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We investigate the operation of a load current multiplier (LCM) on a pulse-forming-line nanosecond

pulse-power generator. Potential benefits of using the LCM technique on such generators are studied

analytically for a simplified case. A concrete LCM design on the Zebra accelerator (1.9 Ohm, �1 MA,

100 ns) is described. This design is demonstrated experimentally with high-voltage power pulses having a

rise time of dozens of nanoseconds. Higher currents and magnetic energies were observed in constant-

inductance solid-state loads when a better generator-to-load energy coupling was achieved. The load

current on Zebra was increased from the nominal 0.8–0.9 MA up to about 1.6 MA. This result was

obtained without modifying the generator energetics or architecture and it is in good agreement with the

presented numerical simulations. Validation of the LCM technique at a nanosecond time scale is of

importance for the high-energy-density physics research.
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Megagauss-range magnetic fields are widely applied in
high-energy-density physics, plasma physics, solid-state
physics, such as studies of material properties under high
dynamic pressures, etc. [1]. Some applications including
fast heating of highly radiating materials, inertial plasma
confinement, or generation of strong shocks require also
the shortest possible times of the magnetic energy release
[2]. The most developed approach allowing high current
pulses (mega-amperes) with short (� 10�7 s) rise times is
the pulsed-power technique based on pulse forming lines
(PFL) [3]. In this technique, high magnetic fields can be
obtained at small millimeter-scale diameters, usually in a
solid-state or plasma load.

However, this approach requires more than tenfold con-
centration of the electromagnetic power in space from the
large-size (dozens of centimeters) dielectric-insulated PFL
output to a small, centimeter-scale vacuum volume repre-
senting the high magnetic energy density load. For a given
value of the PFL voltage Voc, the minimum physical vol-
ume necessary for electric connections to the load is con-
strained by high-voltage dielectric and vacuum insulation
strengths. The higher the voltage Voc, the larger the con-
nection volume and the higher its self-inductance L0. In
turn, the PFL impedance � limits the maximum accessible
load current amplitude I0 to Voc=�. The rise time � / L0=�
of I0ðtÞ is thus limited from below by the minimum L0

volume which still ensures lossless energy delivery to the
load [3]. A practical compromise between higher I0 and
smaller � attainable at the present technology level of

mega-ampere PFL’s with �� 100 ns results in L0 �
10–20 nH.
At the same time, high magnetic energy densities are

achievable in small load volumes which can have induc-
tance Ld of only units of nanohenries, so that Ld � L0. At
a given I0 constrained by �, by Voc and thus by L0, see
above, the driver-to-load energy transfer efficiency defined
by the ratio � ¼ Ld=ðL0 þ LdÞ can be also small. New
generation pulse-power drivers with petawatt-range elec-
tromagnetic power would require an almost threefold in-
crease of Voc and L0 [4], while the load volume and
inductance Ld, or its variation �Ld remain unchanged
for useful applications such as inertial confinement fusion
[3]. This would lead to a further decrease of the efficiency
�. It seems that a dramatic increase of I0 can be accessible
only through the increase of the generator output voltage
[3,4] that would require a larger and more expensive pulse-
power system with larger L0 and lower �.
The purpose of this paper is to demonstrate this is not

always true and to show how the load magnetic energy can
be enhanced without changing the generator architecture
by decreasing � and/or increasing the generator stored
energy to allow Voc to be increased. We demonstrate a
different approach to increasing the load current, the load
current multiplier (LCM) [5]. This recently suggested
method operates as an impedance transformer and in-
creases the load magnetic energy. LCM’s were previously
tested with low-voltage, microsecond capacitor discharges
[6] but have never been applied on PFL high-voltage,
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nanosecond-pulse generators. We now show an increase of
the current by a factor of 1:88� 0:38, for 100 ns pulses
with this technique on a nanosecond PFL generator Zebra
[7–9] in the University of Nevada, Reno.

A PFL-based generator can be characterized by its wave
impedance � and by the open-circuit voltage Voc at the
dielectric-vacuum insulator [10]. The insulator and vac-
uum lines delivering the power to a load have some irre-
ducible inductance L0 which is limited from above by the
minimum possible interelectrode gaps still allowing one to
avoid insulator breakdown and electron current losses and
plasma shorting of the vacuum gaps [3].

The Zebra generator [9] has an architecture typical for
PFL-based pulse-power facilities and it is routinely used
for production of strong magnetic fields [11] and in experi-
mental z-pinch physics research [12]. Figure 1 shows the
output section in standard generator operation with solid-
state or plasma loads. We further consider only inductive
loads having constant inductance Ld. Configurations of
Fig. 1 then are described by the following equation [10]:

ðL0 þ Ldc þ LdÞdI0dt þ �I0 ¼ Voc; (1)

where I0 is the output current and the inductances L0, Ldc,
and Ld are explained in the notation to Fig. 1.

Study a simplified case when the open-circuit voltage is
constant, i.e., it instantaneously rises to the value Voc at t ¼
0 and then remains unchanged. In other words, the voltage
rise time t0 V ¼ 0 in this approximation. Solution of Eq. (1)
is

I0 ¼ Voc

�

�
1� exp

�
� �

Ltot

t

��
; (2)

where Ltot � L0 þ Ldc þ Ld. For t ! 1, the generator
and load current I0 tends to the short-circuit value Voc=�.
Let us define the characteristic load current rise time as
t0 � 2Ltot=� and let us introduce the characteristic load
current amplitude I0

max as the current value at t ¼ t0, when
I0

max � I0ðt0Þ � 0:86Voc=�:

I0
max � I0ðt0Þ ¼ Voc

�
ð1� e�2Þ: (3)

Compare this simple estimate to a typical experimental
result in standard Zebra configuration of Fig. 1. Standard
Zebra parameters are � ¼ 1:9 Ohm [7] for the generator
impedance and L0 � 26 nH for the generator inductance
corresponding to the volumes (2) and (3) in Fig. 1. Ldc and
Ld are the inductances of the diagnostic chamber (4) and
load (5), respectively, and they change depending on the
experiment. Figure 2 shows typical Zebra load current
pulse measured in a calibration shot with Ldc þ Ld �
40 nH (Ltot � 66 nH), as well as the generator open-
circuit voltage VocðtÞ. The waveform of Voc was derived
in a separate series of experiments (not discussed here)
from the voltage measurements across the insulator stack,
Fig. 1, together with dI0=dt measurements. As the experi-
mental VocðtÞ had shot-to-shot variation in shape and in
maximum amplitude, Fig. 2 presents the averaged value
over eight consecutive shots with the maximum of Voc ¼
1:98 MV having a shot-to-shot variation of �13%. The
experimental voltage rise time is t0 V � 100 ns in Fig. 2.

FIG. 1. Output section of the nanosecond pulse-power genera-
tor Zebra comprising (1) pulse forming line, (2) water-vacuum
insulator stack, (3) vacuum pulse transmission line. Total induc-
tance of the parts (2) and (3) is considered as the unchangeable
generator inductance L0. Diagnostic chamber (4) and the load
(5) have the inductances Ldc and Ld, respectively. A—anode,
K—cathode.
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FIG. 2. (Color) Nominal short-pulse mode operation of the
generator. (1) Experimental generator and load current I0 for
the shot with Ldc þ Ld � 40 nH, solid line. Experimental aver-
aged voltage across the stack, Vstack, and the unfolded open-
circuit voltage Voc (cannot be trusted for t > 200–250 ns).
(1) Numerical solution I0ðtÞ of Eq. (1) for this shot using
experimental VocðtÞ, dashed line. Also shown for comparison
numerical simulations with (2) Ldc þ Ld ¼ 20 nH and (3) Ldc þ
Ld ¼ 10 nH.
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In this calibration shot, I0
max ¼ 0:86 MA and the ex-

perimental current rise time defined here and below is
td

exp ¼ tpeak � tstart (tpeak corresponds to the maximum I0
and tstart is found from extrapolation of the linear pulse rise
portion), so that experimentally td

exp ¼ 114 ns. Sub-

stitution of the maximum experimental Voc value in
Eq. (3) yields I0

max � 0:9 MA, which is close to the ex-

perimentally measured 0.86 MA.
At the same time, the time constant t0 defined above,

t0 � 69 ns appears to be substantially smaller than td
exp.

This is because Eq. (2) was obtained, and t0 was defined for
an ideal steplike voltage waveform with t0 V ¼ 0, when the
current rise time is constrained only by the output induc-
tance Ltot and generator impedance � in Eq. (1). One could
conventionally discriminate here two regimes of PFL gen-
erator operation onto an inductive load: (1) the ‘‘load-
limited’’ regime with t0 � t0 V, when the load current
rise time is mainly defined by Ltot, Eq. (2) and (2) the
‘‘generator-limited’’ regime with t0 V � t0 and with
td

exp � t0 V. The latter case is closer to Zebra operation

in its standard configuration of Fig. 1 with Ltot � 66 nH
and t0 � 69 ns, when t0 V � 100 ns and td

exp ¼ 114 ns �
t0 V.

However, the output section of Fig. 1 will be modified
following recommendations of Ref. [5] and the effective
output inductance Ltot seen by the generator will be in-
creased when using the load current multiplier technique,
see Eq. (6) in Ref. [5] and Eq. (8) below. The simplified
analysis for an ideal generator is important in this case
because it shows new constraints imposed by LCM. When
the output inductance increases, t0 increases accordingly
and the generator current at a given time thus should
decrease.

Before we proceed with revisions of the Zebra output
geometry, let us see what the maximum current the gen-
erator could provide in the standard setup of Fig. 1.
Experimental dependence VocðtÞ allows numerical solution
of Eq. (2) for the calibration shot with Ldc þ Ld � 40 nH.
This numerical solution is shown in Fig. 2 (1) and it
corresponds well to the experimental current waveform.
Now, rearrangement of the diagnostic chamber and load
electrodes (4) and (5) in Fig. 1 in order to decrease the
corresponding inductance Ldc þ Ld would help somewhat
in increasing the current amplitude. However, as numerical
results (2) and (3) show in Fig. 2, the generator perform-
ance is not considerably improved as the peak current rises
only by 10% and in any case cannot exceed the theoretical
limit of Voc=�� 1 MA.

Suppose now a modification of the Zebra output section,
Fig. 1, applying the LCM technique. The load Ld is a
small volume with high magnetic energy density. As de-
scribed elsewhere [5], an LCM is capable to redistribute
the energy between the coupling inductance L0 and load
inductance Ld operating as a transformer, or impedance
adapter, and increasing the fraction of the total energy

available in the system that is coupled to the load at peak
current.
Figure 3 suggests such a modification on Zebra and

corresponds to the scheme of Fig. 1(b) from Ref. [5].
The LCM consists of two concentric toroids connected to
the load Ld through a post-hole convolute C. Lv is the
vacuum inductance between the toroids.
We still consider that the load inductance Ld is constant

and define it as that downstream of the convolute C, Fig. 3.
We assume perfectly conducting electrodes and absence of
current losses across the vacuum gaps everywhere in the
system. The current Ig comes from the generator and it

flows on the inner surface of the external electrode of the
vacuum chamber which is the anode A. The current flowing
on the surface of the opposite electrode has the same value
and opposite direction. Ig finally returns to the generator on

the surface of the central cathode K (see also Fig. 1). The
same current Ig is on the surface of electrodes in the

volumes Lv1 and Lv2, as well as in Ldc. Current splitting
occurs only at the convolute C where four vacuum lines
(volumes L, Ldc, Ld, and Lv2) are connected together, see
the inset of Fig. 3. We chose clockwise direction of the

FIG. 3. A sketch of possible LCM implementation on Zebra in
cylindrical geometry, cf. Fig. 1. A—anode, K—cathode. Ldc is
the diagnostic chamber inductance between the chamber wall
and the LCM convolute posts, Lv is the total bypass inductance
of two coaxial and one disk lines, Ld is the load inductance, and
L is inductance of the large LCM cavity. The arrows show
directions of the currents in the system at the surfaces of
electrodes. The current Ig powered by PFL (not shown) passes

through Ldc and then through the bypass Lv. Further two paths
for Ig to load are directly to Ld and through the convolute C and

large volume L. At point C the incoming generator current Ig
splits into surface currents I, Id, and Ig returning to the generator.

Dotted and dashed contours are used for calculation of magnetic
fluxes. The inset shows current splitting at the convolute C,
where r shows one convolute post.
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currents I and Id in the volumes L and Ld accordingly.
Faraday’s law for the external contour (dots) enclosing the
generator and all the inductances shown in Fig. 3 implies

ðL0 þ Ldc þ LvÞ
dIg
dt

þ L
dI

dt
þ Ld

dId
dt

þ �Ig ¼ Voc; (4)

where Ig is the generator current in the inductances L0, Ldc,

and Lv ¼ Lv1 þ Lv2 [Ig is different from I0 in Eq. (1) as

the circuit is changed], Id is the load current in the induc-
tance Ld, Fig. 3, and I is the current inside large cavity L
(magnetic flux extruder).

Then, use a contour including only the extruder induc-
tance L and the load Ld (dashed contour in Fig. 3). We
assume that the convolute inductance can be made small
compared to that of the load. Choose counterclockwise
path tracing of this contour so that the magnetic flux in L
will contribute as �LI (direction of the current I is oppo-
site to the path-tracing direction), the flux in Ld will
contribute as LdId and the total flux will be equal to�LI þ
LdId. This magnetic flux is zero inside this contour before
the power pulse because the currents are zero. This flux is
further conserved because we assume absence of dissipa-
tion in perfectly conducting electrodes, so it remains zero
when the generator current starts. Therefore, we have for
this contour at any time

LI � LdId ¼ 0: (5)

Current splitting at the convolute C is illustrated by the
inset of Fig. 3. Consider one convolute post r. The inflow-
ing and outflowing currents for this post are shown by
black arrows and they are I þ Id and Ig þ Ig accordingly,

so that the current continuity at the point C requires

Id þ I ¼ 2Ig: (6)

The same result can be obtained if we include more than
one post or if we study inflowing and outflowing currents
for the convolute holes (more precisely, for the spacing
between holes) shown by gray arrows in the inset of Fig. 3.

Equations (4)–(6) thus describe the generator—LCM—
load circuit changed with LCMmodification of the vacuum
region. From Eqs. (5) and (6) the currents inside the
extruder and into the load are thus

I ¼ 2Ld

ðLþ LdÞ Ig Id ¼ 2L

ðLþ LdÞ Ig: (7)

Introducing the current multiplication coefficient � �
Id=Ig, one can see that for L � Ld we have I � Ig and

� ! 2, i.e. if the extruder cavity inductance is much higher
than that of the load, the extruder current becomes much
smaller than that of the generator while the generator
current can be doubled. The generator current differs
from I0 in Eq. (1) and it is now described by (4) or by
the following, substituting Eq. (7) into Eq. (4):

Ltot
	 dIg
dt

þ �Ig ¼ Voc

Ltot
	 � L0 þ Ldc þ Lv þ 4LLd

Lþ Ld

:

(8)

Simplifying our analysis we consider once more
VocðtÞ ¼ const, i.e., the ‘‘load-limited’’ regime defined
above. As discussed, studying this regime allows a com-
parison of LCM performance even with an ideal PFL
generator. The solution of Eq. (8) for the generator current
will be the same as (2) except Ltot should be substituted by
Ltot

	. Equation (7) allows one then to find the modified
load current Id [cf. Eq. (2) defines the ‘‘old’’ current into
load]:

Id ¼ 2L

ðLþ LdÞ
Voc

�

�
1� exp

�
� �

Ltot
	 t
��

: (9)

Similarly to Eq. (2), we define the new current rise time
as td � 2Ltot

	=� and the new load current amplitude as
Id

max � IdðtdÞ, so that at t ¼ td the current Id makes

approximately 86% of its maximum possible value for t !
1. Defined in this way, the Id

max value can reach 2 times

the load current amplitude value I0
max of the standard non-

LCM configuration (Fig. 1) if L � Ld, so that advantage
of the LCM is evident:

Ig
max � IgðtdÞ ¼ Voc

�
ð1� e�2Þ ¼ I0

max

Id
max � IdðtdÞ ¼ 2L

Lþ Ld

Ig
max ! 2I0

max

id
max � Id

max

I0
max ¼

2L

Lþ Ld

! 2:

(10)

However, as Ltot
	 >Ltot, the characteristic current rise

time td increases when the LCM is applied, i.e. td > t0. In
this case the load current maximum occurs later in time
than in the no-LCM case and the Id value at t ¼ t0 is
obviously lower than Id

max. In order to investigate the

efficiency of LCM operation in a more rigorous way, we
normalize the load current of Eq. (9) to I0ðtÞ from Eq. (2)
and consider both IdðtÞ and I0ðtÞ for t ¼ t0, id �
Idðt0Þ=I0ðt0Þ. The case id > 1 would signify that the load
current in Fig. 3 is higher even at the time where the no-
LCM current is maximum. In turn, dimensionless value
� � td=t0 would characterize the degree of current rise
time increase when the modification of Fig. 3 is consid-
ered. Expressions for the normalized load current id and
normalized current rise time � are

id � Idðt0Þ
I0ðt0Þ ¼

2L

Lþ Ld

1� e�2=�

1� e�2
� � td

t0
¼ Ltot

	

Ltot

:

(11)

For the sake of simplicity, suppose the value of Ldc to be
the same both in Fig. 1 and in Fig. 3. Let us now neglect
the bypass inductance value Lv, e.g. Lv � L0 þ Ldc in
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Eq. (8). This condition is not automatically satisfied for all
generators but it allows preliminary parametric study of a
system with LCM. The normalized values of Eq. (11) can
then be expressed as

id ¼ 2x

dþ x

1� e�2=�

1� e�2
� ¼ 1þ 4xd=ðxþ dÞ

1þ d
; (12)

where x � L=ðL0 þ LdcÞ is the normalized extruder cavity
inductance and d � Ld=ðL0 þ LdcÞ is the normalized load
inductance.

The values of id and � from (12) are plotted in Fig. 4.
This parametric analysis allows a preliminary estimate of
the necessary LCM extruder volume L for given L0 þ Ldc

and Ld. The LCM load current Id at t ¼ t0 can be made
higher than the maximum current I0

max in standard gen-

erator configuration already at moderate extruder cavity
inductance values. For example, for LCM with x ¼ 2 and
for d ¼ 0:25, i.e., for Ld ¼ 0:25 (L0 þ Ldc), we have Id �
1:5 I0

max at t ¼ t0 (id � 1:5 in Fig. 4). In turn, id
max ¼

2x=ðxþ dÞ � 1:78 in Eq. (10) so that Id � 1:78I0
max at

t ¼ td (td � 1:5t0 in Fig. 4). The region with x < 1 for d ¼
0:25 is not suitable even for an ideal PFL generator with
t0 V ¼ 0, Eq. (9), and an ideal LCM, Lv ¼ 0, because
application of an LCM would lead to the load current
rise time increase, � > 1 with a moderate or no gain in
the load current amplitude id. Similarly, the region with
x � 1 should be more accurately studied from the view-
point of a concrete engineering design because high L lead
to higher bypass inductance Lv, see Fig. 3, which may
become non-negligible.

If we allow td to be significantly greater than t0, the
LCM may potentially improve generator-to-load coupling
and increase the load current above the no-LCM value even
at higher load inductances than those presented in Fig. 4.
For example, for d ¼ 1ðLd ¼ L0 þ LdcÞ, for x � 1 (L �

L0 þ Ldc), and when Lv can be still neglected (Lv � L0 þ
Ldc), Eqs. (10) and (12) yield id � 1:27 and id

max ! 2 for

td ! 2:5t0.
Therefore, the simplified analysis above suggests that

the LCM technique proposed in Ref. [5] is capable to
improve characteristics of a PFL generator operating on
inductive loads without changing the generator parameters
Voc, �, and L0. For an ideal PFL generator able to deliver
electrical power during sufficient time, with Voc ¼
constant, in the range of parameters discussed above the
load current can be increased and have the same rise time t0
as the no-LCM current. If the experiment allows td > t0,
the load current can be almost doubled.
Here we always considered inductive loads on PFL

generators. Those loads correspond to a variety of solid-
state and plasma loads in high-energy-density physics [1–
13]. Figure 4 shows higher load current gains (higher id at
given x) for smaller normalized load inductances d. In an
LCM configuration the load inductance Ld is unambigu-
ously defined as that downstream of the LCM convolute,
Fig. 3. On the contrary, in a no-LCM case (standard pulse-
power generator output, Fig. 1), the volume with constant
inductance Ld cannot be distinguished from the rest of the
vacuum volume and this is the reason why we could use
only the experiment-dependent sum value Ldc þ Ld, see
Fig. 2.
In fact, LCM intentionally separates the small high-

energy-density volume comprising physical processes
under study from the rest of the vacuum volume in
Fig. 2. In other words, the LCM technique implicitly
assumes that (a) the load volume having constant induc-
tance Ld (e.g. for obtaining high pulse magnetic fields
[11]) or variable inductance �Ld (z pinches, see, e.g.,
Ref. [12]) is a small volume with high magnetic energy
density (the minimum size of this volume can be limited
from below by some additional requirements, such as
peculiarities of the physical process in interest, diagnostics
access, etc.), and that (b) the LCM convolute is positioned
as close as possible to Ld (or�Ld) volume. This may allow
one to have d � 1 in the notations of Eq. (12) and thus
id > 1 in Fig. 4 or id

max ! 2 in Eq. (10).

Following this logic, we modify the vacuum section in
Fig. 1 by adding additional hardware between the PFL
output and the load as sketched in Fig. 3. The experimental
hardware shown in Fig. 5 is designed to operate in vacuum
and it comprises magnetically insulated transmission lines
(MITL) Lv1 and Lv2, a large-volume magnetic flux ex-
truder L and a post-hole convolute C (eight posts at the
diameter of 18 cm). The procedure of electrical description
of this system presented above concludes that the generator
current tends to pass 2 times through the load in an ideal
case, when L � Ld, because in this case we have I ! 0 in
Eq. (6) and thus Id ! 2Ig in Eqs. (6) and (7).

In the experimental configuration of Fig. 5 the induc-
tances in Eqs. (7) and (8) are: L0 � 26 nH (unchangeable),

FIG. 4. Normalized load current id (solid lines) and rise time �
(dashed lines) as functions of normalized LCM extruder induc-
tance x and for different normalized load inductances d, Eq. (12).
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Ldc � 9 nH (diagnostic chamber), L � 90 nH (large LCM
cavity), Lv ¼ Lv1 þ Lv2 � 24 nH (LCM MITL’s).
Therefore, the region around x� 2:5 was chosen from
the idealized analysis of Fig. 4. The Lv value was then
obtained from choosing some realistic interelectrode gap
sizes in the bypass region. The load was either a 6-mm-
diameter rod or a 12-mm-width (� 1 mm thickness) strip,
both installed at the axis of the system. The inductance
between the axial electrode and eight posts of the LCM
convolute was Ld � 7 nH. Under assumption of no
current losses in the vacuum gaps, the theoretical load
current multiplication coefficient � ¼ Id=Ig from Eq. (7)

is � � 1:86.
Figure 6 illustrates the experimental currents recorded

on Zebra after the modification of Fig. 5 were made.
Locations of the current measurements is are shown in
Fig. 5 (three azimuthally distributed differential Bdots at
each level for Igt, Igm, I, and Id). Each curve of Fig. 6 is

found as an average of Bdot signals for each level.

There was no difference between two generator current
measurements, Igm � Igt ¼ Ig, which signifies no current

losses in the 6-mm-gap Lv2 MITL. The estimated electric
field in this vacuum line could reach 370 kV=cm at the top
(point 1 in Fig. 5) and 250 kV=cm at the bottom (point 2 in
Fig. 5) in the discussed shot. The losses were also absent in
other parts of the system as the experimental current multi-
plication � � Id=Ig was almost identical to the theoretical

value (that assumed no losses) during a great portion of the
current pulse, Fig. 6 (early spike on � waveform is due to
the measurement uncertainty/asymmetry when the currents
are still small). Numerical solutions of the system (7) and
(8) for Ig, Id, and I are plotted as dashed lines and they

coincide with corresponding experimentally recorded
waveforms during the time when VocðtÞ data can be trusted,
see Fig. 2. Also, the analytical extruder current I ¼ 2Ig �
Id (Ig and Id are experimental), Eq. (6), coincide with the

measured IðtÞ. All above-mentioned validates the analyti-
cal description of LCM we used.
Table I summarizes results of the experiments per-

formed in the discussed setup. Experimental peak genera-
tor currents Ig, peak load currents Id, and load current rise

times td
exp defined in the same way as in Fig. 2 and current

multiplication coefficients � at peak current are listed. The
measured � is always close to the theoretical value within
error bars indicating lossless operation of the setup of
Fig. 5 on Zebra.
In the shot of Fig. 6, the load current reached 1.62 MA

with practically unchanged current rise time td
exp ¼

tpeak � tstart ¼ 116 ns if compared to td
exp in the nominal

shot of Fig. 2. Indeed, the values of Ld, L, Lv, and Ldc

realized in practice result in Ltot
	 � 85 nH, Eq. (8), and in
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FIG. 6. (Color) Experimental currents (solid lines) measured in
the configuration of Fig. 5. Id, Ig, and I are the load, generator,

and extruder currents accordingly. The load was a 6-mm-
diameter on-axis rod. Dashed lines are the numerical solution
of Eqs. (7) and (8) with the VocðtÞ from Fig. 2 increased by 6% to
match this experiment. Also shown for comparison is the mea-
sured load current I0 in nominal Zebra operation, Fig. 2.FIG. 5. Cylindrical geometry of the final LCM design for the

Zebra generator. The interelectrode gaps in Lv1 and Lv2 parts are
2 cm and 6 mm accordingly, Lv ¼ Lv1 þ Lv2. Shown are the
locations of current measurements, each location corresponds to
three azimuthally distributed differential Bdots. The generator
current Ig is measured by Bdots at the LCM top, Igt, and near the

convolute C, Igm. The current inside the large flux extruder

cavity is measured by the Bdots I. The load current is measured
by the Bdots Id. Distribution of current in the LCM is the same
as in Fig. 3. Ld is the load represented either a 6-mm-diameter
rod or a 12-mm-width (� 1 mm thickness) strip installed at the
axis of the system, both in stainless steel and 1 cm height. The
inductance Ld is calculated as that between the axial electrode
and the LCM convolute posts (eight posts, each having diameter
of 12 mm).
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theoretical td � 89 ns< t0 V � 100 ns. Therefore, the
chosen LCM configuration still allows the ‘‘generator-
limited’’ regime on this concrete generator and therefore
does not lead to td

exp increase.

The magnetic field on the load rod surface reached the
megagauss level in the experiment of Fig. 6 with the
estimated value of 1.08 MG. The load magnetic energy
in the volume associated with Ld ¼ 7 nH was increased
from 2.6 to 9.2 kJ which corresponds to an improved
driver-to-load energy transfer efficiency. Figure 7 shows
that, for obtaining the same performance in the standard
configuration of Fig. 1, the generator voltage amplitude Voc

would have to be increased almost twice. This would lead
to the stack voltage increase 2.8 times if compared to the
nominal Zebra configuration, Fig. 2, and 1.8 times if

compared to the LCM operation, Fig. 6, possibly requiring
an increase in L0.
Such an increase of the generator voltage would require

major changes of generator energetics and architecture.
Instead, the observed enhanced load currents and load
magnetic energies are obtained using the LCM technique
at low cost and without modifying the generator. This
capability will allow high-energy-density physics research
at higher levels of magnetic field on Zebra. In particular,
envisaged applications with constant-inductance loads on
Zebra are the studies of plasma–magnetic field interaction
and experimental modeling of space plasmas in the labo-
ratory [11]. Applications of the LCM technique to the
loads having variable inductance LdðtÞ � const or/and
non-negligible resistance, such as planar wire-array z
pinches [12] are already in progress on this generator [13].
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