
Small-signal theory of a grating-based free-electron laser in three dimensions

J. D. Jarvis, H. L. Andrews, and C.A. Brau

Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
(Received 28 October 2008; published 3 February 2010)

We present an analytic theory for the small-signal operation of a grating-based free-electron laser that

includes the effects of transverse diffraction on the evanescent wave. In this device, the electron beam

interacts with an evanescent wave of the grating that bunches the beam and creates superradiant Smith-

Purcell radiation. We find that the evanescent wave is guided by the electron beam, giving an optical-mode

width that depends on the gain. We consider the cases of very wide and very narrow electron beams. For a

wide electron beam, the cubic dispersion relation previously found for slow-wave structures is recovered.

When the electron beam is narrow, so that gain guiding is important, a fifth-order dispersion relation is

found instead. Diffraction in a system where the group velocity is very different (sometimes negative)

from the phase velocity leads to unexpected results. The Brillouin zone subdivides into four regions; only

two physically allowed (gain-guided) roots are obtained in the regions near the center of the Brillouin

zone, but three are found in the regions away from the center. In the left half of the Brillouin zone,

corresponding to high electron energy, the device operates on a convective instability, as an amplifier. In

the right half of the Brillouin zone, where the group velocity is negative, the device operates on an

absolute instability, as an oscillator. In the region where only two guided modes exist, oscillator operation

will be more difficult.

DOI: 10.1103/PhysRevSTAB.13.020701 PACS numbers: 41.60.Cr, 52.59.Rz

I. INTRODUCTION

The wide range of potential applications for THz radia-
tion is currently driving interest in the development of
intense, compact, tunable THz sources. Such applications
include resonant excitation and spectral analysis of chemi-
cal and biological molecules and systems, medical and
industrial imaging, and investigations in materials science
and nanostructures [1,2]. Electron beam-based devices are
very promising sources of THz radiation. These include
synchrotrons [3,4], conventional free-electron lasers [5–7],
and slow-wave devices, such as traveling-wave tubes [8],
orotrons [9], and backward-wave oscillators (BWOs) [10].
While synchrotrons and conventional FELs are large and
expensive, slow-wave devices can be compact, laboratory-
scale instruments. Commercially available BWOs, for ex-
ample, produce about 1 mW at 1 THz, and weigh about
15 kg [11].

Slow-wave structures support subluminal electromag-
netic modes, which may be driven by an electron beam
passing in close proximity. This interaction causes ampli-
tude growth of the subluminal optical wave and bunching
in the electron beam. In a BWO, the group velocity of the
optical wave is opposite that of the electron beam. This
provides an intrinsic feedback mechanism, called an abso-
lute instability, which causes the wave to oscillate without
external feedback. In addition, when the slow-wave struc-
ture consists of an open diffraction grating, spontaneous
Smith-Purcell radiation is created as the electrons pass
close over the grating in a direction normal to the grooves
[12–15]. When the electrons are bunched, the Smith-

Purcell radiation becomes coherent and much more intense
[16–19]. When the bunching is periodic, the spectrum is
altered and the Smith-Purcell radiation becomes superra-
diant [20], and intense radiation is produced at harmonics
of the bunching frequency. When the periodic bunching is
caused by interaction with an evanescent wave of the
grating, intense radiation may be extracted at harmonics
of the evanescent wave [21–25]. In addition, radiation at
the frequency of the evanescent wave appears when the
evanescent wave scatters off the ends of the grating. The
grating-based FEL may be operated as an amplifier (con-
vective instability), or as an oscillator (absolute instabil-
ity), depending on the sign of the evanescent wave’s group
velocity.
In 1998, Walsh’s group at Dartmouth passed the electron

beam from a cast-off electron microscope over a small
grating and observed THz Smith-Purcell radiation that
became superradiant at currents above about 1 mA [26].
This generated considerable excitement as a THz source
[27], and was followed by several other experiments by
Walsh and others [28,29]. It was thought that the observed
superradiance was caused by oscillation of an evanescent
wave of the grating, and several theories seemed to show
that the electron beam current used in the experiments was
close to the threshold for supporting oscillation [30–34].
However, there was no evidence of the evanescent wave in
the experiments, and no clear indication of the spectral
changes that would be expected if the evanescent wave
were oscillating. It seems now that the 2D theories used at
that timewere inadequate to describe the operation of those
experiments, and the 3D theory presented here predicts that
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the experiments were more than an order of magnitude
below the threshold for oscillation. The source of the
superradiance observed in those experiments and in experi-
ments performed more recently [35] lies elsewhere.

Three-dimensional PIC simulations have recently been
performed for gratings with and without sidewalls at the
ends of the grooves [36,37], and a 3D, small-signal theory
for a device with sidewalls has recently been published
[38]. However, it has not been possible numerically to treat
gratings that are much wider than the electron beam, such
as those used in the experiments described above. Kumar
and Kim [39] consider analytically the propagation of an
evanescent wave over the surface of an infinitely wide
grating, including the effects of diffraction in the direction
transverse to the electron beam, parallel to the grooves.
However, they do not include the effects of the electron
beam on the diffraction. They find that in the absence of the
electron beam, the width of an evanescent wave focused in
the transverse direction with a Rayleigh range ZR isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZR=4��g

q
, where � is the free-space wavelength and

�g is the group velocity of the wave. This width diverges

near the Bragg point, where the group velocity vanishes,
which illustrates the importance of guiding by the electron
beam.

In this work, we analyze the effects of transverse dif-
fraction in the optical beam of an infinitely wide grating
FEL and include the effects of the electron beam. As in
conventional free-electron lasers [40,41], the gain and the
index of refraction of the electron beam act in the manner
of a weak optical fiber to guide the optical beam. The
approach used here is similar to that used for the 3D theory
of the Cerenkov FEL [42]. As expected, three-dimensional
effects decrease the gain substantially. Furthermore, com-
pared to the 2D theory, the dependence of the gain on beam
current increases due to gain guiding. For a wide electron
beam, the cubic dispersion relation obtained in previous
analyses of slow-wave structures [8,43] is recovered.
However, when the electron beam is narrow, gain guiding
results in a fifth-order dispersion relation instead of the
usual cubic dispersion relation, with unexpected results.
We find that diffraction of the optical beam subdivides the
Brillouin zone of the grating into two amplifier regions and
two oscillator regions. For the amplifier and oscillator
regions furthest from the Bragg point, we find that a fast
wave is included in the physically allowed (gain-guided)
solutions. This is surprising, considering the nature of a
guided system. For the oscillator region closest to the
Bragg point there are only two physically allowed solu-
tions, so oscillation in this region of the Brillouin zone will
be more difficult.

II. DISPERSION

In a grating FEL, resonant energy exchange between the
electron beam and bound surface modes gives rise to

spatial modulations in the beam density. For an electron
beam energy of 150 kV and the grating parameters of
Table I, the intensity scale height of the evanescent wave
is �x ¼ ���=4� � 38 �m, where �� 0:63 is the nor-

malized electron velocity, � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p � 1:3 is the
Lorentz factor, and �� 580 �m is the free-space wave-
length. We anticipate from simple diffraction arguments
that the transverse mode width in this example is of order

�y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��Zg=2�

q
, where Zg is the gain length. For a gain

length on the order of the grating length, the transverse
width is on the order of millimeters. Schematics of the
device geometry with all pertinent dimensions are given in
Figs. 1 and 2. Because the fields vanish exponentially
above the scale height, we simplify the theory by allowing
the electron beam to extend to infinity in the x direction. A
filling factor can be used to correct for errors introduced by
this approximation [34].
In the following analysis we calculate the fields subject

to the Maxwell equations and boundary conditions and
solve for the dispersion relation. We treat the electron
beam as a perturbation and calculate the resulting wave
number and frequency shifts for solutions to the dispersion
relation. The relative importance of the perturbation is on
the order of !2

e=!
2 � 10�5, where !e is the plasma fre-

quency of the electron beam and ! is the radian frequency
of the evanescent wave, so the perturbation is small. We
assume in the analysis that the evanescent waves are pure
transverse-magnetic (TM) modes of the grating. The empty
grating of infinite width does not support transverse elec-

TABLE I. Example grating and beam parameters.

Grating period 173 �m
Groove width 62 �m
Groove depth 100 �m
Grating length 12.7 mm

E-beam width/height 60 �m
E-beam current 1 mA

E-beam centroid height from grating top 30 �m

FIG. 1. Geometry of grating structure, viewed from the side.
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tric (TE) modes, so longitudinal magnetic fields arise only
as a perturbation and may be ignored to lowest order. The
accuracy of this approximation is confirmed by compari-
son of the predicted results with experiments and simula-
tions. The frequencies of TM modes predicted when
sidewalls are included [38] are in excellent agreement
with those observed in experiments using a grating with
sidewalls [35]. Similarly, comparison of the frequencies
predicted for TM modes with those found in PIC simula-
tions with sidewalls [36] shows excellent agreement. In the
absence of sidewalls, there are no true TMmodes of a finite
grating. However, one might expect the modes of a grating
that is wide compared to the scale height of the evanescent
wave to be nearly TM modes. In recent simulations for a
wide grating without sidewalls [44], it is found that high-
frequency, mixed modes can be excited by a small antenna,
but the frequencies of the lowest-order modes, those ex-
cited by an electron beam, are in excellent agreement with
the frequencies of the TM modes of an infinite grating.

We begin by expressing the fields inside the grooves as
Fourier series

EðgÞ
z ¼ X1

n¼0

EðgÞ
n ðx; yÞ cos

�
n�

A
z

�
e�i!t (1)

HðgÞ
y ¼ X1

n¼0

HðgÞ
n ðx; yÞ cos

�
n�

A
z

�
e�i!t; (2)

where A is the groove width, and ! is the frequency. Each
term in the fields must satisfy the wave equation, which is
given in the grooves by

�
r2

t � n2�2

A2
þ!2

c2

�
EðgÞ
n ðx; yÞ ¼ 0; (3)

where rt is the transverse gradient operator. Taking the
Fourier transform of (3) in the y direction we have

�
@2

@x2
� k2y � n2�2

A2
þ!2

c2

�
~EðgÞ
n ðx; kyÞ ¼ 0; (4)

where ky is the wave number in the y direction. The

solution for ~EðgÞ
n ðx; kyÞ that vanishes at the bottom of the

grooves (x ¼ �H) is

~E ðgÞ
n ðx; kyÞ ¼ �~E

ðgÞ
n ðkyÞ sinh½�nðkyÞðxþHÞ�; (5)

where

�2
n ¼ k2y þ n2�2

A2
�!2

c2
: (6)

For a TM mode, the components ~EðgÞ
n ðx; kyÞ and

~HðgÞ
n ðx; kyÞ are related through the Maxwell equations by

~H ðgÞ
n ðx; kyÞ ¼ i!"0c

2

!2 � n2�2

A2 c2
@

@x
~EðgÞ
n ðx; kyÞ: (7)

Substituting the solution for ~EðgÞ
n ðx; kyÞ into (7), we get

~H ðgÞ
n ðx; kyÞ ¼ �~H

ðgÞ
n ðkyÞ cosh½�nðkyÞðxþHÞ�; (8)

where

�~H
ðgÞ
n ðkyÞ ¼ i!"0c

2

!2 � n2�2

A2 c2
�nðkyÞ �~EðgÞ

n ðkyÞ: (9)

Above the grating we expand the fields in Floquet series
(space harmonics) of the form

EðeÞ
z ¼ X1

r¼�1
EðeÞ
r ðx; yÞeirKzeiðkz�!tÞ (10)

HðeÞ
y ¼ X1

r¼�1
HðeÞ

r ðx; yÞeirKzeiðkz�!tÞ; (11)

where k is the longitudinal wave number, K ¼ 2�=L is the
grating wave number, and L is the grating period. The
electron beam is treated as an isotropic dielectric in its
rest frame (primed coordinates), having an index of refrac-
tion given by [45]

n0ð!0Þ2 ¼ 1þ �0
eð!0Þ ¼ 1�!02

e

!02 ; (12)

where �0
e ¼ �ð!02

e =!
02Þ is the frequency-dependent sus-

ceptibility, and !0
e is the plasma frequency in the rest

frame. This approach is valid in the small-signal regime,
where the electron beam can be treated as a linear dielec-
tric. In adopting this approach, we implicitly ignore the
temperature, or other sources of energy spread, of the
electron beam. This approximation is valid provided that
the relative transit time of two electrons along the length of
the grating is small compared to the period of oscillation,
that is, j�v=vj< 1=!T, where T ¼ L=v is the transit
time, L is the grating length, v is the electron velocity,
and �v is the velocity spread. Using a more elaborate
analysis, Kumar and Kim arrive at the same result [46].
For the example in Table I, with frequency !� 3�
1012 radians=s, and velocity v� 108 m=s, the tolerable
velocity spread is on the order of 0.3%. For electrostatic

FIG. 2. Geometry of evanescent wave and electron beam,
viewed from in front of the beam.
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acceleration, the velocity spread is typically much smaller
than this.

In each region where the electron beam is uniform, the
wave equation above the grating is then

�
r02

t � ðk0 þ rK0Þ2 þ!02
r

c2
�!02

e

c2

�
EðeÞ0
r ðx0; y0Þ ¼ 0: (13)

In terms of rest-frame variables, the frequency !0
r depends

on the space harmonic, as denoted by the subscript r. We

note that ðkþ rKÞ2 � ð!2
r=c

2Þ, EðeÞ
r , and the transverse

dimensions, x and y, are Lorentz invariant. Using the
parameters of Table I, the plasma frequency in the lab
frame is calculated to be of the order !e �
1010 radians=s, while the operating frequency is of the
order !� 3� 1012 radians=s. We therefore make the ap-
proximation!02

e =½k2c2 �!2� ¼ �2�!2
e=!

2 � 10�5 � 1,
and simplify (13) as

�
r2

t � ðkþ rKÞ2 þ!2

c2

�
EðeÞ
r ðx; yÞ ¼ 0: (14)

As before, we Fourier transform the wave equation in y and
get

�
@2

@x2
� ðkþ rKÞ2 þ!2

c2

�
~EðeÞ
r ðx; kyÞ

þ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
dyeikyy

@2

@y2
EðeÞ
r ðx; yÞ ¼ 0: (15)

If we integrate by parts and ignore the discontinuities in

@EðeÞ
r =@y, for a broad optical beam with �x=�y � 1 [42],

(15) becomes

@2

@x2
~EðeÞ
r ðx; kyÞ ¼

�
ðkþ rKÞ2 þ k2y �!2

c2

�
~EðeÞ
r ðx; kyÞ:

(16)

The solution is

~E ðeÞ
r ðx; kyÞ ¼ �~E

ðeÞ
r ðkyÞe��rðkyÞx; (17)

where

�2
r ¼ ðkþ rKÞ2 þ k2y �!2

c2
: (18)

For real, positive �r the wave amplitude vanishes in the
limit x ! 1, which corresponds to evanescent waves.
Imaginary values of �r correspond to waves that propagate
away from the grating. For these waves, negative orders are
synchronous with the electron velocity and form Smith-
Purcell radiation. Although these waves are excited by the
electrons [25], they are not amplified and are much weaker
than the evanescent waves. Propagating waves are also
produced when the evanescent waves reach the ends of
the grating. However, they are not synchronous with the
electrons and they interact only weakly with the beam.

As in the grooves, the Maxwell equations relate

HðeÞ0
r ðx; yÞ and EðeÞ

r ðx; yÞ above the grating by

HðeÞ0
r ðx; yÞ ¼ i!0

r"0ð1þ �0
rÞc2

!2 � ðkþ rKÞ2c2
@

@x
EðeÞ
r ðx; yÞ; (19)

where �0
r ¼ �0

eð!0
rÞ ¼ �!02

e =!
02
r and we have ignored

!02
e � ðk0 þ rK0Þ2c2 in the denominator of the right-

hand side. To transform HðeÞ0
r ðx; yÞ to the laboratory frame

we use the Lorentz transformation

Hr ¼ �ðH0
r þ �cD0

rÞ; (20)

where D0
r is the x component of the displacement field.

From the Maxwell-Ampere law we have !0
rD

0
r ¼

ðk0 þ rK0ÞH0
r. Combining this with (20), and recognizing

that �½!0
r þ �ðk0 þ rK0Þ� is the Lorentz transformation of

!, we see that HðeÞ0
r ðx; yÞ and HðeÞ

r ðx; yÞ are related by

HðeÞ
r ðx; yÞ ¼ !

!0
r
HðeÞ0

r ðx; yÞ. The field in the laboratory frame

is then

HðeÞ
r ðx; yÞ ¼ i!"0ð1þ �0

rÞc2
!2 � ðkþ rKÞ2c2

@

@x
EðeÞ
r ðx; yÞ: (21)

Fourier transforming (21) in y, we get

~HðeÞ
r ðx; kyÞ ¼ i!"0c

2

!2 � ðkþ rKÞ2c2
�
@

@x
~EðeÞ
r ðx; kyÞ

þ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
dyeikyy�0

rðyÞ @@xE
ðeÞ
r ðx; yÞ

�
:

(22)

We simplify (22) by using the Faltung theorem to write the
integral as

1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
dyeikyy�0

rðyÞ @@xE
ðeÞ
r ðx; yÞ

¼ � 1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
dk0y ~�0

rðky � k0yÞ�rðk0yÞ �~EðeÞ
r ðk0yÞe��rðk0yÞx;

(23)

where k0y is a dummy variable and the Fourier transform of

the susceptibility is

~� 0
eðky � k0yÞ ¼ � 1ffiffiffiffiffiffiffi

2�
p !02

e

!02
r

Z W=2

�W=2
dyeiðky�k0yÞy

¼ � Wffiffiffiffiffiffiffi
2�

p !02
e

!02
r

sinc

�
W

2
ðky � k0yÞ

�
: (24)

When written in terms of lab-frame variables, !02
e =!

02
r

becomes

!02
e

!02
r

¼ !2
e

�3½!� �cðkþ rKÞ�2 : (25)

This is divergent near the synchronous point ! ¼ �ck
only for r ¼ 0. For all other r � 0 we may ignore the
perturbation and rewrite (22) as
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~HðeÞ
r ðx; kyÞ ¼ i!"0c

2

!2 � ðkþ rKÞ2c2
�
��rðkyÞe��rðkyÞx �~EðeÞ

r

þ 	r0

W

2�

!2
e

�3ð!� �ckÞ2
Z 1

�1
dk0y

� sinc

�
W

2
ðky � k0yÞ

�
�0ðk0yÞ �~EðeÞ

0 ðk0yÞe��0ðk0yÞx
�
;

(26)

where 	r0 is the Kronecker delta.
Next we force continuity in ~Ez and ~Hy at the x ¼ 0

interface. In the grooves (0< z < A), suppressing the har-
monic time dependence, we have

~E ðgÞ
z ðx ¼ 0; kyÞ ¼

X1
n¼0

�~E
ðgÞ
n ðkyÞ sinh½�nðkyÞH� cos

�
n�

A
z

�
;

(27)

~H ðgÞ
y ðx ¼ 0; kyÞ ¼

X1
n¼0

�~H
ðgÞ
n ðkyÞ cosh½�nðkyÞH� cos

�
n�

A
z

�
;

(28)

and on the teeth (A < z < L)

~E ðgÞ
z ðx ¼ 0; kyÞ ¼ 0: (29)

Just above the grating, ~EðeÞ
z is given by

~E ðeÞ
z ðx ¼ 0; kyÞ ¼

X1
r¼�1

�~E
ðeÞ
r ðkyÞeiðkþrKÞz: (30)

Setting (30) equal to, (27) and (29) multiplying both sides

by e�iðkþqKÞz, and integrating over the grating period L, we

get

�~E
ðeÞ
q ðkyÞ ¼ 1

L

X1
n¼0

�~E
ðgÞ
n ðkyÞ sinh½�nðkyÞH�Kqn; (31)

where

Kqn ¼ iA
ðkþ qKÞA

ðkþ qKÞ2A2 � n2�2
½ð�1Þne�iðkþqKÞA � 1�:

(32)

Similarly, making ~Hy continuous across the x ¼ 0 inter-

face within the groove, multiplying both sides by cosðm�
A zÞ,

and integrating from 0 to A, we find

�~H
ðgÞ
m ðkyÞ 1þ 	m0

2
A cosh½�mðkyÞH�

¼ X1
r¼�1

~HðeÞ
r ð0; kyÞKrm

�: (33)

We may now substitute expressions (9) and (26) into
(33), remembering to evaluate at x ¼ 0, and then use (31)
to arrive at the dispersion relation

�~E
ðgÞ
m ðkyÞ ¼

X1
n¼0

fRmnðkyÞ �~EðgÞ
n ðkyÞ þ Smn½ky; �~EðgÞ

n ðkyÞ�g:

(34)

The first term in the square brackets represents modes
admitted by the empty (no beam) grating. The second
term embodies the modification of those modes by the
presence of the electron beam. The matrix elements are
given by

RmnðkyÞ ¼ � 4

1þ 	m0

A

L

sinh½�nðkyÞH�
cosh½�mðkyÞH�

!2 � m2�2

A2 c2

�mðkyÞ
X1

r¼�1

ðkþ rKÞA
ðkþ rKÞ2A2 � n2�2

ðkþ rKÞA
ðkþ rKÞ2A2 �m2�2

� �rðkyÞ
!2 � ðkþ rKÞ2c2

�
1� ð�1Þm cos½ðkþ rKÞA� mþ n ¼ even

ið�1Þm sin½ðkþ rKÞA� mþ n ¼ odd
(35)

and

Smnðky; �~EðgÞ
n Þ ¼ W

AL�ð1þ 	m0Þ
1

cosh½�mðkyÞH�
!2 � m2�2

A2 c2

�mðkyÞ
K0nK0m

�

!2 � k2c2
!2

e

�3½!� �ck�2
Z 1

�1
dk0y sinc

�
W

2
ðky � k0yÞ

�

� �0ðk0yÞ sinh½�nðk0yÞH� �~EðgÞ
n ðk0yÞ: (36)

Calculations show that the dispersion relation for the grat-
ing is well described using a single term (m, n ¼ 0) for the
groove fields, provided that we use at least three space
harmonics (� 1< r < 1) to describe the fields above the
grating. We therefore define the dispersion function
Dð!; k; kyÞ as

Dð!; k; kyÞ ¼ 1� R00ð!; k; kyÞ: (37)

The dispersion curve Dð!; k; 0Þ ¼ 0, for waves traveling
normal to the grooves of the empty grating described by
Table I, is plotted in Fig. 3, along with 30-kV and 150-kV
beam lines. At the intersection of these curves the phase
velocity of the evanescent wave and the electron beam are
synchronous, i.e. !=k ¼ �c. Energy in the evanescent
mode will travel along the grating at the group velocity
�g ¼ d!=dk, which is negative in the right half of the
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Brillouin zone. When the evanescent wave reaches the end
of the grating, it scatters into free space. Some of the
radiation is reflected into an evanescent wave traveling in

the opposite direction, but the reflection coefficient is
found to be small, typically on the order of 10% [32].
When the electron beam is present, the dispersion rela-

tion (34) for m ¼ n ¼ 0 becomes

Dð!; k; kyÞ �~EðgÞ
0 ðkyÞ ¼ W

�ALk2
!2

e

�3½!� �ck�2
1� cosðkAÞ
cosh½�0ðkyÞH�

!2

�0ðkyÞ
1

!2 � k2c2

Z 1

�1
dk0y sinc

�
W

2
ðky � k0yÞ

�
�0ðk0yÞ

� sinh½�0ðk0yÞH� �~EðgÞ
0 ðk0yÞ: (38)

We expect that the gain will be maximal near the synchro-
nous point ð!; k; kyÞ ¼ ð!0; k0; 0Þ, where

Dð!0; k0; 0Þ ¼ 0; (39)

!0 ¼ �ck0: (40)

Near the synchronous point, we may expand the dispersion
function in a Taylor series about ð!0; k0; 0Þ. Since ky
appears in the dispersion function only as k2y, we expand as

Dð!; k; kyÞ � D!	!þDk	kþDyk
2
y; (41)

where

	! ¼ !�!0; (42)

	k ¼ k� k0; (43)

and

D!ð!0; k0Þ ¼ @D

@!
ð!0; k0; 0Þ; (44)

Dkð!0; k0Þ ¼ @D

@k
ð!0; k0; 0Þ; (45)

Dyð!0; k0Þ ¼ @D

@k2y
ð!0; k0; 0Þ: (46)

Since the dispersion function vanishes everywhere along

the dispersion curve, the derivatives D! and Dk are related
by

dD

dk
¼ 0 ¼ @D

@k
þ @D

@!

@!

@k
¼ Dk þ �gcD!; (47)

where �gc ¼ @!=@k is the group velocity. This allows us
to rewrite the dispersion function as

Dð!; k; kyÞ ffi D!ð	!� �gc	kÞ þDyk
2
y: (48)

For modes that are broad compared with the wavelength,
ky � k � Oð!=cÞ, so we can make the approximations

�0ð!; k; kyÞ � �0ð!0; k0; 0Þ ¼ !0

��c
; (49)

and

�0ð!; k; kyÞ � �0ð!0; k0; 0Þ ¼ i
!0

c
; (50)

near the synchronous point. In other words, the vertical
profile of a broad evanescent wave is close to that of a 2D
wave. We also note that

!� �ck ¼ 	!� �c	k: (51)

Including these approximations, the dispersion (38) rela-
tion becomes

ð	!� �c	kÞ2½D!ð	!� �gc	kÞ þDyk
2
y� �~EðgÞ

0 ðkyÞ

¼ �
WD!

2�

Z 1

�1
dk0y sinc

�
W

2
ðky � k0yÞ

�
�~E
ðgÞ
0 ðk0yÞ; (52)

where

� ¼ � 2�3c2

ALD!

!2
e

�2!2
0

tan

�
!0

c
H

�
½1� cosðk0AÞ�; (53)

Computations show that D! is real negative, so � is real
positive.
This result may be compared to the 2D theory of the

grating FEL by taking the limit as W ! 1 and subse-
quently evaluating at ky ¼ 0. In this limit, the sinc function

behaves as a delta function and selects out the integrand
value at k0y ¼ ky ¼ 0. Evaluating (52) gives the cubic

dispersion relation

ð	!� �c	kÞ2ð	!� �gc	kÞ ¼ �: (54)
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versus k=K) and electron beam lines for 30 and 150 kV.

J. D. JARVIS et al. Phys. Rev. ST Accel. Beams 13, 020701 (2010)

020701-6



This is the dispersion relation obtained previously for the
2D theory [31]. It agrees exactly with the results obtained
by Mkrtchian [34], who begins with the electron equations
of motion and the reflection matrix for the grating. This
confirms the equivalence of the plasma susceptibility used
in the present approach. Results computed using (54) are
also confirmed by PIC simulations [32].

Of greater interest is the limit in which the electron beam
is very narrow compared to the mode width. In this case,
sinc½W2 ðky � k0yÞ� � 1, and the remaining integral is recog-

nized as
ffiffiffiffiffiffiffi
2�

p
�EðgÞ
0 ð0Þ. The dispersion relation is simplified

by the substitution

�k2y ¼ �D!

Dy

ð	!� �gc	kÞ: (55)

The roots of this equation are �kðþÞ
y and �kð�Þ

y ¼ ��kðþÞ
y ,

which lie above and below the real axis, respectively.

Solving (52) for �~E
ðgÞ
0 and inverting the Fourier transform,

we get

ð	!� �c	kÞ2
W�

Dy

D!

�EðgÞ
0 ðyÞ ¼ �EðgÞ

0 ð0Þ
2�

Z 1

�1
dky

e�ikyy

k2y � �k2y
:

(56)

The integrand has poles at �kðþÞ
y and �kð�Þ

y ¼ ��kðþÞ
y .

The integral is evaluated using contour integration and the
residue theorem. For y > 0 the contour is closed in the

lower half plane, enclosing the pole at �kð�Þ
y , so the inte-

grand vanishes along the curved segment. Integrating
clockwise around the contour, we find

�E ðgÞ
0 ðyÞ ¼ � i

2
W�

D!

Dy

�EðgÞ
0 ð0Þ

ð	!� �c	kÞ2
e�i�kð�Þ

y y

�kð�Þ
y

: (57)

Since Imð�kð�Þ
y Þ< 0, the field vanishes at y ¼ 1, as re-

quired. Similarly, for y < 0 the contour is closed in the

upper half plane, enclosing the pole at �kðþÞ
y . Since

Imð�kðþÞ
y Þ> 0, the field vanishes at y ¼ �1. Evaluating

(57) at y ¼ 0 and rearranging, we get

ð	!� �c	kÞ2�kð�Þ
y ¼ � i

2
W�

D!

Dy

: (58)

Squaring this result and using (55), we arrive at the dis-
persion relation for the narrow beam case,

ð	!� �c	kÞ4ð	!� �gc	kÞ ¼ 1

4
W2�2 D!

Dy

: (59)

This fifth-degree equation admits five roots, but not all
are physically allowed. Rearranging (58), we see that

ð	!� �c	kÞ2 ¼ � i

2

W�

�kð�Þ
y �kð�Þ�

y

D!

Dy

�kð�Þ�
y ; (60)

where �kð�Þ�
y lies above the real axis. Calculations show

that D! is negative, irrespective of k, so only those roots
are physically allowed (the fields vanish at infinity) for
which

Re ½Dyð	!� �gc	kÞ2�< 0: (61)

ButDy changes sign such thatDy > 0 near the center of the

Brillouin zone (k=K ¼ 1=2) andDy < 0 towards the edges

of the zone (k ¼ 0, K). This subdivides the Brillouin zone
into the four distinct regions pictured in Fig. 4. We now
consider separately the amplifier and oscillator regimes of
the grating FEL.

III. AMPLIFIER

In the left half of the Brillouin zone, the group velocity is
positive and the device operates on a convective instability,
as an amplifier. When the device operates as a steady-state
amplifier, the frequency is fixed by the input. Since the gain
is largest at the synchronous condition [31], we may take
	! ¼ 0, and �g is positive. The dispersion relation (59)

becomes

	k5 ¼ �; (62)

where

� ¼ � W2�2

4�4�gc
5

D!

Dy

: (63)

In region I, where Dy < 0 and �< 0, the roots are given

by

	kn ¼ j�j1=5eið2nþ1Þ�=5: (64)

These are shown in Fig. 5. In region I there are three
physically allowed roots (n ¼ 0; 2; 4). The roots for n ¼
0; 4 correspond to slow waves, but n ¼ 2 corresponds to a
fast wave. It is surprising that a fast wave is allowed in a
gain-guided system, since we are familiar with optical
fibers that depend on an index of refraction greater than
unity. The root corresponding to n ¼ 4 has an amplitude

FIG. 4. Division of operating regions by transverse diffraction.
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growth rate (half the intensity gain coefficient) � ¼
�Im	k given by

� ¼ j�j1=5 sinð�=5Þ: (65)

Similarly, in region II, where Dy > 0 and �> 0, the

roots of (62) are

	kn ¼ j�j1=5ei2n�=5; (66)

for n ¼ 0; . . . ; 4. These are plotted in the complex plane in
Fig. 6. From (61) we find that only the two roots corre-
sponding to n ¼ 1; 4 are physically allowed. From Fig. 6
we see that both of these are slow waves (Re	k > 0), i.e.,
they have a phase velocity lower than that of the synchro-
nous point. The amplitude growth rate for the root n ¼ 4 is

� ¼ j�j1=5 sinð2�=5Þ: (67)

The transverse decay rate of the field is found from (55) to
be

�k2y ¼ �
��������
D!

Dy

�gc�
1=5

��������ei2n�=5

¼
��������
D!

Dy

�gc�
1=5

��������eið2n�5Þ�=5; (68)

so the corresponding 1=e width of the mode n ¼ 4 is

�y ¼ � 2

Imð�kyÞ ¼
2

sinð3�=10Þ
��������
D!

Dy

�gc�
1=5

��������
�1=2

:

(69)

As an example, we consider the grating and beam de-
scribed in Table I. For this particular grating the Bragg
point (�g ¼ 0) is located at VBragg � 126 kV. An operat-

ing voltage of 150 kV places the operating point in region
II. To compensate for errors introduced by our assumption
that the beam stretches from the grating top to infinity, we
scale the electron density by the filling factor [34]

Ffill ¼ e�½be=ð�xÞ� � e�½te=ð�xÞ�; (70)

where be is the bottom of the electron beam and te the top
of the beam relative to the grating surface, and �x ¼
1=2�0ð0Þ ¼ ���=4� is the intensity scale height for the
synchronous evanescent wave. For this case the filling
factor is Ffill � 0:8. The three-dimensional growth rate is
plotted in Fig. 7, along with the two-dimensional value.
When diffraction is included, the growth rate is reduced by
about a factor of 3. The 1=e amplitude mode width is found
to be �y � 5:5 mm. This is much wider than the electron
beam, the grating period, and the scale height of the
evanescent wave. Thus, it is clear that the initial assump-
tions made concerning its dimensions are justified. In the
vicinity of 326 kV, the growth rate diverges, as shown in
Fig. 7. This is the boundary between region I and region II,
and the mode width vanishes here. This violates the as-
sumption that the mode is wide, so the theory is not strictly
applicable in this neighborhood.

FIG. 6. Roots of the dispersion relation for region II.
Forbidden regions are shaded.
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IV. OSCILLATOR

When the synchronous point is to the right of the Bragg
point, the group velocity of the evanescent mode is nega-
tive. This allows energy exchanged in the beam-wave
interaction to be transported to the upstream end of the
grating. This serves as an intrinsic form of feedback, called
an absolute instability. Provided that the beam current
exceeds the so-called start current, the device oscillates
spontaneously. In this case, both the frequency shift 	!
and the wave number shift 	k are complex. The waves
corresponding to the several roots of the dispersion relation
become locked together to form the mode of the oscillator.
All the waves have the same (complex) frequency shift
	!j ¼ 	!, but different wave number shifts. This allows

them to interfere constructively and destructively to satisfy
the boundary conditions at the ends of the grating [47,48].

To estimate the start current for oscillation, we express
the electric field above the grating as a sum of the fields of
the modes corresponding to the physically allowed roots of
the dispersion relation (59). The field of the jth mode is

Ej ¼
X1

p¼�1
EðjÞ
p e��ðjÞ

p xe�i�kðjÞy yeipKzeiðk0z�!0tÞeið	kjz�	!tÞ:

(71)

To lowest order in the perturbation, however, the coeffi-

cients EðjÞ
p and �ðjÞ

p are the same as for the empty structure
and therefore independent of j, so the field above the
grating at any time may be expressed

Ex ¼
X
j

AjEj ¼ E0

X
j

Aje
ið�kðjÞy yþ	kjz�	!tÞ; (72)

where the coefficients Aj are constants and

E0 ¼
X1

p¼�1
Epe

��pxeipKzeiðk0z�!0tÞ: (73)

At the upstream end of the grating, the plasma enters
undisturbed in density and velocity. Since the density
fluctuations vanish, the polarization of the beam vanishes,
and since the velocity fluctuations vanish, the convective
derivative of the polarization vanishes. But from (12) and
(25) we find that the polarization is

Px ¼ � "0!
2
pE0

�3

X
j

Aje
ið	kjx�	!tÞ

ð	!� �c	kjÞ2
; (74)

where we have taken y ¼ 0 since the electron beam is
narrowly confined to the region near the axis. The con-
vective derivative of the polarization is

dPx

dt
¼

�
@

@t
þ �c

@

@x

�
Px ¼

i"0!
2
pE0

�3

X
j

Aje
ið	kjx�	!tÞ

	!� �c	kj
:

(75)

The boundary conditions therefore become

X
j

Aj

ð	!� �c	kjÞ2
¼ 0; (76)

X
j

Aj

	!� �c	kj
¼ 0: (77)

For the third boundary condition, we assume that there is
no input field at the downstream end of the grating. If we
ignore reflections at the ends of the grating [32], the field at
the right end of the grating vanishes. For a grating of length
Z, the corresponding boundary condition is

X
j

Aje
ið�kðjÞy yþ	kjZÞ ¼ 0: (78)

This must be satisfied for all y. However, the transverse

decay rates �kðjÞy are not all the same, so the three modes
themselves cannot satisfy the boundary condition every-
where. We presume that away from the axis, the differ-
ences are made up by adding in waves that are not
synchronous nor guided by the beam. Since they are not
synchronous and do not propagate up the grating, these
waves have negligible interaction with the beam and can be
ignored. We therefore apply the boundary condition at (78)
y ¼ 0. Since the optical-mode experiences many e-folds as
it propagates to the upstream end of the grating, the ex-
ponential coefficients that we seek are only logarithmically
influenced by the details of the coefficients at the down-
stream end of the grating.
The boundary conditions (76)–(78) must be solved sub-

ject to the constraint imposed by the dispersion relation
(59). For convenience, we introduce the dimensionless
variables,

	j ¼ �D̂y

��������
4

W2�2

Dy

D!

�g

�

��������
1=5ð	!� �c	kjÞ; (79)


 ¼ � D̂yZ

�c

��������
W2�2

4

D!

Dy

�

�g

��������
1=5

; (80)

where D̂y ¼ sign ofDy, and write the boundary conditions

in the form

X
j

Aj

	2
j

¼ 0; (81)

X
j

Aj

	j

¼ 0; (82)

X
j

Aje
�i
	j ¼ 0: (83)

For a solution to exist, it is necessary that the determinant
of the coefficients vanish,
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������������
1=	2

1 1=	2
2 1=	2

3

1=	1 1=	2 1=	3

e�i
	1 e�i
	2 e�i
	3

������������¼ 0: (84)

Finally, we introduce the dimensionless frequency shift

� ¼ �D̂y

��������
4

W2�2

Dy

D!

�g

�

��������
1=5

�
�g � �

�g

	!

�
; (85)

in terms of which the dispersion relation becomes (for
�g < 0)

	4ð	� �Þ þ 1 ¼ 0: (86)

The roots of this equation must satisfy the condition (61),
which can now be expressed:

D̂ y Reð	2Þ< 0: (87)

At threshold, the growth rate vanishes, so Im	! ¼
Im� ¼ 0. Computations for real � show that for three of
the roots Reð	2Þ> 0, while for two of the roots Reð	2Þ<
0. Thus, there are three physically allowed roots in region

IV (D̂y < 0)and two in region III. We see from this that for

a narrow electron beam over a wide grating, there are not
enough physically allowed (gain-guided) modes in region
III to satisfy the boundary conditions (84). Operation in
this part of the Brillouin zone will require either a wide
electron beam or a grating of finite width to confine the
optical mode so that diffraction is not important and gain
guiding is not required. In the following, we confine the
discussion to region IV.

The dimensionless equations (84) and (86) must be
solved numerically. It is found that the smallest value of

 for which the imaginary part of � is nonnegative is 
0 ¼
1:1938. Thus, the threshold condition for a growing oscil-
lation is

Z

�c

��������
W2�2

4

D!

Dy

�

�g

��������
1=5�
0 ¼ 0: (88)

For the parameters of the Dartmouth experiment the pre-

dicted start current is shown in Fig. 8. The start current
predicted by the 3D theory is about 5 times higher than that
predicted by the 2D theory [32].

V. DISCUSSION

We have presented a three-dimensional theory of a
grating FEL operating as an amplifier in the exponential
gain regime and as an oscillator. For a wide electron beam,
the cubic dispersion relation obtained in previous analyses
of slow-wave structures [8,49] is recovered. However,
when the electron beam is narrow, gain guiding results in
a fifth-order dispersion relation. From (65) we see that the
growth rate and the electron beam current in this case are
related by

� / n2=5e / I2=5; (89)

where I is the electron beam total current. To understand
this result we consider the relationship found in previous
two-dimensional analyses [32–34], given by

� / �I1=3; (90)

where �I is the current density. In the three-dimensional
case, the optical mode spreads by diffraction over a length
on the order of the gain length Zg ¼ 1=� to a width on the

order of �y / ffiffiffiffiffiffi
Zg

p
. The effective average current density

over the width of the mode is then

�I / I

�y
/ Iffiffiffiffiffiffi

Zg

p : (91)

Combining this with (90), we get

� / I2=5: (92)

This relationship is simply understood to be the manifes-
tation of gain guiding in the grating FEL. Transverse
diffraction results in strong dilution of the amplifier gain.
Similar effects are observed in the 3D theory of the
Cerenkov FEL [42].
More surprising are the unexpected results of diffraction

in a slow-wave structure in which the group velocity is very
different from the phase velocity, and may be negative.
Conventionally, optical guiding by a fiber with an index of
refraction greater than unity is the result of interference
between the phase fronts of the guided wave. However,
when the phase velocity is negative, so that the optical
pulse is traveling backwards, it is more difficult to under-
stand the effects of interference of the phase fronts, which
are moving to the right, on the guiding of a pulse that is
moving to the left. We find for our periodic structure that in
regions I and IV one of the three guided modes is a fast
wave (for which the electron beam has an effective index of
refraction less than unity), while in regions II and III there
are only two guided modes.
Up to this time, it has been impossible to do numerical

simulations of a grating FEL with a wide grating, due to

0

10

20

30

20 25 30 35 40

Voltage (kV)

C
ur

re
nt

 (
m

A
)

3-D start current

2-D start current

FIG. 8. (Color) Start current for the parameters of Table I.
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limitations of computer memory, so there are no simula-
tions to compare the theory to. Computations for a grating
of finite width show that the edges of the grating have a
strong influence on the modes above the grating [36,44].
The only published experimental results for a wide grating
are those of the Dartmouth group [26]. The parameters of
those experiments are summarized in Table I; the electron
energy was 30 keV. The start current predicted for those
experiments is shown in Fig. 8. In the Dartmouth experi-
ments, nonlinear (superradiant) Smith-Purcell radiation
was observed at currents above about 1 mA. However,
this is more than an order of magnitude below the predicted
start current, so it is unlikely that the evanescent wave was
oscillating. Moreover, radiation at the frequency of the
evanescent wave was never observed. Since nonlinear
emission was observed to turn on at about the same current
(� 1 mA) in other devices using this same electron beam
[28], including a Cerenkov laser [50], it is possible that the
coherence was caused by modulation of the current by an
electron beam instability. This conjecture is consistent with
other evidence. In experiments having parameters very
close to those of the Dartmouth group, but using a different
electron gun, Kapp et al. [29] saw no nonlinear radiation,
while in experiments using a modification of the electron
gun used in the Dartmouth experiments, Andrews et al.
[35] saw strongly nonlinear emission. They also saw ra-
diation from the evanescent wave scattering off the ends of
the grating. However, while the beam current used in those
experiments was close to the predicted start current [38],
there was no clear evidence of oscillation. This is likely
due to Joule losses in the grating surface, which are im-
portant at THz frequencies [31], and to imperfections in the
gratings.
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