
Gravitational instability of a nonrotating galaxy

Alexander W. Chao

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA
(Received 9 June 2009; published 7 October 2009)

Gravitational instability of the distribution of stars in a galaxy is a well-known phenomenon in

astrophysics. This report is an attempt to analyze this phenomenon by applying standard tools developed

in accelerator physics. It is found that a nonrotating galaxy would become unstable if its size exceeds a

certain limit that depends on its mass density and its temperature.
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I. INTRODUCTION

There are some notable examples in the past when
developments in astrophysics are later found to be pro-
foundly connected to important topics in accelerator phys-
ics. It turns out that two of the major topics in the 20th/
21st-century accelerator physics—nonlinear dynamics and
collective effects—each has its origin traced back to the
19th-century astrophysics.

On the topic of nonlinear dynamics, Henri Poincaré
(1854–1912) was believed to be the first who noted the
behavior of nonlinear dynamical chaos. In 1887, he entered
a contest sponsored by the king of Sweden and Norway,
and the problem was to prove that the solar system, as a
three-body system, was dynamically stable. He did not
succeed in proving it, but his work won the prize anyway.
Poincaré was also the person who introduced the concept
of Poincaré section, which accelerator physicists use every
day as they try to describe single-particle motion turn after
turn in synchrotrons and storage rings. Indeed, what a
beam position monitor detects in these circular accelera-
tors is a special case of Poincaré section. Dynamic aperture
and chaotic motion are also typically observed as Poincaré
sections—this time on a computer printout instead of an
oscilloscope screen connected to a beam position moni-
tor—and have become daily language of nonlinear dyna-
mists in accelerator physics.

On the topic of collective effects, one notable preview
from astrophysics was the impressive work by James Clerk
Maxwell (1831–1879). In 1857, Maxwell also won a
prize—the Adams Prize—when he proved analytically
that the Saturn rings cannot be stable unless they consist
of many small satellites instead of a single solid piece [1].
Today, we call this Maxwell’s mechanism ‘‘negative mass
instability’’ in accelerator physics. For accelerators, this
Saturn ring instability shows up, for example, in the analy-
sis of the space charge instability.

Following these ground-breaking pioneers, one might
ask if today, after years of evolution, there might be some
studies that the accelerator physicists have developed, and
that can be applied to astrophysics in reciprocation. One
such attempt is ventured here. We will try to apply modern

accelerator techniques to the well-known problem of a
gravitational instability of a galaxy.
The question being asked is: Is a galaxy stable under its

own gravitational self-forces? We shall approach this ques-
tion by the following considerations:

Accelerator physics Astrophysics

Collective instability Gravitational instability

Consider a collection

of charged particles

in a beam

Consider a collection

of stars in a galaxy

Force between

particles is

electromagnetic

Force between stars

is gravitation

A beam becomes

unstable when its

charge is too high

A galaxy becomes unstable

when its mass is too large

What we will therefore do is to replace beam by galaxy,
replace particles by stars, and replace electromagnetic
wakefields by gravity.
Gravitational instability of the distribution of stars in a

galaxy is a well-known phenomenon; its first analysis
appeared almost a century ago under the title of Jeans
instability [2]. We can also try to analyze this phenomenon
using some of the standard tools developed in accelerator
physics [3]. By applying this analysis, it is rederived that a
nonrotating galaxy would become unstable if its size ex-
ceeds a certain limit that depends on its mass density and
its temperature.
Consider a distribution of stars in a galaxy described by

a mass-density distribution �ð ~x; ~v; tÞ in the phase space
ð ~x; ~vÞ at time t. We wish to analyze the stability of this
distribution of stars under the influence of their collective
gravitational force. To simplify the problem, we will use a
flat Euclidean space-time and will consider Newtonian,
nonrelativistic dynamics only. In other words, we ignore
both the special theory and the general theory of relativity.
The analysis thus does not assume a specific cosmological
model other than Newtonian gravity—for example, our
calculation does not take into consideration that the uni-
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verse is expanding. If this approach turns out to be fruitful,
a large arsenal of analysis tools can be transported from
accelerator physics to this and other problems in
astrophysics.

The instability we are interested in is self-generated, i.e.,
it occurs spontaneously. In particular, it does not require an
initial ‘‘seed’’ fluctuation at the birth of the galaxy. The
instability growth pattern as well as its rate of growth are
intrinsic properties of the system.

II. DISPERSION RELATION

Consider a particular star in the galaxy. The equations of
motion of this star are

_~x ¼ ~v _~v ¼ G
Z

d ~v0 Z d~x0�ð ~x0; ~v0; tÞ ~x0 � ~x

j ~x0 � ~xj3 ; (1)

where G is the gravitational constant. Note that these
equations do not depend on the mass of the star under
consideration. Whether we are considering a star or a dust
particle in the galaxy does not matter.

Following standard treatment in accelerator physics,
evolution of � is described by the Vlasov equation [4],

@�

@t
þ @�

@~x
� _~xþ @�

@ ~v
� _~v

¼ @�

@t
þ @�

@~x
� ~vþ @�

@ ~v
� G

Z
d ~v0 Z d~x0�ð ~x0; ~v0; tÞ ~x0 � ~x

j ~x0 � ~xj3
¼ 0: (2)

Equation (2) is a nonlinear, partial differential, integral
equation for �. It is nonlinear because the third term is
quadratic in �. Our job is to solve for �.

To examine the stability of the system, let the galaxy
distribution be given by an unperturbed distribution �0 plus
some small perturbation. Let the unperturbed distribution
�0 depend only on ~v,

�0 ¼ �0ð ~vÞ: (3)

In particular, �0 does not depend on ~x or t. This unper-
turbed distribution is uniform in ~x, i.e., it is uniform in the
infinite 3D space. The function �0ð ~vÞ is so far unrestricted.
This model is the 3D analogue of the 1D ‘‘coasting beam’’
or ‘‘unbunched beam’’ in accelerator physics.

Our approach to analyze the problem is based on the
following scheme. We will allow the small perturbation
around �0 to depend on t and ~x, although the unperturbed
distribution �0 has been assumed to be independent of t
and ~x. We consider a situation when the galaxy distribution
contains a slight but otherwise arbitrary deviation from �0

at some initial moment of time. There are of course an
infinite number of possible initial deviations, but for any
one initial deviation, we want to know how it evolves with
time. For the galaxy to be stable, the deviation must not
grow in time for all possible initial deviations. If the
deviation grows in time for any initial deviation, even if

one finds only one such example, then the galaxy is con-
sidered to be unstable.
We refer to the deviation from �0 as a perturbation to

galaxy distribution. To analyze the problem, we Fourier
decompose the perturbation and write

�ð ~x; ~v; tÞ ¼ �0ð ~vÞ þ ��ð ~vÞe�i!tþi ~k� ~x; (4)

where ~k is the wave number vector and ! is the angular

oscillation frequency of the perturbation; ~k characterizes
the spatial behavior of the perturbation while ! describes

its time behavior. We anticipate that for a given ~k, there will
be a specific oscillation frequency ! [5].
An examination of the proposed analysis scheme then

leads to the conclusion that we should consider ~k as a real
quantity because it describes the initial spatial distribution
of ��, while ! should in general be a complex quantity
because it must allow us to describe a perturbation growing
exponentially in time. With the time dependence of the
perturbation given by �e�i!t as prescribed in Eq. (4), we
see that the imaginary part of ! is the instability growth
rate [growth rate if Imð!Þ> 0, damping rate if Imð!Þ<
0]. Our job is then to find the complex!ð ~kÞ as a function of
an arbitrary real ~k. If we find for any ~k that its correspond-

ing Im½!ð ~kÞ� is positive, the galaxy is unstable.
Substituting Eq. (4) into Eq. (2) and keeping only first

order in �� (linearize with respect to ��) yields

�ið!� ~v � ~kÞ��ð ~vÞþG

�Z
d ~v0��ð ~v0Þ

�
@�0ð ~vÞ
@ ~v

� ~qð ~kÞ ¼ 0;

(5)

where the field generated by �0 has been neglected assum-
ing it vanishes due to the perfect uniformity in its spatial
distribution, and

~qð ~kÞ �
Z

d~x0
ei

~k�ð ~x0� ~xÞð ~x0 � ~xÞ
j ~x0 � ~xj3 ¼

Z
d~y

ei
~k� ~y ~y
j ~yj3 (6)

is a well-defined quantity depending only on ~k; it is the
Fourier transform of the Newton kernel ~x=j ~xj3, and might
be called the ‘‘graviton propagator’’ following a terminol-
ogy in quantum field theory. In fact, aside from the singu-

larity at the origin ~k ¼ ~0, it can be shown that

~qð ~kÞ ¼ 4�i

j ~kj2
~k: (7)

In accelerator physics, the Newton kernel ~x=j ~xj3 stands for
the ‘‘wake function’’ while its Fourier transform ~q stands
for the ‘‘impedance’’ [3].
Equation (5) can be rewritten as

��ð ~vÞ ¼ �iG

�Z
d ~v0��ð ~v0Þ

� @�0ð ~vÞ
@ ~v � ~qð ~kÞ
!� ~v � ~k : (8)

Integrating both sides over ~v and canceling out the com-
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mon factor of
R
d ~v0��ð ~v0Þ then gives a dispersion relation

that must be satisfied by ! and ~k,

1 ¼ �iG
Z

d ~v
@�0ð ~vÞ
@ ~v � ~qð ~kÞ
!� ~v � ~k : (9)

Given �0ð ~vÞ, we solve this dispersion relation for ! as a

function of ~k. This solution is then used to find the most
unstable pattern of perturbation and its corresponding
growth rate, as will be described next.

III. UNIFORM ISOTROPIC GALAXY

We next consider an unperturbed distribution that de-
pends only on the magnitude of ~v, i.e., let

�0 ¼ �0ðj ~vj2Þ (10)

which gives

@�0

@ ~v
¼ 2 ~v�0

0ðj ~vj2Þ: (11)

This is the case of a uniform isotropic (uniform in ~x,
isotropic in ~v) galaxy. The normalization condition isZ 1

0
4�v2dv�0ðv2Þ

¼ �m ¼ mass density of stars per unit volume: (12)

Substituting Eqs. (7) and (11) into Eq. (9) then gives

1 ¼ 8�G

j ~kj2
Z

d ~v�0
0ðj ~vj2Þ

~v � ~k
!� ~v � ~k : (13)

Letting ~k ¼ ð0; 0; kÞ, and choosing coordinates so that
~v ¼ vðsin� cos�; sin� sin�; cos�Þ, Eq. (13) becomes, with
a change of variable u ¼ cos�,

1 ¼ 16�2G

k

Z 1

0
v3dv�0

0ðv2Þ
Z 1

�1
du

u

!� kvu
: (14)

One must refrain from performing the integration over u at
this time because that integral involves a singularity.
Proper treatment of the singularity follows the standard
technique used in accelerator physics (and plasma physics)
on Landau damping [6].

Landau damping is a general phenomenon that occurs in
several branches of physics. It has a specific interpretation
in accelerator physics, but its physical picture as well as its
mathematical manipulations are the same as in other fields.
To summarize, the treatment amounts to adding an infini-
tesimal positive imaginary part to!, i.e.! ! !þ i�. The
integral involving the singularity,

I ð!; kvÞ �
Z 1

�1
du

u

!� kvu
!

Z 1

�1
du

u

!þ i�� kvu
;

becomes an integration along the contour C1 as in Fig. 1(a)
where C1 is drawn in a complex plane of u and the
integration is along the real axis of u. The singularity, a

pole, is displaced above the real axis for the case when
kv > 0 as indicated.
Using complex variable analysis, we know we can de-

form the integration contour from C1 to C2, as shown in
Fig. 1(b). Around the singularity pole, the contour C2 traces
out a perfect, left-right symmetric, infinitesimally small,
semicircle.
We now can calculate the integral Ið!; kvÞ. It contains

two parts: part 1 from integration along the real axis of C2
and part 2 from the contribution of the semicircle. The
result is

Ið!; kvÞ ¼ P:V:
Z 1

�1
du

u

!� kvu
� i�!

k2v2
H

�
1�

��������!

kv

��������
�

¼ � 2

kv
� !

k2v2
ln

��������!� kv

!þ kv

��������
� i�!

k2v2
H

�
1�

��������!

kv

��������
�
; (15)

where P.V. means taking the principal value of the integral,
andHðxÞ ¼ 1 for x > 0 and 0 for x < 0 is the step function.
The P.V. term comes from part 1 of the integral while the
step function term comes from part 2. By taking P.V., the
singularity in the integral over u is avoided in a well-
behaved manner [7]. Equation (15) gives explicit calcu-
lated result of this P.V. term.
As to the step function term, we note that a full circle

around the pole gives a contribution of 2�i times the
residue of the pole; so this semicircle contributes just

FIG. 1. (Color) Integration contour dictated by Landau damping
analysis. The quantity � in (a) and the radius of the semicircle in
(b) are considered to be infinitesimal.

GRAVITATIONAL INSTABILITY OF A . . . Phys. Rev. ST Accel. Beams 12, 104201 (2009)

104201-3



half as much. Note that this contribution is imaginary, and
as a result, the quantity

R
1
�1 du

u
!�kvu is attributed an

imaginary part. Furthermore, this extra imaginary term
has a definitive sign (proportional to �i!). This particular
sign is such that this mechanism is Landau damping and
not Landau antidamping.

To be specific, we next take a uniform distribution of �0

(uniform in ~x, isotropic in ~v, and � is constant up to v0),

�0ðv2Þ ¼
� 3�m

4�v3
0

if v2 < v2
0

0 otherwise:
(16)

This distribution is very close (but not identical) to what is
called the ‘‘water-bag model’’ in accelerator physics. The
quantity v2

0 is related to the ‘‘temperature’’ of the galaxy—

as will be discussed more later. Substituting Eqs. (16) and
(15) into Eq. (14) gives the dispersion relation

� ¼ 1

2þ x lnj x�1
xþ1 j þ i�xHð1� jxjÞ ; (17)

where

� ¼ 6�G�m

k2v2
0

and x ¼ !

kv0

: (18)

In accelerator physics, � is replaced by the impedance. One
simplification for the gravitational instability is that � is a
real quantity, while the impedance is complex in general.

IV. STABILITY CONDITION

We next need to compute the instability growth rate,
which is given by the imaginary part of !, as a function of
k. The star distribution �0ð ~vÞ would be unstable if, for any
~k, its corresponding ! is complex with a positive imagi-
nary part. We need to compute x as a function of � using
Eq. (17) in order to obtain ! as a function of k.
Unfortunately Eq. (17) gives � as a function of x, and its
inversion to give x as a function of � is difficult. To deal
with this difficulty, we apply another technique of accel-
erator physics as follows.

In general x is complex, but at the edge of instability
when the system is barely unstable, x is real. The edge of
stability can therefore be seen by plotting the right-hand
side of Eq. (17) as x is scanned along the real axis from�1
to 1. Figure 2 shows the real and imaginary parts of the
right-hand side of Eq. (17) in such a scan. The horizontal
and vertical axes are the real and imaginary parts of the
right-hand side of Eq. (17), respectively. As x is scanned
from�1 to1, the right-hand side of Eq. (17) traces out a
cherry-shaped diagram—including the ‘‘stem’’ of the
cherry running from �1 to 0 along the real axis. This
cherry curve defines the boundary between stable and
unstable regions. If �, the left-hand side of Eq. (17), lies
inside this cherry diagram (including the stem), the galaxy
distribution is stable. If it lies outside, the galaxy is un-
stable. Since � is necessarily real and positive, the stability

condition therefore reads, very simply,

� < 1
2: (19)

One may ask what the corresponding result of Eq. (19) is
in accelerator physics. The answer is that it gives rise to a

condition that jZk
0=nj should be less than some threshold

value, where jZk
0=nj is related to the impedance. This

stability condition in accelerator physics is given the
name ‘‘Keil-Schnell criterion’’ [8].
Equation (19) indicates that a hot galaxy (high tempera-

ture, i.e., large v0) is more stable than a cold one. This is
expected due to the Landau damping mechanism. It also
indicates that the star distribution is unstable for long-
wavelength perturbations (small k). The threshold wave-
length is given by

xth ¼ 2�

kth
; (20)

where

kth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G�m

p
v0

: (21)

Perturbations with wavelengths longer than xth are un-
stable. One might expect that the galaxy will have a
dimension of the order of xth because, if the galaxy had a
larger dimension, it would have broken up due to the
instability until it is reduced to the stable size.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0.6

0.4

0.2

0.0

0.2

0.4

0.6

Re H x

Im
H

x

FIG. 2. (Color) Stability diagram for the galaxy distribution,
where HðxÞ is the right-hand side of Eq. (17).
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V. PRESSURE AND TEMPERATURE OF THE
GALAXY

It might be instructive to relate to an internal ‘‘pressure’’
of the galaxy distribution by pretending the galaxy is a free
gas bounded by some container, with the gas particles
bouncing off the container walls with perfect reflection.
It is easy to show that the pressure exerted onto the con-
tainer wall is given by

P ¼ 2

3
�mhv2i ¼ 8�

3

Z 1

0
v4dv�0ðv2Þ:

For the uniform distribution (16), it gives an internal
pressure of our galaxy,

P ¼ 2
5�mv

2
0:

We can also rewrite the galaxy’s stability condition (19)
in terms of its pressure. Stability then requires

ðgalaxy dimensionÞ � �m <

ffiffiffiffiffiffiffiffiffiffiffiffi
5�

6

P

G

s
: (22)

Pushing one step further, one might be tempted also to
relate to a temperature of the galaxy. To do this, however, it
is now necessary to define the mass of an individual star.
Let all stars have mass m, then the galaxy’s temperature is

T ¼ m

kB

P

�m

;

where kB is the Boltzmann constant.
Since a galaxy’s size is proportional to v0 [see Eqs. (20)

and (21)], it is then proportional to the square root of its
temperature for a given �m. Equivalently, the temperature
of a stable galaxy is proportional to the square of its size,

T / ðgalaxy sizeÞ2:

VI. INSTABILITY GROWTH RATE

When � > 1=2, ! will be complex. The instability
growth rate is determined by the imaginary part of !,

��1 ¼ Imð!Þ: (23)

We need to modify Eq. (17) slightly for complex !. In the
unstable region, let

!

kv0
¼ xþ iy; ðy > 0Þ: (24)

Equation (17) reads

1

�
¼ 2þ

�
xþ iy

2

�
ln

�ðx� 1Þ2 þ y2

ðxþ 1Þ2 þ y2

�
þ ðix� yÞ

�
�
tan�1

�
xþ 1

y

�
� tan�1

�
x� 1

y

��
: (25)

When y ! 0þ, we obtain Eq. (17) as it should.

Note that the right-hand side of Eq. (25) has the property
that its real part is an even function and its imaginary part is
an odd function of y. However, one should keep in mind
that our analysis applies only when y > 0. This is because
we have demanded ! to have a positive imaginary part
when we made the Landau criterion (15). In contrast, the
variable x runs from �1 to þ1.
We will need to solve Eq. (25) for x and y for given � >

1
2 . It turns out that in this range there is always one solution

with purely imaginary !, i.e. x ¼ 0, and therefore

� ¼ 1

2� 2ytan�1ð1yÞ
(26)

or, written out explicitly,

6�G�m

k2v2
0

¼ 1

2� 2��1

kv0
tan�1ðkv0

��1Þ
: (27)

We need to find ��1 as a function of k. To do so, we first
scale the variables by

u ¼ kv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�G�m

p ; v ¼ ��1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�G�m

p (28)

and then

1

u2
¼ 1

2� 2ðvuÞtan�1ðuvÞ
: (29)

Figure 3 shows the result of v versus u.
As seen from Fig. 3, the growth rate vanishes (v ¼ 0)

when u ¼ ffiffiffi
2

p
, corresponding to � ¼ 1=2, i.e., at the stabil-

ity boundary. This is of course expected. Figure 3 also
shows that instability occurs fastest for small u, i.e., small k

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

u

v

FIG. 3. (Color) v vs u according to Eq. (29).

GRAVITATIONAL INSTABILITY OF A . . . Phys. Rev. ST Accel. Beams 12, 104201 (2009)

104201-5



or large wavelength of the perturbation. The growth rate is

maximum at u ¼ 0 with v ¼ ffiffiffiffiffiffiffiffi
2=3

p
. This means the maxi-

mum growth rate occurs for perturbation of infinite wave-
length, and is given by

ð��1Þmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G�m

p
: (30)

Note that the growth rate is independent of v0, even
though that for instability, there is still the condition � >
1=2, which does depend on v0 and can be cast into the form
[see Eq. (21)]

k <

ffiffiffi
3

p
v0

ð��1Þmax: (31)

The result that fastest instability occurs for perturbations
of infinitely long wavelength (k ¼ 0) depends on our as-
sumption of Newtonian dynamics of action at a distance.
Under this assumption, perturbation at one location in-
stantly affects locations infinitely far away. If this assump-
tion is appropriately removed, it is expected that the
instability for perturbations with very large wavelengths
will be weakened if v0 approaches the speed of light c.

According to Eq. (31), stable galaxies must have a
dimension smaller than a critical value, i.e.

galaxy dimension <
2�v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G�m

p : (32)

Stability is provided through Landau damping. When the
temperature T ! 0, no galaxies can be stable. Equa-
tions (30) and (32) are our main results.
Figure 4 shows four traces; each is the locus of the

stability contour when x is scanned from �1 to 1 while
y is held fixed. The four traces correspond, starting with the
inner most one, to y ¼ 0:001, 0.01, 0.1, and 0.3. When y ¼
0, the trace reproduces Fig. 2.

VII. OTHER ISOTROPIC DISTRIBUTIONS

So far we have assumed a somewhat idealized water-bag
distribution (16) for the galaxy’s temperature. One can
improve it slightly by considering other distributions. For
a general isotropic distribution, it is a few simple algebraic
steps following Eq. (14) to derive the dispersion relation,

�¼ �3�m=ð8�v3
0ÞR1

0 vdv�0ðv2Þð2vv0
þx lnjxv0�v

xv0þv jÞþ i�x
R1
jxjv0

vdv�0ðv2Þ ;

(33)

where � and x are given by Eq. (18).
Four examples are given below:

Case 1

�ðv2Þ ¼ �mv0

�2ðv2 þ v2
0Þ2

) � ¼ 3=2
1�x2

ð1þx2Þ2 þ i 2x
ð1þx2Þ2

Case 2

�ðv2Þ ¼ 3�mv
2
0

4�ðv2 þ v2
0Þ5=2

) �

¼ 3=4
2�x2

2ð1þx2Þ2 � 3xsinh�1x
2ð1þx2Þ5=2 þ i 3�x

4ð1þx2Þ5=2

Case 3

�ðv2Þ ¼ 4�mv
3
0

�2ðv2 þ v2
0Þ3

) � ¼ 1=2
3�6x2�x4

3ð1þx2Þ3 þ i 8x
3ð1þx2Þ3

Case 4 �0ðv2Þ ¼ �m

4�
ffiffiffiffiffiffiffi
2�

p
v3
0

e�v2=2v2
0 ) � ¼ 3

ffiffiffiffiffiffiffi
2�

p
R1
0 ydye�ðy2=2Þð2yþ x lnj x�y

xþy jÞ þ i�x
R1
jxj ydye

�ðy2=2Þ :

Figure 5 shows the stability diagrams for the various cases. For the galaxy to be stable, the parameter �must be less than
3
2 ,

3
4 ,

1
2 , and 3, for cases 1, 2, 3, and 4, respectively, noting the fact that only the positive real values of � are meaningful.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Re H x,y

Im
H

x,
y

FIG. 4. (Color) Contours of constant growth rates, where Hðx; yÞ
is the right-hand side of Eq. (25).
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VIII. NUMERICAL ESTIMATES AND
DISCUSSIONS

For a numerical application, we take estimates from the
Milky Way [2,9],

�m ¼ 2� 10�23 g=cm3; v0 ¼ 200 km=s:

Using the result of the water-bag model, we obtain a
shortest growth time of 7� 106 years for perturbations
with very long wavelengths. For stability, the galaxy di-
mension must be smaller than 14 000 light-years, which
seems to be consistent with the size of the Milky Way.

It is conceivable that the same analysis can be applied to
the dynamics of galaxies in a galaxy cluster, instead of
stars in a galaxy. In that case, �ð ~x; ~v; tÞ describes the
distribution of galaxies in the galaxy cluster. We might
then take

�m ¼ 10�28 g=cm3; v0 ¼ 1000 km=s:

We obtain a growth time of 3� 109 years. The galaxy
cluster dimension should be smaller than 3� 107 light-
years. These values do not seem to be unreasonable.

For completeness, we give a few further discussions
below [10].

(i) The case studied so far is that of a galaxy initially
with infinite size. One direction to extend this study is to

consider finite-sized galaxies. In Appendix A, a 1D non-
rotating galaxy model has been implemented for this pur-
pose. In this model, each star is an infinite plane and is
allowed to move only in the z dimension. The galaxy’s z
dimension size is finite. An unperturbed distribution with
finite temperature to balance out the gravitational pull is
found first. The temperature turns out to be sufficient to
provide stability to the galaxy by the Landau damping
mechanism. A computer code was written to simulate the
motion of stars in this galaxy. The result is shown in Fig. 6.
(ii) We have also implemented a 2D rotating model in

Appendix B. In this model, each star is a line mass infi-
nitely long in the z dimension and free to move in the x and
y dimensions. This galaxy has a finite size in x and y
dimensions. An unperturbed distribution is found when
the rotating centrifugal force exactly balances the gravita-
tional pull. This rotation requires stars to have different
initial velocities. It turns out that the corresponding veloc-
ity spread is sufficient to stabilize the galaxy. A simulation
of this galaxy is shown in Fig. 7.
(iii) Application can be extended to two colliding gal-

axies, drawing analogy to the two stream instabilities in
accelerator physics. A small accidental ripple in the den-
sity distribution in one galaxy gets imprinted onto the
oncoming galaxy; the perturbation on the second galaxy
then enhances the initial ripple on the first galaxy by
gravitational interaction, leading to instability.

FIG. 6. (Color) Simulation result of a 1D nonrotating galaxy
model: (a) Initial phase space distribution of 500 stars; (b) final
distribution after 2000=2� periods; (c) plot of galaxy emittance

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðv=!0AÞ2 þ ðz=AÞ2�=2p
as a function of the step number

t=�t, showing no sign of instability.
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FIG. 5. (Color) (Upper) Stability diagrams for galaxy distribu-
tions are plotted in red, blue, and green for Cases 1, 2, and 3,
respectively. (Lower) Case 4: FunctionHðxÞ represents the right-
hand sides of the dispersion relations for the four cases.
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(iv) Still further extensions might take into account the
special relativity and general relativity to replace
Newtonian gravity. The special theory of relativity will
circumvent the action-at-a-distance problem. To include
general relativity, the space-time metrics will have to be
modified. By extending to this non-Euclidean space-time,
one may conceive a study of this gravitational instability
mechanism for particles near a large black hole.
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APPENDIX A: A 1D NONROTATING GALAXY
MODEL

In the text, we have discussed a 3D isotropic galaxy
model which initially has an infinite uniform extent. Here

we examine the stability of a 1D model which initially has
a finite size. In this 1D model, each star is really a thin
planar sheet of mass with infinite size in x and y dimen-
sions. Each sheet is free to move only in the z direction. Let
the mass distribution of these stars be given by �ðz; v; tÞ in
the ðz; vÞ phase space, where v is the velocity in the z
direction. The distribution is normalized by

Z 1

�1
dz

Z 1

�1
dv�ðz; v; tÞ

¼ � ¼ surface mass density of galaxy:

Equations of motion are given by

_z ¼ v

_v ¼ 2�G
Z 1

�1
dz0

Z 1

�1
dv0�ðz0; v0; tÞ sgnðz0 � zÞ:

The Vlasov equation then reads

@�ðz; v; tÞ
@t

þ v
@�ðz; v; tÞ

@z
þ 2�G

@�ðz; v; tÞ
@v

�
�Z 1

�1
dz0

Z 1

�1
dv0�ðz0; v0; tÞ sgnðz0 � zÞ

�
¼ 0:

We will first have to find an equilibrium distribution
�0ðz; vÞ that satisfies the unperturbed equation

v
@�0ðz; vÞ

@z
þ 2�G

@�0ðz; vÞ
@v

�
�Z 1

�1
dz0

Z 1

�1
dv0�0ðz0; v0Þ sgnðz0 � zÞ

�
¼ 0:

A set of solutions for �0ðz; vÞ can be found by identify-
ing the unperturbed Hamiltonian of the system [11],

H0ðz; vÞ ¼ v2

2
þ 2�G

Z 1

�1
dz0

Z 1

�1
dv0�0ðz0; v0Þjz0 � zj:

The unperturbed distribution then can be expressed as any
function of H0ðz; vÞ. Any reasonable function of H0ðz; vÞ
can be a possible choice for �0ðz; vÞ, but one then notes
that H0 also depends on �0, which means �0 and H0 must
be solved simultaneously and self-consistently.
In this 1D model, we shall first assume that the unper-

turbed distribution is given by the following ansatz form:

�0ðz; vÞ ¼
8<
:

1
2�

ffiffiffiffiffiffiffiffiffiffi
�

2�GA

q
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2�z2�ð A
2�G�

Þv2
p ; if z2 þ ð A

2�G�Þv2 <A2

0; if z2 þ ð A
2�G�Þv2 >A2:

(A1)
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FIG. 7. (Color) Simulation result of the 2D rotating galaxy:
(a) initial distribution of 500 stars in the x-y space; (b) final
distribution after 1000=2� periods; (c) plot of galaxy emittance

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð _x=!0AÞ2�=2þ ðx=AÞ2p
as a function of the step number

t=�t, showing no sign of instability.
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With this �0, it is easy to show that

H0ðz; vÞ ¼ v2

2
þ

�
�G�

A

�
ðA2 þ z2Þ

and therefore �0 is indeed a function of H0. The choice of
the ansatz distribution (A1) solves the self-consistency
problem.

It also follows that the galaxy in the z dimension has a
uniform distribution,

Z 1

�1
dv�0ðz; vÞ ¼

(
�
2A if jzj<A
0 if jzj>A:

The quantity A, which will remain a free parameter, is
therefore the size of the galaxy in this model. This uniform
distribution substantially simplifies the dynamics. In accel-
erator physics, this trick of finding a self-consistent and
uniform beam distribution is called a Kapchinskij-
Vladimirskij distribution [12].

Consider one star in this 1D galaxy: its equations of
motion in the background of the unperturbed galaxy are
given by

_z ¼ v _v ¼ � 2�G�

A
z:

This constitutes a simple harmonic oscillation with angular
frequency

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�G�

A

s
:

What this means is that all stars, if considered as single
particles, oscillate with the same frequency in the back-
ground of the equilibrium mass distribution of the galaxy.
But we still have to consider collective perturbations.

In the present effort, we do not continue with the ana-
lytic approach, and resort to a numerical simulation. We
first generate 500 stars according to the distribution (A1) in
the phase space ðz; vÞ. Evolution of these stars is then
tracked for a period of time with!0T ¼ 2000 in time steps
of !0�t ¼ 0:04. It is found that there is no instability
observed in this simulation. See Fig. 6. This 1D nonrotating
galaxy is always stable because the temperature introduced
in the initial distribution (A1) fulfills already the Landau
stability criterion.

APPENDIX B: A 2D ROTATING GALAXY MODEL

Consider now a 2D galaxy that has a uniform infinitely
long extension in z. All stars are now infinitely long strings,
and they move only in the transverse plane perpendicular
to the longitudinal z axis. Let the galaxy have a star
distribution �ðx; _x; y; _y; tÞ in the 4D transverse phase space
ðx; _x; y; _yÞ. Let the unperturbed beam have a cylindrically
symmetric, uniform distribution

Z
d _x

Z
d _y�0ðx; _x; y; _yÞ ¼

(
�m

�A2 ; if x2 þ y2 < A2

0; if x2 þ y2 > A2;

where A is the maximum transverse radial extent and �m is
the longitudinal linear mass density of the galaxy. Let the
unperturbed velocity distribution be given by a rotation
around the ẑ axis with a uniform angular velocity !0.
The gravitation force of this uniform cylindrical distri-

bution is given by

d2 ~r

dt2
¼ � 2G�m

A2
~r:

The centrifugal force of this rotation is balanced by the
gravitational attraction towards the center of the galaxy.
For this to happen, the galaxy must rotate with

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2G�m

A2

s
:

We have thus prepared a model of 2D rotating galaxy.
Strictly speaking, in this model, there is not a temperature
because the initial velocity of each star is determined by its
rotation around the galaxy axis and there are no statistical
thermal contributions. However, this rigid rotation of the
galaxy still introduces a spread of velocities of the stars,
and that velocity spread still introduces Landau damping
strong enough to stabilize the galaxy in this model.
Figure 7 shows the result of a simulation for the case of

500 rotating stars. A uniform initial distribution is gener-
ated and the stars are tracked for !0T ¼ 1000 or 1000=2�
rotation periods using a time step of !0�t ¼ 0:04. It can
be seen that this 2D rotating galaxy is always stable.
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