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Transverse coherent oscillations of a bunched beam in a ring accelerator are considered with space

charge dominated impedance, taking into account linear synchrotron oscillations. A general equation of

the bunch eigenmodes is derived, its exact analytical solution is presented for boxcar bunch, and

numerical solutions are found for several realistic models. Both low and high synchrotron frequency

approximations are considered and compared, fields of their applicability are determined, and some

estimations are developed in the intermediate region. It is shown that most of the bunch eigenmodes are

stabilized by Landau damping due to the space charge produced tune spread.

DOI: 10.1103/PhysRevSTAB.12.124402 PACS numbers: 29.27.Bd

I. INTRODUCTION

Transverse instability of a bunched beam in a ring
accelerator with synchrotron oscillations taken into ac-
count has been considered first by Pellegrini [1] and
Sands [2]. Coherent oscillations of any bunch were pre-
sented as a sum of uncoupled modes / expðim�Þ where �
is synchrotron phase. After that, Sacherer [3] investigated
this effect in depth including so-called radial modes which
describe dependence of the displacement on synchrotron
amplitude. Space charge effects have been examined first
in Ref. [4] by analysis of the bunch eigenmodes with space
charge dominated impedance. It was shown that most of
the modes become stable due to Landau damping which is
enhanced as a result of additional tune spread produced by
the space charge. The only mode which is never prone to
this kind of stabilization is the so-called rigid one.

However, the results of Ref. [4] were obtained with the
assumption that space charge tune shift is small in com-
parison to synchrotron frequency—the condition which is
not commonly available. Later the conclusions were con-
firmed without similar restrictions by numerical investiga-
tion of some comparatively simple models (boxcar, square
potential well) [5]. Low synchrotron frequency limit was
investigated recently in Ref. [6] at arbitrary distribution.

In presented work, the problem is considered at arbitrary
distribution function, both at small and large relation of
tune shift to synchrotron frequency. The main assumption
is that the expected instability growth rate is small enough
to satisfy the inequalities:

Im ! � �s; Im! � �0�Q;

where �s and �0 are synchrotron and revolution frequen-
cies, and �Q is space charge tune shift. The assumption
allows one to solve the problem in two stages:
(i) determination of the bunch eigenmodes with space
charge only, (ii) investigation of their instability produced

by real additions to the impedance. The first point is
considered in detail in this article including the following
items: (i) The integral-differential equation of the eigen-
modes is derived. (ii) Its exact analytical solution is pre-
sented for the boxcar bunch to be applied further for testing
of different particular models. (iii) An approximate differ-
ential equation is developed in the low synchrotron fre-
quency limit, and its solution is presented for different
distribution functions. (iv) The same distributions are in-
vestigated in the opposite limit of high synchrotron fre-
quency using an uncoupled multipoles model. (v) The
applicability of different models is discussed by compari-
son of these ultimate cases.
It is important that Landau damping manifests itself

specifically in this stage as a singularity of corresponding
eigenfunctions, so that the dominant space charge almost
predetermines the instability threshold. A small real part of
the impedance initiates the instability and determines its
growth rate, but has almost no affect on the threshold. The
formal reason and physical nature of this effect will be
discussed below in detail. However, a resemblance of this
situation to a coasting beam is seen right now. Indeed, it is
well known that the instability threshold of a coasting
beam depends, first of all, on a ratio of space charge tune
shift to the tune spread. The real addition to the impedance
determines the instability growth rate but has almost no
affect on the threshold. A peculiarity of bunched beams is
that the space charge brings not only tune shift but tune
spread as well. Their relation depends on the bunch shape,
and investigation of that is an important topic of this paper.
Linear betatron and synchrotron oscillations are consid-

ered in the majority of the paper. There are strong grounds
to believe that their nonlinearity would enhance Landau
damping.

II. BASIC EQUATION FOR EIGENMODES

We will start from the equation of betatron oscillations
of a single particle:*balbekov@fnal.gov
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d2x

dt2
þ�2Q2x ¼ eE½�; x� �Xðt; �Þ; y�

m�3
þ eGðt; �Þ

m�
; (1)

where� andQ are momentum-dependent angular velocity
and tune, E is space charge electric field, and eG is Lorenz
force per particle due to all other sources (wakefield of
resistive walls, cavities, etc.). In the beginning, we will
neglect this part to find eigenfunctions (e.f.) and eigenval-
ues (e.v.) of the problem at G � E=�2. It should be taken
into account later as a small perturbation to get additions to
the e.v. including the instability growth rate, if it appears.

The field E depends on particle deviations from the
bunch center: longitudinal � and transverse x� �Xðt; �Þ
where �Xðt; �Þ is the beam offset at azimuth � (y offset is
presumed to be 0). Averaging Eq. (1) over all particles near
point ð�; uÞ of longitudinal phase space, one can get an
equation for the function Xðt; �; uÞ which is a local dis-
placement of the beam in this point:

d2X

dt2
þ�2Q2X ¼ e

m�3

Z 1

�1
Eð�; xþ X � �X; yÞ

� �?ðx; yÞdxdy; (2)

where �?ðx; yÞ is the normalized steady-state beam den-
sity. Because both X and �X are presumed to be small in
comparison with the beam diameter, it is possible to ex-
pand E in Taylor series obtaining

d2X

dt2
þ�2Q2X ¼ 2�2Q�Qð�ÞðX� �XÞ; (3)

where�Qð�Þ is space charge driven tune shift at azimuth �
averaged over transverse coordinates:

�Qð�Þ ¼ e

2m�3�2Q

Z 1

�1
@E

@x
ð�; x; yÞ�?ðx; yÞdxdy (4)

(it is taken into account that �? and E are even and odd
functions of x). For the elliptical beam of constant density,
�Q coincides with the usual incoherent tune shift. For
Gaussian beam, �Q is one-half of the tune shift of small
betatron oscillations. Other relevant details can be found in
Ref. [7].

Because �Q � Q, Eq. (3) can be reduced to the first
order equation:

dX

dt
þ i�QX ’ i��QðX � �XÞ: (5)

Also, it is necessary to take into account that d=dt is
actually a total time derivative including longitudinal mo-
tion:

d

dt
¼ @

@t
þ d�

dt

@

@�
þ du

dt

@

@u
¼ @

@t
þ�s

@

@�
; (6)

where � and �s are phase and frequency of synchrotron
oscillations, u / p� p0 is normalized momentum devia-
tion, and subindex ‘‘0’’ marks the central momentum.

Wewill look for solutions of the obtained equation in the
form

Xðt; �; uÞ ¼ Yð�; uÞð�i!t� i��Þ; (7)

where � ¼ ð�QÞ0=�0 is treated as an effective chromatic-
ity, and prime means derivative on momentum. It allows
one to exclude dependence of � and Q on momentum in
(5) resulting in the equation:

ð!��0Q0ÞY þ i�s

@Y

@�
¼ ��0�Qð�ÞðY � �YÞ: (8)

Further we will use the notations,

!��0Q0

�0�Qð0Þ ¼ �;
�s

�0�Qð0Þ ¼ �; (9)

to represent Eq. (8) in the form

�Y þ i�
@Y

@�
¼ ��ð�Þ

�ð0Þ ðY � �YÞ; (10)

where �ð�Þ is linear bunch density at longitudinal distri-
bution function F:

�ð�Þ ¼
Z 1

�1
Fð�; uÞdu: (11)

Equation (10) should be supplemented by a relation of
variables Y and �Y:

�ð�Þ �Yð�Þ ¼
Z 1

�1
Fð�; uÞYð�; uÞdu (12)

which is valid for the pair X� �X as well.
In fact, Eq. (10) has been derived first in my work [4]

based on the Vlasov equation for the function D ¼ FY
which is linear density of the beam dipole moment. The
conversion is trivial, but form (10) is used in this paper as
more convenient.
Parameter � can be treated as an eigenvalue of Eq. (10).

It is easy to show that all of the e.v. are real numbers, and
corresponding e.f. satisfy the orthogonality condition:

ZZ
YiY

�
j Fd�du ¼ �ij; Im� ¼ 0: (13)

Note one important exact solution which is valid at any
distribution function:

Y ¼ �Y ¼ const; � ¼ 0; i:e: ! ¼ �0Q0: (14)

We will treat it further as a ‘‘rigid mode’’ because it does
not depend on synchrotron oscillations (this term was
primarily used for a model without synchrotron motion at
all; for example, see Ref. [8]). Because of orthogonality
condition (13), all other e.f. should satisfy the relations

ZZ
YiFd�du ¼

Z
�Yið�Þ�ð�Þd� ¼

Z
�Dið�Þd� ¼ 0;

(15)

which means that the total dipole moment of the bunch is
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zero (at zero effective chromaticity). It is easy to believe
that wakefield of similar modes and attendant instability (if
it appears) would be noticeably lower than with the rigid
mode.

Further we will consider linear synchrotron oscillations
taking the bunch half length as 1:

� ¼ A cos�; u ¼ A sin�; A � 1; (16)

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ u2

p
is the amplitude of synchrotron os-

cillations. Their nonlinearity is not included here because
Landau damping from space charge is the main topic of the
paper.

In conclusion of this section, it is necessary to note that
the substitution X / expð�i!tÞ means, strictly saying,
Laplace transformation of Eq. (5), an operation which is
determined at Im!> 0. Generally, the transformed equa-
tion should include initial function Xð0; �; uÞ as well. It is
traditionally omitted because the instability threshold and
growth rate do not depend on this. However, it is important
to emphasize that the complete equation has a solution at
any complex � with a positive imaginary part. Real �,
including e.v. of uniform Eq. (10), have a direct meaning
only if the corresponding e.f. are a regular function defined
as the analytical extension of the original complex function
on the real axis. Otherwise, it would be required to bypass
the pole at inverse Laplace transformation, an operation
which specifically provides Landau damping [9].

Therefore, only regular solutions of Eq. (10) have a
chance to become unstable due to the addition / G in
Eq. (1) (for example, rigid mode). Other (singular) modes
are prone to Landau damping, and only strong perturbation
G could cause their instability by the essential transforma-
tion of the original spectrum. However, similar cases are
not a subject of this exploration. For briefness, below we
will identify mentioned modes simply as ‘‘unstable’’ or
‘‘stable’’ ones.

III. BOXCAR MODEL: EXACT SOLUTION

The distribution function providing constant linear den-
sity (boxcar model) is

F ¼ 1

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 � u2

p ; � ¼ 1 at j�j< 1: (17)

The first exact solution of the problem in the frame of this
model is presented by Sacherer [3] in the form of Legendre
polynomials:

�Yð�Þ / Pnð�Þ; n ¼ 0; 1; 2; . . . : (18)

Substitution to Eq. (10) shows that, at any n, there are nþ
1 different e.v. � and corresponding e.f. Yð�; uÞ which are
polynomials of the same power as well. It provides an
excellent opportunity to check any subsequent partial
model. Some examples given below will be used in the
next sections:

n ¼ 0 �Y ¼ Y ¼ 1; � ¼ 0; ðrigid modeÞ;
n ¼ 1 �Y ¼ �; Y ¼ �þ i�u

�
; � ¼ �0:5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 0:25

q
;

n ¼ 2 �Y ¼ 3�2 � 1; �̂ð�̂2 � 4�2Þ ¼ �̂2 ��2; �̂ ¼ �þ 1;

n ¼ 3 �Y ¼ 5�3 � 3�; ð�̂2 ��2Þð�̂2 � 9�2Þ ¼ �̂ð�̂2 � 4�2Þ

(a continuation of the table is quite apparent). The eigen-
values � are plotted in Fig. 1 vs � at n ¼ 0–5. It is seen
that, at large �, the eigenmodes form several groups with
close frequencies and about circular polarization:

Ym;n ’ Rm;nðAÞ expðim�Þ; � ’ m�;

! ’ �0Q0 þm�s

which coincide with ‘‘classic’’ head-tail modes [1–3]. It is
seen also that the radial modes Rm;nðAÞ arise here from
different Legendre polynomials Pnð�Þ.

At lower�, any e.v. tends to one of two points: (i) either
� ¼ 0, (ii) or � ¼ �1. In standard terms, frequencies of
these modes are

! ’ �0Q0 or � ’ �0ðQ0 ��QÞ ¼ �0Qincoherent:

These oscillations have almost linear polarization: along �
in the first case, and along u in the second one. Because of

the frequencies coalescing, there is almost total degenera-
tion of corresponding e.f. at very small �. In particular,
two groups of solutions can be formally obtained directly
from Eq. (10) at� ¼ 0. The first of them includes arbitrary
e.f. Yð�Þ not depending on u. According to Eq. (12), �Y ¼ Y
in this case, and Eq. (10) is satisfied at any �ð�Þ, if � ¼ 0.
The other group includes arbitrary e.f. Yð�; uÞ satisfying
the condition

R
FYdu ¼ 0 (for example, any odd function

of u). Then �Y ¼ 0, and Eq. (10) is satisfied at �ð�Þ ¼
const, if � ¼ �1.
Of course, these sets cannot provide a basis for further

development. However, at very realistic conditions
Im! � �s, synchrotron motion could remove the degen-
eration and form the modes available for subsequent
generalization.
Therefore, our first goal is to use these ideas for analysis

of more realistic distributions at � � 1. The case � ’ 0 is
rather clear in this regard, offering an expansion of the
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solutions in powers of u. The other possibility � ’ �1 is
more complicated because of the crucial condition �ð�Þ ¼
const which ensures constant incoherent frequency of all
the particles. Then different parts of the bunch can oscillate
jointly with the same coherent frequency creating various
spatial configurations with �Y ¼ 0. However, only a short
part of the bunch could oscillate with a definite frequency if
�ð�Þ � const. Then the term�@Y=@� could not be treated
as a small perturbation as it looks like 0�1.

However, instability of similar oscillations seems un-
likely because: (i) Landau damping affects when coherent
frequency is located inside incoherent distribution,
(ii) actually, relation �Y ’ 0 means a low wakefield. There-
fore, only the first case is considered in the next section.

IV. LOW SYNCHROTRON FREQUENCY
APPROACH

Wewill look for the solution of Eq. (10) at� � 1 in the
form

Y ¼ y0ð�Þ þ y1ð�Þuþ y2ð�Þu2; jy0j � jy1j � jy2j:
(19)

Then, according to Eq. (12)

�Yð�Þ ¼ y0ð�Þ þ y2ð�ÞU2ð�Þ; (20)

where Uð�Þ is normalized rms momentum:

U2ð�Þ ¼
R
Fð�; uÞu2duR
Fð�; uÞdu : (21)

Substituting it in Eq. (10) and neglecting the terms / �y2,
we obtain

�ðy0 þ y1uþ y2u
2Þ þ i�ð�y00u� y01u

2 þ y1�Þ
’ � �

�ð0Þ ½y1uþ y2ðu2 �U2Þ�; (22)

where prime means derivative on �. It gives the relations

y1 ¼ i�y00
�þ �=�ð0Þ ;

y2 ¼ � �2

�þ �=�ð0Þ
�

y00
�þ �=�ð0Þ

�0
;

(23)

and the differential equation for y0:

�y0 ¼ �2

�þ �=�ð0Þ
�
y00�� �U2

�ð0Þ
�

y00
�þ �=�ð0Þ

�0�
: (24)

Using Eqs. (20) and (22), one can represent y0 in terms of
�Y. With the same accuracy as before, the relation is

y0 ’ �Y þ �2U2

�þ �=�ð0Þ
� �Y0

�þ �=�ð0Þ
�0
: (25)

Finally, it gives the following equation for the function
�Yð�Þ:

U2 �Y00 �
�
�þ U2�0=�ð0Þ

�þ �=�ð0Þ
�
�Y0 þ �½�þ �=�ð0Þ�

�2
�Y ¼ 0:

(26)

Because the equation has solutions at any �, additional
conditions are required to select the satisfying basic
Eq. (10). First of all, it is the rigid mode � ¼ 0, �Y ¼ 1.
All other modes should satisfy orthogonality condition
(15) which is sufficient to sort all even functions �Yð�Þ.
For odd ones, multiply Eq. (10) by F� and integrate it over
d�du. Then, applying Eqs. (19), (23), and (25) with ac-
cepted accuracy, one can get the required condition:

Z
�Yð�Þ�ð�Þ�d� ’ �2

�

Z U2ð�Þ �Y0ð�Þ�ð�Þd�
�þ �ð�Þ=�ð0Þ : (27)

A. Boxcar model

Boxcar bunch model (17) is considered in this subsec-
tion again. Their characteristic functions are

�ð�Þ ¼ 1; U2ð�Þ ¼ 1� �2

2
at j�j< 1: (28)

Therefore Eq. (26) transforms to the Legendre equation:

ð1� �2Þ �Y00 � 2� �Y0 þ 2�ð�þ 1Þ
�2

�Y ¼ 0: (29)

Legendre polynomials (18) are the solutions satisfying
conditions (15) and (27), and the dispersion equation for
corresponding e.v. is

2�ð�þ 1Þ
�2

¼ nðnþ 1Þ; at �Yð�Þ ¼ Pnð�Þ: (30)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
µ = Ωs/(Ω0∆Q)

−6

−4

−2

0

2

4

6
ν 

=
 (

ω
−Ω

0Q
0)

/(
Ω

0∆
Q

)
n=0
n=2
n=4
n=1
n=3
n=5

FIG. 1. (Color) Exact eigenvalues of the boxcar bunch.
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Taking into account the basic assumptions of this section,
we must use only the eigenvalues:

� ¼ 1

2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2nðnþ 1Þ

q
� 1� ’ �2nðnþ 1Þ

2
: (31)

Note that they satisfy the equation of Sec. III with a
precision at least of �2 at any n, and exactly at n ¼ 1.

B. Parabolic and ‘‘superparabolic’’ models

The more realistic parabolic bunch has the character-
istics

F ¼ 2

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
; � ¼ 1� �2; U2 ¼ 1� �2

4
:

(32)

Some of its e.f. and corresponding e.v. are plotted in Figs. 2
and 3 (the range 0 � � � 1 is shown here and further
because all the e.f. are even or odd functions of �). It is
seen that these e.v. do not significantly differ from the
boxcar ones as it is described by Eq. (31). However, it is
important to emphasize that e.f. depend on parameter �
now, and there is a growth of these functions at the bunch
tails if the parameter is greater.
Distribution function (32) has an infinite derivative on

the boundary. This circumstance could qualitatively effect
on the bunch behavior. Therefore, we consider a smoother
‘‘superparabolic’’ distribution:

0.0 0.2 0.4 0.6 0.8 1.0
µ = Ωs/(Ω0∆Q)

0.0

1.0

2.0

3.0

ν/
µ 

= 
(ω

−Ω
0Q

0)
/Ω

s

0
1
2
3
4
5

FIG. 3. (Color) Normalized eigenvalues of the parabolic bunch.

0.0 0.2 0.4 0.6 0.8 1.0
θ

−4

−3

−2

−1

0

1

2

3

4
Y

Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5

FIG. 2. (Color) Eigenfunctions of the parabolic bunch vs azi-
muth. Solid lines: � ¼ 0:05; dashed ones: � ¼ 1.

0.0 0.2 0.4 0.6 0.8 1.0
µ = Ωs/(Ω0∆Q)

0.0

1.0

2.0

3.0

ν/
µ 

= 
(ω

−Ω
0Q

0)
/Ω

s

0
1
2
3
4
5

FIG. 5. (Color) Normalized eigenvalues of the ‘‘superparabolic’’
bunch.

0.0 0.2 0.4 0.6 0.8 1.0
θ

−1.0

−0.5

0.0

0.5

1.0

ρY

0
1
2
3
4
5

FIG. 4. (Color) Eigenfunctions of the ‘‘superparabolic’’ bunch.
Solid lines: � ¼ 0:05; dashed ones: � ¼ 1.
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F ¼ 8

3	
ð1� A2Þ3=2; � ¼ ð1� �2Þ2;

U2 ¼ 1� �2

6
:

(33)

The results are presented in Figs. 4 and 5. In this case, all of
the e.f. �Yð�Þ other than the rigid mode demonstrate very
fast growth in the bunch tails, especially at large �.
Therefore the functions D ¼ � �Y are plotted in Fig. 4 in-
stead of �Yð�Þ (including the rigid mode).

C. Gaussian bunch

Because Gaussian distribution is always truncated in
reality, we will consider the distribution function which

provides a bounded bunch with smooth tails:

F / exp

�
1� A2

2
2

�
� 1 at A < 1: (34)

Other characteristics of the bunch are

�ð�Þ ¼ 


ffiffiffiffi
	

2

r
exp

�
1� �2

2
2

�
erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p



ffiffiffi
2

p
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
;

(35)

and

U2ð�Þ ¼ 
2 � ð1� �2Þ3=2
3�ð�Þ : (36)

0.0 0.2 0.4 0.6 0.8 1.0
θ

−4.0

−2.0

0.0

2.0

4.0
Y

0
1
2
3
4
5

FIG. 6. (Color) Eigenfunctions of the Gaussian bunch at 
 ¼
1=3 and low �. Solid lines: � ¼ 0:01; dashed ones: � ¼ 0:2.

0.0 0.1 0.1 0.2 0.2

µ = Ωs/(Ω0∆Q)

0.5

1.0

1.5

2ν
/[µ

2 n(
n+

1)
]

0
1
2
3
4
5

FIG. 7. (Color) Eigenvalues of the Gaussian bunch at 
 ¼ 1=3,
low �.

0.0 0.2 0.4 0.6 0.8 1.0
θ

−1.0

−0.5

0.0

0.5

1.0

ρY

0
1
2
3
4
5

FIG. 8. (Color) Eigenfunctions of the Gaussian bunch at higher
�. Solid lines: � ¼ 0:05; dashed ones: � ¼ 1.

0.0 0.2 0.4 0.6 0.8 1.0

µ = Ωs/(Ω0∆Q)

0.0

0.5

1.0

1.5

2.0

2.5

ν/
µ 

= 
(ω

−Ω
0Q

0)
/Ω

s

FIG. 9. (Color) Eigenvalues of the Gaussian bunch at 
 ¼ 1=3,
higher �.
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Results of calculations are presented in Figs. 6–9 at 
 ¼
1=3. It is seen that all of the eigenfunctions tend to constant
on the bunch tails at� ¼ 0:01. However, they grow rapidly
at � ¼ 0:2, and very rapidly at larger �. To mitigate the
plots, density of the dipole momentD ¼ � �Y is presented in
Fig. 8 instead of �Y.

D. Low � summary

It is shown in this section that, at � & 0:1, all observed
e.f. are regular functions of their arguments, and e.v. are
not too different from those of the boxcar model. However,
transverse deviation heavily increases in the bunch tails at
larger �, and the possibility must not be ruled out that a
singularity appears at �	 1 (numerical accuracy does not
allow one to make such a definite conclusion, because
observed growth of the functions is always restricted in
the calculations). As it is indicated in the end of Sec. II,
similar behavior could be a sign of Landau damping.

However, it is necessary to remember that the assump-
tion � � 1 lies in the heart of this section, so that the
extrapolation to �	 1 is not quite legitimate and must be
treated as a hypothesis only. Therefore, for additional
confirmation, the opposite limit � � 1 is explored in the
following section. Though this instance was investigated in
my earlier paper [4], additional information is presented
here with a final goal to develop a more complete picture—
at least qualitatively.

V. HIGH SYNCHROTRON FREQUENCY
APPROACH

Because beam deviation Y is a periodical function of
synchrotron phase, it can be presented in the form

Y ¼ X
n

YnðAÞ expðin�Þ: (37)

Let us substitute it in Eq. (10), multiply the equation by
expð�im�Þ, and integrate over � using relations (16). It
results in a series of coupled integral equations:

ð��m�ÞYmðAÞ ¼ �X
m0
Rm�m0 ðAÞYm0 ðAÞ

þX
m0

Z 1

0
Km;m0 ðA; A0ÞYm0 ðA0ÞdA0

(38)

with coefficients

Rm�m0 ðAÞ ¼ 1

	�0

Z A

�A

Tm�m0 ð�=AÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � �2

p �ð�Þd�; (39)

Km;m0 ðA; A0Þ ¼ 2FðA0ÞA0

	�0

Z a

�a

Tmð�=AÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � �2

p Tm0 ð�=A0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A02 � �2

p d�;

(40)

where TmðxÞ ¼ cosðm arccosxÞ are Chebyshev polyno-
mials, and a ¼ minðA; A0Þ. If � � 1, coupling of the
multipoles can be neglected, and the series is reduced to
a set of independent equations:

�m;jYm;jðAÞ ¼
Z 1

0
½Km;mðA; A0Þ � R0ðAÞ�ðA0 � AÞ�

� Ym;jðA0ÞdA0; (41)

where �m;j ¼ ��m� are treated as eigenvalues, and j ¼
1; 2; . . . are the eigenmode numbers. Solutions of these
equations are known as radial modes [3]. One can see
again that the rigid mode Y0;1ðAÞ ¼ 1, �0;1 ¼ 0 is an exact
solution of Eq. (41) independently on the distribution
function. Other modes will be examined numerically using
the following method.

Replacement Z ¼ Y
ffiffiffiffiffiffiffi
FA

p
and shift �0 ¼ �þ 2 are ap-

plied to get an equation with symmetric positive definite
kernel. The next step is a change of the integral by a sum to
get a series of linear equations with symmetric square
matrix (typically 100� 100, sometimes 500� 500). The
fast iteration method is applied to find maximal e.v. �0 and
corresponding e.f. After the matrix reduction, the process
has to be repeated for the next e.v., etc.

A. Boxcar model

Several e.v. and e.f. of the boxcar bunch (17) are pre-
sented in Table I and Fig. 10. They can be found also by
using exact solutions of Sec. III. Corresponding values are
given in Table I as rational fractions in round brackets, and
orders of used Legendre polynomials are placed in square
brackets. It is seen that, at any m, successive solutions
(radial modes) are caused by the polynomials of order n ¼
jmj, jmj þ 2, etc. At m ¼ 0, radial modes obtained by
Fourier expansion of the exact solutions are

Y0;1 ¼ 1; Y0;2 ¼ 1� 3A2

2
;

Y0;3 ¼ 1� 5A2 þ 35A4

8
; . . .

TABLE I. Eigenvalues of the boxcar bunch.

m j ¼ 1 j ¼ 2 j ¼ 3

0 �0:01 (0) [0] �0:75 (� 3=4) [2] �0:86 (� 55=64) [4]
1 �0:51 (� 1=2) [1] �0:81 (� 13=16) [3] �0:88 (� 113=128) [5]
2 �0:63 (� 5=8) [2] �0:84 (� 27=32) [4] �0:90 (� 919=1024) [6]
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being in a good agreement with numerical results pre-
sented in Fig. 10. The same is true for higher modes.

B. Parabolic model

In contrast with the boxcar, the space charge tune shift of
the parabolic model (32) depends on particle position,
bringing an additional tune spread which is a key point
of Landau damping. As mentioned above, the damping
should appear as a singularity of corresponding eigenfunc-
tions at the eigenvalues fallen to the incoherent range.

The numerical solution of Eq. (41) has demonstrated
that only the lowest radial modes have no singularities at

m ¼ 0, 1, and 2 (other multipoles were not examined).
Eigenvalues of these modes are

�0;1 ¼ 0; �1;1 ¼ �0:422; �2;1 ¼ �0:482:

All other investigated modes form a continuous spectrum
at �1<�m;j <�0:5. Because all related eigenfunctions

are singular, continuous combinations are presented in
Fig. 11:

~Y m;jðAÞ ¼ ½�m;j þ R0ðAÞ�Ym;jðAÞ; R0 ¼ 1� A2

2
(42)

including regular (unstable) lowest modes. Note that stable
functions which were singular originally have a break of
derivative in this format.
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FIG. 11. (Color) Modified e.f. of the parabolic bunch vs nor-
malized synchrotron amplitude (three radial modes for each
multipole).
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FIG. 12. (Color) Modified eigenvalues of the ‘‘superparabolic’’
bunch.
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FIG. 10. (Color) Eigenfunctions of the boxcar bunch vs normal-
ized synchrotron amplitude (uncoupled multipoles approach).
Three radial modes are presented for each multipole.
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FIG. 13. (Color) Modified e.f. of the Gaussian bunch.
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C. ‘‘Superparabolic’’ and Gaussian bunches

In contrast with previous examples, the ‘‘superpara-
bolic’’ bunch (33) has no derivative abruption on the
boundary. Probably because of this the rigid mode (0, 1)
is the only regular solution of Eq. (41), whereas all other
modes have the singularity and form a continuous spec-
trum at �1 � � � �3=8. Some of the modes are pre-
sented in Fig. 12 in the format like (42).

A very similar picture appears at the Gaussian distribu-
tion described by Eqs. (34)–(36). Once again, the rigid
mode is the only regular (potentially unstable) solution.
Some other e.f. are plotted in Fig. 13 at 
 ¼ 1=3 when the
continuous spectrum is located at �1 � � � �0:274.

D. High � summary

Considered examples demonstrate that, at � � 1 and
any realistic distribution, the coherent spectrum includes
several distinct frequencies and continuum. The distinct
eigenmodes are regular functions of their arguments and
should be treated as potentially unstable. Any e.f. in the
continuum have a singularity and are prone to Landau
damping. The number of the distinct (unstable) modes is
less at smoother distribution, and the rigid mode is the only
one that can be unstable in a long-tail distribution like
Gaussian.

A formal interrelation of Landau damping and e.f. sin-
gularity has been commented on at the end of Sec. II. Now,
it is pertinent to add a physical explanation of the
phenomenon.

Two space charge produced effects are important for a
bunched beam: (i) shifts of coherent eigenmodes from bare
betatron tune, (ii) incoherent tune spread depending on the
particle position. Landau damping appears when the sec-
ond effect dominates, and coherent frequency falls into an
incoherent distribution. Then the electromagnetic wave
linked to the coherent motion strongly excites about-
resonant particles creating a singularity and suffering en-
ergy loss. It is important that the particles are excited not in
phase, so that their forced oscillations are incoherent and
do not support the coherent motion which is damping in the
end.

It is clear that the result depends on the bunch shape. For
example, the damping is completely absent in the boxcar
bunch because all of its particles have the same tune and
are excited in phase, supporting coherent motion. But the
damping is very important for realistic long-tail distribu-
tions, because their tune spread is rather large to overcome
the coherent tune shift. That is the reason why the only
rigid mode can be unstable in the Gaussian bunch.

VI. COMPARISON AND COUPLING OF THE
MODELS

The foregoing results were obtained at very extreme
assumptions: either � � 1 or � � 1 (below:

low/high-� approximations). Correlation of these data is
the subject of this section which pursues the goal to fill the
gap between mentioned areas and to develop a reasonable
picture at �	 1 (say, 0:5<�< 1:5). There is good basis
to think that the instability thresholds are located just in
this region, and an attempt to estimate them seems very
reasonable.
The overall picture is shown in Fig. 14 for the boxcar

model. Exact solutions are known in this case, and two of
them are presented in the figure by black lines.
Corresponding e.f. are Legendre polynomials of 1st and
2nd power, and e.v. starting from the point � ¼ � ¼ 0 are
plotted (trivial rigid mode is not discussed). Red lines
present lower modes of Eq. (29) which formally refer to
the case � � 1. However, it is seen that the approximate
solution actually coincides with the exact one at n ¼ 1 and
any� [this fact has been explained after Eq. (31)], whereas
good agreement is observed at n ¼ 2 and � & 0:8. The
blue lines in Fig. 14 are e.v. of dipole and quadrupole
modes m ¼ 1 and 2 [see Eq. (41)]. Again, there is very
good agreement with exact solutions at � * 0:8, though
formally Eq. (41) is valid only at � � 1. Hence, both
considered models provide a satisfactory precision in the
region of interest to us, though low-� approximation
works better at � & 0:8, and high-� approximation—at
� * 0:8.
Similarly, numerical results are presented in Fig. 15 for

the parabolic model (32) using both approximations. It is
seen that relative positions of red and blue lines are about
the same here as in Fig. 14. Because exact solutions are
unknown now, maximal incoherent betatron frequencies
averaged on synchrotron phases are used instead.
Modulation by synchrotron frequency is taken into account
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FIG. 14. (Color) Eigenvalues of the boxcar bunch. Low �
approximation perfectly coincides with an exact solution at
n ¼ 1.
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as well, so equations of the corresponding black lines are

� ¼ �0:5þm�:

For each multipole, all incoherent frequencies are located
below the corresponding line. Therefore, any eigenmode is
stable (prone to Landau damping) if its e.v. are located
below the line as well. According to high-� approxima-
tion, both modes shown in Fig. 15 by blue circles are
unstable. In contrast to this, the low-� approximation
predicts stability of the 2nd mode at �> 0:5 (red circles).
However, this part of the curve must be ignored because the
low-� approach certainly is not applicable at more �. It
allows one to establish the boundary between low-� and

high-� approximations as � ’ 0:5—a result which is not
very distinctive from the boxcar case.
Eigenvalues of superparabolic and truncated Gaussian

bunches (33) and (34) are summarized in Figs. 16 and 17.
High-� approximation predicts that all their modes, except
the rigid ones, are stable forming continuous spectra in the
ranges

� <�0:375þm� or � <�0:274þm�:

Blue lines in the figures present highest e.v. of the spectra
coinciding with incoherent boundaries. The low-� ap-
proximation shown by the red lines asserts that these
modes may be unstable at � � 1. However, they demon-
strate relatively fast growth on the bunch tails at � * 0:1,
and very fast (possibly infinite) growth at � * 0:5 (see
Figs. 4 and 6). Because similar behavior is a sign of Landau
damping, one can estimate the instability thresholds as it is
presented in Table II.

VII. CONCLUSION

Transverse eigenmodes of a bunched beam are explored
in this article at space charge dominated beam coupling
impedance, that is at relatively slight wakefield.
Synchrotron oscillations are taken into account, and any
relation of synchrotron frequency to space charge tune shift
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FIG. 17. (Color) The same as in Fig. 16 for the Gaussian bunch
truncated on the 3
 level.
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FIG. 16. (Color) Low-� eigenvalues and incoherent boundaries
of the ‘‘superparabolic’’ bunch. The continuous high-� spectrum
lies below the blue lines.

TABLE II. Estimated instability thresholds.

m ¼ 1 m ¼ 2a

S-parabolic � ’ 1:5 � ’ 0:4
Gaussian � ’ 0:6 � ’ 0:2

aThe higher modes are all the more stable.
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FIG. 15. (Color) Approximate eigenvalues and incoherent
boundary of the parabolic bunch.
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is studied. The general equation for the eigenmodes of the
bunch is derived, and its solutions are investigated in detail
at linear synchrotron oscillations.

The main conclusion is that tune spread, produced by the
space charge, brings a powerful Landau damping which
suppresses most of the transverse modes. Without the
wakefield, it formally appears as a continuum of singular
eigenfunctions with real eigenfrequencies located inside
the incoherent tunes range.

The rigid mode is the only solution which is never prone
to this kind of damping. It does not depend on synchrotron
oscillations at all, and in the simplest case (no effective
chromaticity) manifests itself as transverse oscillations of
the bunch as a whole—without bend or rotation. A travel-
ing wave of transverse displacement is added at nonzero
chromaticity.

Other modes are suppressed fully if synchrotron fre-
quency exceeds space charge tune shift, and longitudinal
distribution function has no abrupt boundaries. If the syn-
chrotron frequency is lower, several modes other than the
rigid one can overcome Landau damping being potentially
unstable. A distinguishing characteristic of similar modes
is a minor global dipole moment (zero without the
chromaticity), and therefore a relatively weak expected
long-term wakefield. In particular, the dipole mode of a
truncated Gaussian bunch may be unstable at �s &
0:6�0�Qð0Þ, quadrupole one—at �s & 0:2�0�Qð0Þ,
and the higher modes are more stable.

A great impact of dominated space charge impedance on
instability threshold is commonly known for coasting
beams, when the instability becomes possible if the space
charge tune shift exceeds the tune spread. Real impedance
is directly responsible for the instability and determines its
growth rate, but it only slightly affects the threshold. A
distinctive property of bunched beams is that the space
charge not only brings coherent tune shift, but also creates
incoherent tune spread because of variable bunch density.

When this takes place, Landau damping depends on the
bunch shape being negligible in the boxcar bunch and
suppressing almost all modes in smooth bunches like
Gaussian.
Potentially unstable eigenfunctions can be used in the

next steps for calculation of a wakefield which produces
small additions to the eigenfrequencies, including the
imaginary part, that is the instability growth rate. Global
beam structure is essential at these calculations, determin-
ing characteristics of the collective modes. A detailed
investigation of the collective motion based on the rigid
mode oscillations is presented in Ref. [10]. In particular, it
is shown that the growth rate of resistive wall instability
could reach 3000= sec in the Fermilab Recycler in frames
of Project X, and 27 MHz damper or chromaticity of about
�7 could be required to suppress it. Without a doubt, other
potentially unstable modes are not so dangerous because of
a relatively low integral dipole moment of any bunch;
however, these investigations are beyond the scope of the
presented work.
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