2

�
1� erfðiz0=

ffiffiffi
2

p Þ
i

�
: (4)

However, because the maximal momentum spread is ac-
tually limited to a finite value, a truncated Gaussian distri-
bution could be more suitable to model �. Such a
distribution complicates the analysis. Besides the fact
that the integral in Eq. (3) can be solved only numerically,
the problem is that the range of the momentum distribution
is not accessible for measurements because of the signal to
noise ratio. Therefore we assume an unlimited range in the
following discussion.
In the following, r denotes a BTF influenced by collec-

tive effects. The plot of the inverse BTF

1

rðz0Þ ¼ Uðz0Þ þ iVðz0Þ (5)

in the complex plane, where U, V 2 R, is called stability
diagram [3]. First we consider an impedance Z?, which
lumps the geometric and material properties of the beam
environment together [4]. The real part of Z? drives dipo-
lar beam oscillations which eventually can lead to an
instability. Imaginary impedances do not drive instabilities,
but by virtue of the coherent tune shift �Qcoh ¼
rpNZ2=ð2�Z0AQ0�Þ ImðZ?Þ, they give rise to a gap be-

tween the coherent beam tune and incoherent particle tune,
and hence suppress the transfer of energy from the coher-
ent to the incoherent motion which is required for Landau
damping [4,11]. Because of this gap, the actual particle
density in the tails of �ðpÞ becomes particularly important
for the effectiveness of Landau damping.
The deformation of both Schottky spectra and BTF due

to�Qcoh is more conveniently expressed using the parame-
ter�Ucoh ¼ �Qcohf0=�

�
m . Analogously, the impact of real

impedances is described by the parameter �V. A Schottky
sideband deformed by an impedance is described by [7]

Pðz0Þ ¼ P0ðz0Þ
j � 1� ð�Ucoh þ i�VÞr0ðz0Þj2

; (6)

and for transverse BTF we have [3]

rðz0Þ ¼ r0ðz0Þ
�1� ð�Ucoh þ i�VÞr0ðz0Þ : (7)
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The stability of a beam exposed to impedances can be
displayed in a stability diagram which is given by the
inverse of r plotted in the complex plane [3]. The BTF
on the upper and lower side of a harmonic yields two
branches which enclose the area of stability. From
Eqs. (5) and (7) follows

1

rðz0Þ ¼ � 1

r0ðz0Þ � ð�Ucoh þ i�VÞ; (8)

which shows another feature of �Ucoh þ i�Vcoh. It is a
measure for the shift of the stability diagram due to an
impedance. The beam becomes unstable when the origin is
moved out of the area of stability.

Independently of the beam environment, the self-field,
referred to as space charge, acts directly on each particle
without affecting the coherent frequency. The force exerted
on each particle depends on its position with respect to the
beam center. Hence, space charge gives rise to an incoher-
ent force, which depends on the transverse particle distri-
bution. Since this force is nonlinear in real beams, particles
with different amplitudes of the betatron oscillation are
affected differently. As a consequence a tune spread
occurs.

Assuming a rigidly oscillating beam, the equation of
motion with space charge and impedances can be turned
into a dispersion relation [14], which generally needs to be
solved numerically. The problem is considerably simpli-
fied if a homogeneous beam profile, i.e., a Kapchinsky-
Vladimirsky (K-V) beam [17], is assumed. Space charge
then becomes linear and the tune spread turns into an
incoherent tune shift �Qsc. Consequently, the fractional
part of the incoherent tune becomes

Qf ¼ Qf;0 ��Qsc (9)

and f�m;0 [Eq. (1)] is shifted to

f�m ¼ f0ðm�QfÞ: (10)

Qf can be directly calculated from f�m . But as we will see
below, it cannot be measured as easily as f�m;0 at low

intensity.
The dispersion relation with linear space charge is de-

rived and solved for a Gaussian momentum distribution in
Ref. [15]. Using the space-charge parameter

�Usc ¼ �Qscf0
��

m

; (11)

we put the dispersion relation from [15] together with
Eq. (6) and (7) in order to model linear space charge. For
a Schottky band this yields

PðzÞ ¼ P0ðzÞ
j � 1� ð�Ucoh � �Usc þ i�VÞr0ðzÞj2

(12)

and for the BTF

rðzÞ ¼ r0ðzÞ
�1� ð�Ucoh ��Usc þ i�VÞr0ðzÞ (13)

with the normalized frequency

z ¼ 1

��
m

ðf�m � fÞ: (14)

Here we emphasize that z incorporates �Qsc as opposed to
�Qcoh. Note also that, due to their deformation, the max-
ima of PðzÞ and rðzÞ do not coincide with f�m . According to
Eq. (13), space charge shifts the transverse stability dia-
gram analogously to an impedance. The shift from z0 to z is
not visible in this representation. Therefore the shift of the
stability diagrams in cold beams can be described in terms
of a ‘‘space-charge impedance’’. This way the observations
made with cooled beams have been discussed [18,19].
Fitting Eq. (12) or Eq. (13) with a given r0 to a set of

measured data yields �Usc � �Uinc from the shape of the
signal. Hence, the deformation of the band tells the differ-
ence between a coherent and an incoherent tune. On the
other hand, combining Eq. (14) and Eq. (10) produces Qf.

Comparison with the low intensity tune Qf;0 allows the

determination of�Qsc [Eq. (9)] independently of�Qcoh by
virtue of

�Qsc ¼
f�m;0 � f�m

f0
: (15)

�Qsc in the y plane can be estimated from N, the beam
emittances 	x, 	y and the mean beta functions �x, �y by

virtue of [20]

�Qsc;y ¼
rpNZ2g

��2�3Að	y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	y	x�x=�y

q
Þ
; (16)

where g is the form factor of the transverse density distri-
bution. For a K-V beam g is 1 and 	 is the full emittance.
For a Gaussian distribution g is 2 and 	 the 2� emittance.
In the latter case Eq. (16) yields the maximal one-particle
tune shift while the incoherent tune of the beam is smeared
out.
At the injection energy of SIS-18, corresponding to � ¼

0:15, the impact of impedances on the beam is expected to
be negligible compared to space charge. One of the most
important impedance sources is the beam pipe. For a
perfectly conducting beam pipe of radius b and for a
beam radius a, the coherent tune shift is by a factor
a2=b2 weaker than the space-charge tune shift [4].
During our experiment this factor was & 0:1, thus from
here on we assume �Qcoh � 0.
The most important real impedance stems from the

resistive wall and the kickers. The former has been calcu-
lated analytically [21], the latter numerically [22]. For SIS-
18 and at the measuring frequency of about 10 MHz, the
kicker impedance does not exceed 100 k�=m and the
resistive wall a fraction of it. For the most intense beam
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in our experiment this corresponds to �V � 3� 10�4.
Consequently, real impedances were not relevant for the
measurement and the deformation of the signals [Eq. (12)
and (13)] is linked to �Qsc only.

III. EXPERIMENTAL SETUP

In our measurement an uncooled coasting 40Ar18þ beam
was stored at the injection energy of 11:4 MeV=u, corre-
sponding to � ¼ 0:15 and f0 � 214 kHz, in the synchro-
tron SIS-18 for several seconds. The number of ions N
stored in the ring was varied from 2:5� 108 to 1:1� 1010.
The lower limit was set by the sensitivity of the Schottky
pickup and the upper by the beam stability on the injection
plateau. In order to change N, the beam current in GSI’s
linear accelerator UNILAC [23] was adjusted. The pa-
rameters of the multiturn injection were fixed to prevent
	 from changing.

The hardware for Schottky and BTF diagnostics in SIS-
18 is a replicate of the system designed for the experimen-
tal storage ring at GSI [24,25]. It comprises a plate capaci-
tor as a pickup and a strip-line kicker to excite the beam for
BTF measurements. The setup is sketched in Fig. 1. The
signals from the two plates of the detector are preamplified
and either added, to produce the longitudinal Schottky
signal, or subtracted for transverse Schottky or BTF mea-
surements. The pickup was operated in the nonresonant
mode in our experiment, mainly because of the limited
range of the resonance frequency.

On the injection plateau, either Schottky spectra were
recorded or a network analyzer performed a frequency
sweep to obtain BTFs around the harmonic m ¼ 50. The
vertical plane was chosen because the smaller distance
between the detector plates in this direction provides a
better signal to noise ratio. In order to determine the
revolution frequency and the momentum distribution,

without being disturbed by collective effects, also longitu-
dinal Schottky spectra were recorded. Since the beam was
not cooled, the longitudinal phase-space density was too
low for longitudinal space-charge effects.
The beam profile and the current were observed using an

ionization profile monitor (IPM) and a transformer, respec-
tively, in order to deduce 	 and N. The vertical emittance
was evaluated via 	y ¼ 4a2y=�y with the rms beam width

ay and the beta function�y at the position of the IPM. Here

we applied the principle of rms equivalent beams [17] to
approximate the full emittance of a K-V beam by the 2�
emittance of the measured Gaussian beam profile. For the
horizontal plane, we proceeded analogously.
The rms emittances were 	y � 4:4 mmmrad and

	x � 6:0 mmmrad, with fluctuations of 0.3 mmmrad.
With �y ¼ 11:8 m and �x ¼ 9:3 m, the square root in

Eq. (16) is well approximated by 	y—yielding the approxi-

mation for a circular beam. Using this approximation�Qsc

was estimated. With the input of Eq. (2), an estimation of
�Usc was obtained from Eq. (11).N and �p=p are listed in
Table I with the estimated �Qsc and �Usc.

IV. RESULTS

The longitudinal Schottky spectra reveal a nearly
Gaussian momentum distribution. They also indicate a
dependency of the revolution frequency and the momen-
tum spread on the injected beam current. This effect,
though still being investigated, is explained by collective
effects in the transfer channel from UNILAC to SIS-18. We
will not discuss this issue here, but it should be noted that
we compensated this frequency shift in order to make sure
f�m depends exclusively on Qf. The data presented here

were acquired at the lower sideband of the harmonic
m ¼ 50.
Using Eq. (4), we fitted Eqs. (12) and (13) to the trans-

verse spectra and BTFs, respectively, the latter by ampli-
tude and phase, yielding �Usc from the shape andQf from

the position [using Eq. (10)]. Theoretically ��
m could be

obtained from the fit to the transverse spectra as well, but
for strongly deformed signals the uncertainty of the fit

FIG. 1. (Color) The hardware for Schottky and BTF diagnostics.
The dashed arrow refers to BTF measurements with a network
analyzer (NA) only. In this case only the difference (�) signal
from the detector is useful. For Schottky measurements, a
spectrum analyzer (SA) is connected to the difference or sum
(�) signal of the pickup.

TABLE I. Measured particle number and momentum spread.
In addition, the estimation of the space-charge tune-shift and the
space-charge parameter are provided.

N=109 �p=p=10�4 �Qsc;est �Usc;est

0.25 2.5 0.001 0.09

0.45 2.8 0.002 0.15

0.90 4.2 0.004 0.19

2.0 5.6 0.010 0.32

3.9 6.7 0.019 0.53

7. 7.6 0.034 0.84

10. 7.8 0.048 1.2

11. 7.8 0.053 1.3
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parameters turned out to be much lower when ��
m was

calculated using �p=p from the longitudinal Schottky
bands.

First we consider the shape of the signals. Below N ¼
109, where space charge is weak, the transverse Schottky
bands and BTFs confirm the Gaussian momentum distri-
bution. �Usc is zero with an uncertainty of �0:2.

The fit to the Schottky sidebands agrees excellently at all
intensities. Figure 2 gives an example for three values ofN.
The BTFs on the other hand can be described only ap-
proximately as shown in Figs. 3 and 4. Particularly the
spike in the phase cannot be reproduced by the model. Also
the fit parameters of the amplitude and phase did not agree
well at high intensity.

Stability diagrams constructed from the BTFs are shown
in Fig. 5. One can see that they agree fairly well with the fit
and that they are clearly shifted horizontally by space
charge. From the fact that there is no vertical shift, we

learn that no real impedance affected the beam to an
observable extent.
A time gating procedure [26] was applied to suppress the

noise on the BTF. This worked only with restrictions for
the high-intensity data because of high order Fourier com-
ponents which cannot be distinguished from noise. For that
reason there is still noise on the red curve in the stability
diagram (Fig. 5).
In a second step we compare the space-charge parame-

ters and tune shifts quantitatively as functions of N. From
the deformation we obtained�Usc. Alternatively�Usc was
extracted from the shift of f�m applying Eqs. (15) and (11).
�Usc obtained from Schottky and BTF measurements, as
well as from the beam parameters, is shown in Fig. 6. The
deviations of the measured �Usc reach up to�0:5with the
BTF yielding slightly larger values than the Schottky spec-
tra. For maximal intensity we found �Usc � 2 from
Schottky measurement and � 2:5 according to the BTF.
The estimated space-charge parameter is significantly
smaller.
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FIG. 2. (Color) Lower Schottky sideband at m ¼ 50 measured
with different ion numbers and the corresponding fits. The
corresponding �Usc are 0., 0.9, and 1.8, respectively. The curves
are rescaled for a better prospect.
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FIG. 3. (Color) Amplitude of the BTF for different currents. The
settings are the same as in Fig. 2. �Usc found for these data are
0., 0.9, and 2.7. Also the fits are shown.
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FIG. 4. (Color) BTF phases corresponding to the amplitudes
shown in Fig. 3 with the fits. A vertical shift was added to
separate the lines.
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FIG. 5. (Color) Stability diagrams obtained from the BTF shown
in Figs. 3 and 4.
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The effective fractional tune Qf as obtained from f�m is

plotted in Fig. 7. In addition we show the estimated �Qsc

with respect to Qf;0. Also included is Qf plus �Qsc ob-

tained from the deformation. As it nearly agrees with Qf;0,

we confirmed that space charge is responsible for the tune
shift. Again for the BTF (not plotted) larger discrepancies
resulting from the mismatch between model and data were
found.

The estimation from N and 	 predicts �Qsc to be about
40% smaller than the values detected via the Schottky
measurements. We consider the Schottky data more accu-
rate than the estimation, though there are some sources of
uncertainty for the Schottky data as well. The important
contributions are shot to shot fluctuations of injected beam
current and particle loss during the measuring process. The
observed changes of N did not exceed 10%.

Also the momentum distribution in the tails may have
been subject to fluctuations. As discussed in Sec. II the tails
of the momentum distribution, which become more im-
portant for the deformed signals, cannot be measured. We
know that the range of the distribution must be finite, but
we have no information on the shape of the tails. Solving
Eq. (3) numerically with a properly truncated Gaussian
yields BTFs similar to the red curves in Figs. 3 and 4. But
since the Schottky bands agree very well with the model
this effect seems to be not very important. The reason for
the lower degree of agreement between model and BTF is
not understood. The excitation and damping process of a
beammay be affected by space charge in a too complicated
way to be described by our model.
The estimated space-charge parameters are mainly af-

fected by the measuring error of 	. The beta functions in
the IPM were not measured but calculated with a beam
optics code. The actual beta functions may deviate from
the ideal ones as a consequence of closed orbit deforma-
tions [27]. The uncertainty of a, entering squared into 	, is
affected by the spacial resolution of the IPM of 2.1 mm.
Furthermore, the self-field of intense beams is known to
falsify the output of the IPM [28]. A minor effect may be
related to the modeling of the measured Gaussian beam
profiles as K-V beam with g ¼ 1 [Eq. (16)]. Most impor-
tantly, the microchannel plates, a component of the IPM to
magnify the signal strength, are known to degrade time
after time, which may be responsible for a systematic
measuring error.
Measurements were also done at the upper sideband.

Similar results to the lower side were obtained, but with a
larger uncertainty. The reason for this difference is not
clear.

V. SUMMARY

An experiment dedicated to transverse Schottky and
BTF measurements with space charge was performed
with different beam currents. A model for linear space
charge was employed to describe the Schottky spectra,
BTFs, and stability diagrams of a coasting beam. The
results are compared to an estimation based on measured
beam parameters.
The Schottky spectra agree very well with the model

up to the maximum intensity, corresponding to �Usc � 2.
The tune shift extracted from the deformation increases
linearly with N. The tune shift according to the shift of
the spectra is consistent with the parameter from the de-
formation. No evidence for a coherent tune shift was
found. A discrepancy to the tune-shift estimation from
the beam parameters was found. This observation is re-
ferred mainly to the uncertainty of the emittance. It is
demonstrated that the analysis of transverse Schottky spec-
tra with a linear space-charge model allows the determi-
nation of the incoherent tune of coasting beams with space
charge.
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FIG. 6. (Color) Comparison of the space-charge parameters
�Usc obtained from Schottky (blue diamonds) and BTF (green
triangles) measurements, and estimated from the beam parame-
ters (red crosses) versus ion number. Least mean square fits to
the estimated and measured points are shown, too.
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FIG. 7. (Color) Fractional part of the betatron tune Qf from the
Schottky measurement (green triangles) and estimation (red
crosses) for varying ion number. In addition, the reconstructed
machine tune Qf þ�Qsc is plotted (blue diamonds). As it is

always� Qf;0 (horizontal line), only space charge is responsible

for the deformation. The nonhorizontal lines are least mean
square fits to the effective tunes.
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Also BTFs were measured at low and high intensity.
Their deformation is described by the linear space charge
rather well. The stability diagrams obtained from the BTF
reproduce the shape expected due to the momentum dis-
tribution at all measured intensities. The observed intensity
dependent shift of the stability diagram agrees with the
model.
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