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We study longitudinal fields of coherent synchrotron radiation in a perfectly conducting rectangular

pipe. Our theory is based on the paraxial approximation of electromagnetic waves in the frequency

domain. The longitudinal impedance of coherent radiation is obtained. By considering the pole structure

of the impedance in a rectangular pipe, we have derived the analytical expression of the longitudinal field

in the time domain. According to the analysis, we show how the sidewalls of the vacuum chamber affect

the longitudinal field of coherent radiation. In addition, we discuss the limit of applicability of the paraxial

approximation.
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I. INTRODUCTION

In this paper we investigate the electromagnetic fields of
coherent synchrotron radiation in electron accelerators. In
high energy accelerators, when an electron bunch travels in
a dipole magnet, it is bent and emits synchrotron radiation
which has a wide frequency spectrum from the microwave
to the x-ray range [1]. The frequency components lower
than the inverse bunch length are coherently emitted and
can grow up to a huge intensity. Coherent synchrotron
radiation (CSR) is referred to this low frequency region
and has a typical wave number:

k� 1

�z

; (1)

where �z is the bunch length. In general, the wave number
of a wave, k, is a more fundamental quantity than its
wavelength. If a bunch has a longitudinal distribution
which is not smooth but has a density fluctuation, the
resulting inner structure of the bunch amounts to short
bunches. Thus, the CSR will have a spectrum around the
bunch spectrum which is the Fourier transform of the
longitudinal charge distribution. CSR is essentially a col-
lective effect of electrons contained in a bunch and con-
siderably differs from incoherent synchrotron radiation
which is a result of particles radiating independently
from each other.

In light sources or colliders, regardless of machine type,
short bunch lengths are sought to satisfy various contem-
porary requirements, e.g., short duration time in synchro-
tron light, high peak current in free electron lasers, high
luminosity in colliders, and so on. In addition, high current
is often simultaneously required for higher machine per-
formance. The demand for shorter bunch and higher inten-
sity beam may persist. However, CSR would nullify the
benefits of these future machines through its harmful ef-
fects on bunches. The longitudinal force induced by CSR
gives rise to energy changes, which results in an energy
spread of the bunch, a deterioration of transverse emit-

tance, microwave instabilities and other nuisances. In any
beam line having bending magnets, therefore, short
bunches are under the threat of CSR.
Corresponding to progress of accelerator performance,

CSR has become a serious concern in beam dynamics; a
number of theories on CSR have been developed including
numerical approaches. Let us introduce the past relevant
studies featuring mainly analytical work. Warnock and
Morton studied the radiation fields driven by a circulating
beam in a toroidal chamber [2]. They discussed the reso-
nance structure of the field and the resistive wall effects via
impedance analysis. When the radiation has a phase veloc-
ity equal to the speed of the particles in a toroidal chamber,
the field resonances occur due to the synchronous coupling
between the field and the particles. Since the electromag-
netic field of CSR is proportional to the bunch charge, the
radiated power of CSR is proportional to its square. This
property allows us to normalize the field by the bunch
current, CSR can be parametrized using geometrical quan-
tities of the accelerator: size of vacuum chamber, bending
radius, and length of magnets. This is the virtue of the
impedance representation. Ng dealt, around the same time,
with a similar problem, which was applied to the imped-
ance estimation for the superconducting super collider
booster rings and the Tevatron [3]. In the future proton
machines if the Lorentz factor is large and the bunch length
is short, proton bunches will also be affected by CSR.
Warnock pursued his study on the parallel plates imped-

ance. It was shown that frequency components below a
certain value are strongly suppressed by the metallic plates;
therefore the intensity is weak [4]. The criterion is called
the shielding threshold, and the wave number is given by

kth
�

¼
ffiffiffiffiffi
�

h3

r
; (2)

where � is the bending radius of the dipole magnet, and h is
the distance between the plates [several definitions of the
coefficients of Eq. (2) are found in the literature]. Equa-

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 094402 (2009)

1098-4402=09=12(9)=094402(27) 094402-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.12.094402


tion (2) involves the bending radius � and is different from
the so-called cutoff frequency in a straight waveguide.
Murphy et al. derived the CSR wakefield in the time
domain, which is shielded by infinite parallel plates repre-
sented by image charge fields [5]. This wakefield is steady
and has a periodic boundary condition along a circular
orbit as in the theory of Warnock-Morton and Ng. To
accelerators, the vacuum chamber not only creates a vac-
uum for the beam channel but also restrains CSR emission.
Therefore, an electron storage ring on service would not
work on the moon in the absence of a vacuum chamber
because of the huge amount of energy loss due to CSR.

After a bunch has traveled a distance from the entrance
of a magnet, the CSR stops growing and becomes sta-
tionary with respect to the bunch. Assuming an infinitely
long constant bending magnet in free space, Derbenev
et al. derived the longitudinal and transverse forces of
steady CSR [6,7]. The path length used as a criterion for
steady radiation is called the overtaking length (formation

length): s0 ¼ 2ð3�2�zÞ1=3. By considering geometry
around the magnet edge with a two particle model,
Saldin et al. derived the energy change due to transient
CSR in free space [8]. Beside the edge of the magnet, the
CSR field is transient if the charge distribution is changing
as in a bunch compressor. Mayes and Hoffstaetter have
developed a time domain method [9] which derives the
transient wakefield of CSR between perfectly conducting
parallel plates. Because of the time domain approach, one
can readily consider the dynamic change of the longitudi-
nal charge distribution. In the present paper we will exam-
ine the condition in which the parallel plates model can be
a good approximation for the beam pipe.

Stupakov and Kotelnikov introduced a paraxial approxi-
mation to CSR analysis, so that Maxwell equations are
fairly simplified in spite of curvilinear coordinates [10].
Considering steady field propagating in a perfectly con-
ducting curved waveguide, they investigated the synchro-
nous modes and the radiated power. It is noteworthy that
they gave a derivation of the well-known power spectrum
of synchrotron radiation [1] in the high frequency limit of
their formalism. Applying the paraxial approximation, a
numerical approach was developed for CSR analysis
[11,12], which uses a parabolic equation of Schrödinger
type. One can then obtain transient fields of CSR in a
resistive pipe. With the parabolic equation, one can calcu-
late the CSR field propagating in arbitrary combinations of
drift spaces of finite length and bending magnets. The
paraxial approximation was originally developed in optics
where the electromagnetic wave has a high directivity and
propagates nearly parallel to an optical axis. CSR is emit-

ted with a small opening angle whose typical spread is # �
ðk�Þ�1=3 in free space or# � �=kh between parallel plates
[5]. Therefore if �z � � in free space, or �z � h=�
between parallel plates, one can regard CSR as a paraxial
ray.

Generally speaking, by including numerical calcula-
tions, the time domain approaches can be adapted to a
case when the charge distribution is changing in a short
time due to the bunch compression or the self-induced
CSR. One can consider the effect also in the frequency
domain approach by decomposing the field into Green
functions; however, the time domain approach has advan-
tages in this respect. On the other hand, as CSR is an
electromagnetic wave, the frequency domain approach is
rather suitable to understand fundamental properties of
CSR. Besides that, it is easy to impose a resistive boundary
in the frequency domain. It is also possible in the time
domain to consider a resistive wall effect, because one can
simply add the CSR field in the perfectly conducting pipe
and the resistive wall wakefield which have been calcu-
lated separately [12]. Thus both the time domain and
frequency domain approaches have their own merits, as it
is stated also in [5]; they are always complementary. Other
than in the literature we introduced above, there are many
important works on CSR as well as incoherent radiation
not covered here [13]. It is true that classical electromag-
netic radiation has been studied over a century, but CSR
study is still a nascent field of research; the theory and
experiment including applications for light source are in
progress now, and their importance may increase in the
future.
This paper presents a theory of radiation based on the

paraxial approximation, in which the longitudinal field of
CSR is derived in the time domain, where we assume
steady fields radiated in an infinitely long rectangular
beam pipe. In Sec. II the field equation in the frequency
domain is introduced with our coordinates and chamber
model. Then we solve it analytically and obtain the electric
field of CSR in the frequency domain. Section III presents
the longitudinal impedance of CSR in a rectangular pipe,
we show that the impedance reduces to the pillbox cham-
ber and infinite parallel plates models in the appropriate
limits. In addition, it is shown that the paraxial approxi-
mation is actually applicable to CSR even in free space if
�z � �. We discuss also the shielding effect by a rectan-
gular pipe in Sec. III, where we examine validity of the
infinite parallel plates in the CSR analysis. In Sec. IV we
investigate the pole structure of the impedance in the
rectangular pipe, then in Sec. V we finally obtain the
time domain field which is compared with our grid simu-
lation [11]. In Sec. VI we discuss the application limit of
the paraxial approximation via conversion of the real im-
pedance from a rectangular pipe to parallel plates. We
summarize our work in Sec. VII.
Our formalism is similar to Warnock-Morton’s theory

[2]; in fact, our impedances as shown in Sec. III can also be
obtained as a limit of their expressions. We briefly intro-
duce their work and describe the connection to ours in
Appendix A, where the error by the paraxial approximation
is estimated. In Appendix B we describe the asymptotic
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expansion of the impedance in the low frequency limit,
which is needed in Sec. III to quantify the shielding effect
by a rectangular waveguide. The asymptotic expression in
the low frequency limit is also necessary to examine the
regularity of the impedance around the origin of the wave
number. In the analysis of the pole structure of CSR
impedance, we are faced with a multivalue problem on
the impedance variables. We write down the treatment for
the multivalued variables in Appendix C.

II. FIELDS IN THE FREQUENCY DOMAIN

A. Coordinates and assumptions

We employ a coordinate system ðx; y; z; sÞ that is often
used in accelerator physics. Assuming a reference orbit,
the independent variable s is defined by the length along
the reference orbit; x and y are, respectively, the horizontal
and the vertical coordinates perpendicular to s. z is a
longitudinal variable defined by

z ¼ s� �t; (3)

where � is the speed of the electrons. We assume a planar
orbit in the ðx; sÞ plane with a constant curvature radius �
as shown in Fig. 1. We use SI units and set the speed of
light to unity (c ¼ 1) for simplicity.

To develop our theory, we assume the following things.
(a) The dipole magnet is infinitely long; the reference

axis s has a constant curvature radius �.
(b) The beam pipe is perfectly conducting and has a

rectangular cross section of widthw and height h. The pipe
cross section is uniform along the orbit.

(c) The wave number of the field k satisfies

k � �

min½w; h; �� : (4)

�=w and �=h are the transverse cutoff wave numbers of
the straight rectangular waveguide. It follows that the

radiation components propagating at large angles with
respect to the reference axis are negligible (paraxial
approximation).
(d) The bunch consists of relativistic electrons: � � 1,

where � is the Lorentz factor and is held constant. All
electrons within the bunch are assumed to have the same
energy and the same velocity �. In deriving the time
domain field, we assume � ¼ 1.
(e) The charge distribution of the bunch ~J0ðx; y; zÞ is

rigid and has no internal correlation. ~J0 has vertical sym-
metry with respect to the midhorizontal plane. To obtain
the impedance and the time domain field, moreover, the
bunch is assumed to have no horizontal dimension.
By the assumptions (a), (b), and (e), the field is steady.

We may need to mention a subtle problem in our assump-
tion. Because of condition (d), rigorously speaking, a rigid
bunch cannot have a finite horizontal width. Denoting the
width as �x, however, the error caused by the contradiction
is of the order of �x=� in the longitudinal field, unless the
particles exceed the speed of light.
Let k and! be the wave number and the frequency of the

field; the phase velocity is given by !=k. Since we are
assuming that all particles travel at the same speed of�, the
radiation which interacts with the particles has the same
phase velocity as the particles: ! ¼ �k. Therefore, it is
enough to consider a Fourier transform only with respect to
the wave number, i.e.,

~fðzÞ ¼ 1

2�

Z 1

�1
fðkÞeikzdk; (5)

fðkÞ ¼
Z 1

�1
~fðzÞe�ikzdz: (6)

Since we mainly work in the frequency domain, we put

tilde on top of the time domain variables as ~EðzÞ, ~�ðzÞ. On
the other hand, variables without the tilde are quantities in
the frequency domain. Equations (5) and (6) imply that we
do not impose periodic boundary conditions for the field
along the beam orbit.

B. Field equation in the paraxial approximation

Under the assumptions (c) and (d), Maxwell equations in
the frequency domain reduce to the following form [12]:

2ik
@E?
@s

þ
�
r2

? þ 2k2
�
x

�
� 1

2�2

��
E? ¼ �0r?J0; (7)

where E? is the transverse electric field: E? ¼ ðEx; EyÞ,
r? is the transverse gradient: r? ¼ ð@x; @yÞ, �0 is the

permeability of vacuum. In Eq. (7) the leading term we

neglected is of the order of ðk�Þ�2=3. J0 on the right-hand
side of Eq. (7) is the charge distribution of the bunch in the
frequency domain,

J0ðx; y; kÞ ¼ qe�ðkÞ�xðxÞ�yðyÞ: (8)

qe is the bunch charge, and �xðxÞ, �yðyÞ are, respectively,

ρ

FIG. 1. Coordinate system and vacuum chamber. The refer-
ence axis s lays on the median horizontal plane (y ¼ 0) with a
constant radius �; the horizontal axis x points outwardly. The
pipe has a uniform cross section and infinite length along the
reference orbit. The inner and outer wall positions are xa and xb,
respectively, the pipe width is given by w ¼ xb � xa, where
xa < 0< xb. The pipe height is h; the upper and lower walls are
located at y ¼ �h=2, respectively.
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the horizontal and the vertical charge distributions of the
bunch. �ðkÞ is the bunch spectrum which is the Fourier

transform of the longitudinal charge distribution ~�ðzÞ:

�ðkÞ ¼
Z 1

�1
~�ðzÞe�ikzdz: (9)

~�ðzÞ, �xðxÞ, and �yðyÞ are normalized to unity.

If the field is in a steady state, the transverse electric field
satisfies �

r2
? þ 2k2

�
x

�
� 1

2�2

��
E? ¼ �0r?J0: (10)

At high energy, the field slightly depends on the energy of
the particles, as Eq. (10) shows, the finite energy is equiva-
lent to a horizontal displacement given by 	x ¼ �=2�2.
The longitudinal field is obtained by the transverse field
through Gauss’s law and Faraday’s law,

Es ¼ i

k
ðr? �E? ��0J0Þ; (11)

Bs ¼ i

k
ð@yEx � @xEyÞ: (12)

From these equations, the transverse Lorentz force per unit
charge is obtained:

Fx ¼ þ i

2k
ð@yBs � @xEsÞ; (13a)

Fy ¼ � i

2k
ð@xBs þ @yEsÞ: (13b)

However, we do not deal with the transverse force in this
paper; our work is strictly devoted to analysis of the
longitudinal electric field and its impedance. Let us give
a comment on the transverse force by CSR. The vertical
force has a similar nature to Es, i.e., Fy hardly depends on

�x and �y [7,12]. On the other hand, the horizontal force

may strongly depend on the horizontal charge distribution.
For the future development of the transverse force, we will
keep �x in the frequency domain field.

We define a variable 
 as


 ¼
�
2k2

�

�
1=3

; (14)

which is a function of the wave number and has dimension
of inverse length. For a given wave number, 
�1 has a
typical scale length of the transverse expanse of the field in
free space; therefore, if we put 
h ¼ 1 and solve it with

respect to the wave number, we obtain k ¼ ð�=2h3Þ1=2
which is approximately equal to the threshold wave num-
ber of Eq. (2). We normalize the transverse coordinates
ðx; yÞ with 
 into the dimensionless variables:

� ¼ 
x; � ¼ 
y: (15)

Similarly, we normalize the sidewalls position with 
:

�a ¼ 
xa; �b ¼ 
xb: (16)

With the dimensionless transverse coordinates, we define
the horizontal and the vertical charge distribution which
are normalized to unity for �, �, respectively:

c xð�Þ ¼ �xðxÞ



; c yð�Þ ¼
�yðyÞ



: (17)

We expand the electric field and the vertical charge
distribution in vertical Fourier series:

E ð�;�Þ ¼ X1
n¼�1

~Enð�Þei’n ; (18)

c yð�Þ ¼
X1

n¼�1
c n

ye
i’n ; (19)

’n ¼ ��


h
n; (20)

where ~En ¼ ðEn
x; En

y; En
s Þ and c n

y are, respectively, the

Fourier coefficients of the field and the vertical charge
distribution of the bunch. We assume that the charge
distribution is symmetric in the vertical direction,
c yð��Þ ¼ c yð�Þ, and then the field components must

be symmetric or antisymmetric with respect to the median
horizontal plane and reduce to the following form:

E ð�;�Þ ¼ ~E0 þ 2
X1
n¼1

En
x cos’n

iEn
y sin’n

En
s cos’n

0
@

1
A; (21)

c yð�Þ ¼ c 0
y þ

X1
n¼1

2c n
y cos’n: (22)

In the perfectly conducting pipe, the transverse field sat-
isfies the following boundary condition on the upper-lower
walls for any � in the pipe: �a < � < �b:

Exjy¼�h=2 ¼ 0; (23)

@yEyjy¼�h=2 ¼ 0: (24)

Therefore, the constant terms in the Fourier series are zero:
~E0 ¼ 0, c 0

y ¼ 0. The boundary condition on the upper-

lower walls constrains the vertical Fourier modes into n ¼
2pþ 1 (p ¼ 0; 1; 2; 3; . . . ). Thus only the odd modes can
propagate in the chamber; because the beam drives the
field, its position cannot be a node of Ex and Es which form
standing waves in the vertical direction. If the beam de-
viates off the midhorizontal plane, then the even modes are
excited. However, we do not treat this case in this paper.
We define the vertical wave number of the field by p:

p ¼ �

h
ð2pþ 1Þ: (25)

We often use the dimensionless vertical wave number �p

TOMONORI AGOH Phys. Rev. ST Accel. Beams 12, 094402 (2009)

094402-4



instead of p, defined as

�p ¼ p



; (26)

which depends on k through 
. For simpler notation,
we redefine the superscript of the vertical mode index:
~En ¼ ~E2pþ1

as ~Ep
, and c n

y ¼ c 2pþ1
y as c p

y , respectively.

Because of the perfectly conducting rectangular pipe, we
can separately deal with the vertical mode of the field. The
normalized field equation for the vertical mode p is

ð@2� þ �� wpÞEp
? ¼ Ip?: (27)

Ep
? ¼ ðEp

x ; E
p
y Þ is the transverse field. wp is given by

wp ¼ �2
p þ 
�

2�2
: (28)

Ip? ¼ ðIpx ; Ipy Þ on the right-hand side of Eq. (27) is the

driving term of the field,

Ip? ¼ �0
qe�ðkÞ @�
i�p

� �
c xð�Þc p

y : (29)

Having solved Eq. (27), the longitudinal field is obtained in
terms of the transverse field via

E p
s ¼ i


k
ð@�Ep

x þ i�pE
p
y ��0
qe�c xc

p
y Þ: (30)

The vertical Fourier mode of the vertical charge distribu-
tion is

c p
y ¼ 1


h

Z 
h=2

�
h=2
c yð�Þei�p�d�: (31)

The transverse distribution of the bunch, c x and c y, is

usually not important to the longitudinal field of CSR for
high energy particles, but it is necessary later when we
consider the space charge effect. Meanwhile, if one calcu-
lates the horizontal force of Eq. (13a), the horizontal
charge distribution c x should have a finite width.

C. Solution of the field equation

To solve Eq. (27), we will use the technique of variation
of parameters. Therefore we first solve the homogeneous
version. If Eq. (27) is homogeneous, it reduces to Eqs. (17)
of [10] and satisfies the Airy differential equation:

d2fðrÞ
dr2

¼ rfðrÞ; (32)

where r is the variable of the Airy function and can be
complex in general. In our problem,

r ¼ wp � �: (33)

The Airy differential equation has three pairs of linearly
independent fundamental solutions which damp at infinity
in some direction on the complex r plane [14]:

ð1Þ AiðrÞ and BiðrÞ; (34a)

ð2Þ AiðrÞ and CiðrÞ � AiðrÞ � iBiðrÞ; (34b)

ð3Þ AiðrÞ and DiðrÞ � AiðrÞ þ iBiðrÞ: (34c)

In the limit jrj ! 1, CiðrÞ is bounded on the arguments
argr ¼ �=3 and �2�=3; on the other hand, DiðrÞ is
bounded on argr ¼ ��=3 and 2�=3.
We will specify a pair of the solutions to describe the

radiation field in our problem. Let us examine the asymp-
totic behavior of the solutionsAiðrÞ,BiðrÞ for positive large
r:

Ai ðrÞ ’ r�1=4

2
ffiffiffiffi
�

p e��r ; (35)

Bi ðrÞ ’ r�1=4ffiffiffiffi
�

p eþ�r ; (36)

�r ¼ ð2=3Þr3=2 2 R: (37)

The Airy function AiðrÞ ¼ Aiðwp � �Þ exponentially goes
to zero for r ! þ1 (i.e., inside the orbit � ! �1) and
agrees with the behavior of CSR inside the orbit because
the radiation is emitted tangent to the orbit with a small
opening angle, the field should rapidly diminish inside the
orbit. In contrast, Biðwp � �Þ exponentially diverges in-

side the orbit: r ! þ1 (� ! �1) and thereby cannot
represent field components.
Next, we seek a solution which meets the outward field

of CSR. Outside the orbit, i.e., r ! �1 (� ! þ1), the
Airy functions, Ci and Di, behave as

Ci ðrÞ ’ ð�rÞ�1=4ffiffiffiffi
�

p eþið� 0r��=4Þ; (38)

Di ðrÞ ’ ð�rÞ�1=4ffiffiffiffi
�

p e�ið� 0r��=4Þ; (39)

� 0r ¼ ð2=3Þð�rÞ3=2 2 R: (40)

Since our Fourier transform is defined by Eq. (5), the time
domain field involves e�i!t. Therefore the Fourier counter-
parts of Ciðwp � �Þ and Diðwp � �Þ outside the orbit are

roughly described as

F ½Ciðwp � �Þ� / eþið� 0r�!tÞ; (41)

F ½Diðwp � �Þ� / e�ið� 0rþ!tÞ: (42)

The symbol F indicates the longitudinal Fourier trans-
form. From Eqs. (41) and (42), Ciðwp � �Þ can be identi-

fied with the outwardly propagating field, while
Diðwp � �Þ behaves as if the radiation is inwardly emitted

and so is irrelevant. Thus, it turned out that the pair of the
solutions given by Eq. (34b) fulfills the property of CSR. It
is therefore natural to give the transverse field by a linear
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combination of Ai and Ci:

Ep
?ð�Þ
i�

¼ ap?Aiðwp � �Þ þ cp? Ciðwp � �Þ; (43)

where the factor i� has no physical sense but is introduced
for convenience in later calculations. ap?, c

p
? are coeffi-

cients of the linear combinations; they will depend on � in
our problem [Eq. (44)]. Another pair AiðrÞ and BiðrÞ is, of
course, available to describe the CSR field, because Ci is a
linear combination of Ai and Bi. If using the real notation
(Ai, Bi), however, the following calculations will be some-
what complicated. Besides that, the complex notation (Ai,
Ci) corresponds to the inward/outward field of CSR and
provides a clear physical picture.

The variation of parameters on Eq. (43) gives

ap?ð�Þ ¼ ap0? �
Z �b

�
Ip?ð�0ÞCiðwp � �0Þd�0; (44a)

cp?ð�Þ ¼ cp0? �
Z �

�a

Ip?ð�0ÞAiðwp � �0Þd�0; (44b)

where ap0? and cp0? are the constants of integration. The

boundary condition on the sidewalls is

@xExjx¼xa;xb ¼ 0; (45)

Eyjx¼xa;xb ¼ 0; (46)

which fix the values of ap0? and cp0?. For a simple notation,

we define the arguments of the Airy functions:

up ¼ wp � �a; (47)

vp ¼ wp � �b; (48)

w� ¼ wp � �; (49)

and wp is given by Eq. (28). up, vp are variables that are

associated with the inner and the outer wall, respectively.
In accordance with the notation of [2,14], we define the
cross products of the Airy functions as follows:

p̂ðx; yÞ ¼ AiðxÞCiðyÞ � CiðxÞAiðyÞ; (50a)

q̂ðx; yÞ ¼ AiðxÞCi0ðyÞ � CiðxÞAi0ðyÞ; (50b)

r̂ðx; yÞ ¼ Ai0ðxÞCiðyÞ � Ci0ðxÞAiðyÞ; (50c)

ŝðx; yÞ ¼ Ai0ðxÞCi0ðyÞ � Ci0ðxÞAi0ðyÞ; (50d)

where x, y are not the transverse coordinates but arbitrary
complex variables, and the primes denote the derivatives.
q̂ðx; xÞ is the Wronskian of Ai and Ci:

q̂ðx; xÞ ¼ 1

i�
: (51)

With these symbols, the horizontal field in the vertical
Fourier mode is given by

Ep
x ð�Þ
A

¼ �Ciðw�Þ
Z �

�a

c xð�0ÞAi0ðw�0 Þd�0 þ q̂ðw�; upÞ
ŝðvp; upÞ Ci0ðvpÞ

Z �b

�a

c xð�0ÞAi0ðw�0 Þd�0

� Aiðw�Þ
Z �b

�
c xð�0ÞCi0ðw�0 Þd�0 þ r̂ðvp; w�Þ

ŝðvp; upÞ Ai
0ðupÞ

Z �b

�a

c xð�0ÞCi0ðw�0 Þd�0: (52)

The coefficient A on the left-hand side is A ¼ i��0
qe�c
p
y . Similarly, the vertical field can be obtained as follows:

Ep
y ð�Þ
i�pA

¼ �Ciðw�Þ
Z �

�a

c xð�0ÞAiðw�0 Þd�0 þ p̂ðw�; upÞ
p̂ðvp; upÞ CiðvpÞ

Z �b

�a

c xð�0ÞAiðw�0 Þd�0

� Aiðw�Þ
Z �b

�
c xð�0ÞCiðw�0 Þd�0 þ p̂ðvp; w�Þ

p̂ðvp; upÞ AiðupÞ
Z �b

�a

c xð�0ÞCiðw�0 Þd�0: (53)

Then we obtain the longitudinal field from Eq. (30),

E p
s ð�Þ ¼ A

i


k
ðĜx þ �2

pĜyÞ; (54)

where Ĝx and Ĝy are functions of the horizontal axis, the vertical wave number, and the longitudinal wave number:
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Ĝxð�;�p; kÞ ¼ Ci0ðw�Þ
Z �

�a

c xð�0ÞAi0ðw�0 Þd�0 � ŝðw�; upÞ
ŝðvp; upÞ Ci

0ðvpÞ
Z �b

�a

c xð�0ÞAi0ðw�0 Þd�0

þ Ai0ðw�Þ
Z �b

�
c xð�0ÞCi0ðw�0 Þd�0 � ŝðvp; w�Þ

ŝðvp; upÞ Ai
0ðupÞ

Z �b

�a

c xð�0ÞCi0ðw�0 Þd�0; (55)

Ĝyð�; �p; kÞ ¼ Ciðw�Þ
Z �

�a

c xð�0ÞAiðw�0 Þd�0 � p̂ðw�; upÞ
p̂ðvp; upÞ CiðvpÞ

Z �b

�a

c xð�0ÞAiðw�0 Þd�0

þ Aiðw�Þ
Z �b

�
c xð�0ÞCiðw�0 Þd�0 � p̂ðvp; w�Þ

p̂ðvp; upÞ AiðupÞ
Z �b

�a

c xð�0ÞCiðw�0 Þd�0: (56)

Ĝx, Ĝy are ascribed to the horizontal and the vertical
electric fields, respectively; we will call them the horizon-
tal electric mode (HE mode) and the vertical electric mode
(VE mode). These two modes, respectively, correspond to
TE mode and TM mode in [2,3], Er mode and Ez mode in
[10].

D. Thin beam approximation

In modern accelerators, the transverse charge distribu-
tion of a bunch is very small compared to the typical size of
the transverse expanse of the CSR field: 
�? � 1, the
transverse beam spread �? hardly varies the overtaking
length of CSR. Therefore it is sufficient to assume that the
transverse charge distribution is infinitely thin. But if one
considers the space charge field which depends on the
particles energy via 1=�2, it is necessary to consider the
transverse distribution in either the horizontal or vertical
direction, otherwise the space charge term diverges due to
the infinite charge density at the beam position. At high
energy, however, the radiation field is dominant and the
longitudinal space charge force is very small and negli-
gible. One can drop the space charge term by taking the
limit � ! 1 for high energy particles, or one can separate
the space charge field from the radiation field and handle it
separately with a transverse beam size. Then the resulting
thin beam approximation consequently works in the analy-
sis of the longitudinal field of CSR. For the space charge
field discussed later, we keep only the vertical distribution
with a finite spread. In what follows our bunch model is a
vertical ribbon.

When the beam travels on the reference axis, the hori-
zontal charge distribution is given by

c xð�Þ ¼ 	ð�Þ: (57)

If one wants to consider a horizontal beam deviation x0 ¼
�0=
 from the reference orbit, one can merely put 	ð��
�0Þ in Eq. (57). With Eq. (57), the functions Ĝx, Ĝy reduce

to

Ĝx ¼ Ci0ðwpÞ
�
�ð��ÞAi0ðw�Þ �

ŝðvp;w�Þ
ŝðvp; upÞ Ai

0ðupÞ
�

þ Ai0ðwpÞ
�
�ð�ÞCi0ðw�Þ �

ŝðw�; upÞ
ŝðvp; upÞ Ci

0ðvpÞ
�
;

(58a)

Ĝy ¼ CiðwpÞ
�
�ð��ÞAiðw�Þ �

p̂ðvp; w�Þ
p̂ðvp; upÞ AiðupÞ

�

þ AiðwpÞ
�
�ð�ÞCiðw�Þ �

p̂ðw�; upÞ
p̂ðvp; upÞ CiðvpÞ

�
; (58b)

where �ð�Þ is the step function:

�ð�Þ ¼
�
1 for � 	 0;
0 for � < 0:

(59)

We are interested in the coupling between the beam and the
self-induced field, so we calculate the field at the beam

position: ð�; �Þ ¼ 0. Ĝx and Ĝy at the beam position are

given by

Ĝx ¼ Ai0ðwpÞCi0ðwpÞ � Ĥxðup; vp; wpÞ; (60a)

Ĝy ¼ AiðwpÞCiðwpÞ � Ĥyðup; vp; wpÞ; (60b)

where

Ĥx ¼
ŝðwp; upÞ
ŝðvp; upÞ Ci

0ðvpÞAi0ðwpÞ

þ ŝðvp; wpÞ
ŝðvp; upÞ Ai

0ðupÞCi0ðwpÞ; (61a)

Ĥy ¼
p̂ðwp; upÞ
p̂ðvp; upÞ CiðvpÞAiðwpÞ

þ p̂ðvp; wpÞ
p̂ðvp; upÞ AiðupÞCiðwpÞ: (61b)

The first terms on the right-hand side of Eqs. (60) do not
depend on the sidewalls position and are identical to the
terms in the parallel plates model [see Eq. (77)]. On the

other hand, Ĥx and Ĥy are particular terms of the rectan-

gular pipe and depend on the sidewalls positions through
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up and vp. A simple modification gives

Ĝx ¼
ŝðvp;wpÞŝðwp; upÞ

ŝðvp; upÞ ; (62a)

Ĝy ¼
p̂ðvp; wpÞp̂ðwp; upÞ

p̂ðvp; upÞ : (62b)

For the following calculations, we define another set of
cross products with Ai and Bi, which are, unlike the former
set, real functions for real arguments,

�pðx; yÞ ¼ AiðxÞBiðyÞ � BiðxÞAiðyÞ; (63a)

�qðx; yÞ ¼ AiðxÞBi0ðyÞ � BiðxÞAi0ðyÞ; (63b)

�rðx; yÞ ¼ Ai0ðxÞBiðyÞ � Bi0ðxÞAiðyÞ; (63c)

�sðx; yÞ ¼ Ai0ðxÞBi0ðyÞ � Bi0ðxÞAi0ðyÞ: (63d)

They are related to the former cross products as follows:

��ðx; yÞ ¼ i�̂ðx; yÞ; (64)

where �� (or �̂) represents either �p, �q, �r, or �s ðp̂; q̂; r̂; ŝÞ.
�qðx; xÞ is the Wronskian of Ai and Bi:

�qðx; xÞ ¼ 1

�
: (65)

With these new cross products, we define �Gx and �Gy as

�Gx ¼ iĜx ¼
�sðvp;wpÞ �sðwp; upÞ

�sðvp; upÞ ; (66a)

�Gy ¼ iĜy ¼
�pðvp; wpÞ �pðwp; upÞ

�pðvp; upÞ : (66b)

In general, when one describes sinusoidal waves, one has
the complex notation e�i!t and the real notation
ðsin!t; cos!tÞ. Similar to this, in some cases the complex
notation (Ai, Ci) is convenient to describe CSR and pro-
vides a clear physical picture as in Eq. (43), but sometimes
the real notation (Ai, Bi) is useful to solve a problem. We
have used the complex notation to obtain the field in the
frequency domain, whereas we will use the real functions
for the impedance analysis and the conversion to the time
domain.

III. LONGITUDINAL IMPEDANCE

As we stated in the Introduction, since the CSR field is
proportional to the bunch charge, CSR can be described by
a few geometrical parameters. We define the longitudinal
impedance per unit length, Z ½�=m�, as

EsðkÞ ¼ �qe��ðkÞZðkÞ; (67)

where the longitudinal field Es is evaluated at the center of
the transverse beam position. By definition, the longitudi-
nal impedance of CSR per unit length in a rectangular pipe
is given by

ZðkÞ
Z0

¼ 2�

�h

�
2

k�

�
1=3 X1

p¼0

�pðĜx þ �2
pĜyÞ; (68)

¼ � 2�i

�h

�
2

k�

�
1=3 X1

p¼0

�pð �Gx þ �2
p
�GyÞ: (69)

Z0 ¼ c�0 
 120� ½�� is the impedance of free space.
The longitudinal impedance depends on the transverse
charge distribution of the bunch. �p is the dimensionless

form factor of the vertical charge distribution; we give
some examples as follows:

�p � 
hc p
y ¼

8><
>:
1 delta function;
e�ðp�yÞ2=2 Gaussian shape;
sinðply=2Þ
ply=2

rectangle;
(70)

where �y is the rms spread of the vertical distribution if

assuming Gaussian vertical distribution, ly is the vertical

height of the bunch for the instance of a rectangular
distribution. If one assumes ultrarelativistic particles: � !
1, as the space charge effect dies out, one can put�p ¼ 1.

If one defines the longitudinal impedance with the field
value averaged over the transverse beam distribution as in
[2], the form factor �p will be the square of Eq. (70),

though it is not important in the radiation field.
The impedance of Eq. (69) is apparently imaginary, but

it has singularities and contains the real impedance at the
resonance points. The sharp peaks in Fig. 2 are the reso-
nance wave numbers. The time domain field does not have
a certain value until the integration contour of the Fourier
transform is determined.

FIG. 2. CSR impedance of a square pipe. The pipe width and
the height are w� h ¼ 10 cm� 10 cm, the bending radius is
� ¼ 10 m. We put � ¼ 1 and �p ¼ 1 in Eq. (69).
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A. Impedance of pillbox and parallel plates

Before discussing the pole structure and the contour, let
us see the impedance in a case for which the sidewalls are
far away from the beam. In this limit, it must agree with the
impedance of the infinite parallel plates. As we show in
Sec. VI, the paraxial approximation allows us to take the
limit w ! 1. We will first move the inner wall away from
the orbit: xa ! �1 with the outer wall left at xb. In this
limit the variable up of Eq. (47) goes to positive infinity;

the Airy functions AiðupÞ and Ai0ðupÞ exponentially be-

come zero. Then we obtain the longitudinal impedance for
a pillbox chamber which has a radius of rb ¼ �þ xb and a
height h,

ZðkÞ
Z0

¼ 2�

�h

�
2

k�

�
1=3 X1

p¼0

�pF1ð�pÞ; (71)

where the function F1 is given by

F1ð�pÞ ¼
Ai0ðwpÞ
Ai0ðvpÞ ŝðvp;wpÞ þ �2

p

AiðwpÞ
AiðvpÞ p̂ðvp; wpÞ:

(72)

This impedance appears imaginary but actually conceals
the real part in the resonance points, i.e., at Ai0ðvpÞ ¼ 0 for

the HE mode and at AiðvpÞ ¼ 0 for the VE mode. To

obtain the impedance of the pillbox chamber, it is not
sufficient to move the inner wall as xa ! �� but necessary
to take the limit xa ! �1. Similarly, in spite of the fact
that the beam pipe of Fig. 1 has infinite length with a
constant curvature, rigorously speaking, our chamber
model is not a torus. Appendix A accounts for this peculiar
feature of our chamber model.

We will next move the outer wall away from the beam:
xb ! 1. To do so, we must consider an energy absorption
or leak on the pipe wall, otherwise the field energy is
permanently preserved, the real impedance never comes
up. As Warnock and Morton worked out, one can actually
consider a finite conductivity on the sidewalls or the planer
walls, which creates a band width on the resonances [2].
Here, instead, we use a virtual energy absorption on the
wall. That is, we put an infinitesimal damping into the
field: k ¼ kþ i�, where � is a small positive parameter
representing the wall resistivity. Later, this procedure will
guide the integration contour of the Fourier transform to
the time domain. Because of this prescription, the outgoing
wave CiðvpÞ is damped as

Ci ðvpÞ ’
ði��� vpÞ�1=4ffiffiffiffi

�
p ei�p���; (73)

�p ¼ 2

3
ð�vpÞ2=3 � �

4
; (74)

� ¼ 2xb
3

�
2

k�

�
1=3

for xb ! 1: (75)

�p is the phase of the outward wave; � is a parameter of

the damping whose real part is always positive for any real
wave numbers including negative values for xb ! 1. We
can now remove the outer wall: xb ! 1. This must be
done prior to the limit � ! þ0. Thus we obtain the im-
pedance of the infinite parallel plates:

ZðkÞ
Z0

¼ 2�

�h

�
2

k�

�
1=3 X1

p¼0

�pF0ð�pÞ; (76)

F0ð�pÞ ¼ Ai0ðwpÞCi0ðwpÞ þ �2
p AiðwpÞCiðwpÞ: (77)

For a thin beam of ultrarelativistic particles, i.e., �p ¼ 1

and � ¼ 1, Eq. (76) agrees with Eq. (A1) of [11]. In this
paper we have derived three impedances: rectangular pipe,
pillbox chamber, and infinite parallel plates which are
connected to Warnock-Morton’s impedances [2,4] via a
uniform asymptotic expansion for the Bessel functions.
One can obtain these impedances also from Warnock-
Morton’s expressions as we described in Appendix A.
At last, we will remove the upper-lower plates. Let us

first deal with the case for which � ¼ 1; we consider a
finite � in Sec. VI. If the upper-lower walls are infinitely
far from the beam, h ! 1, the sum with respect to the
vertical Fourier mode in Eq. (76) becomes an integral and
is exactly calculated for � ¼ 1 as

Z 1

0

dŵffiffiffiffî
w

p fAi0ðŵÞCi0ðŵÞ þ ŵAiðŵÞCiðŵÞg

¼ ei�=6

2�

�
2

3

�
1=3

�

�
2

3

�
: (78)

Then one obtains the well-known CSR impedance per unit
length in free space [5]:

ZðkÞ
Z0

¼ �ð2=3Þ
2�

�
ik

3�2

�
1=3

: (79)

Equation (79) has a branch point at the origin in the
complex wave number plane, which was originally located
at k ¼ �p=� in Warnock’s impedance, given by

Eq. (2.15) of [4]. They coupled at the origin due to the
paraxial approximation. By Fourier transforming Eq. (79),
one can calculate the time domain field as

~EsðzÞ ¼ � qe�ð2=3Þ
ð2�Þ2"0ð3�2Þ1=3

Z 1

�1
~�0ðz0ÞIðz� z0Þdz0; (80)

where ~�0 is the derivative of the line charge distribution.
Ið�Þ is an integral with respect to the wave number:

Ið�Þ ¼
Z 1

�1
eik�

ðikÞ2=3 dk: (81)

We cut the complex plane along the positive (or negative)
imaginary axis depending on the relation between z and z0
and paste three complex sheets to make a Riemann surface.
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Then the integral of Eq. (81) is calculated along the con-
tours in Fig. 3 or Fig. 4.

Choosing an appropriate argk for � > 0 and � < 0,
respectively, the integral Ið�Þ is calculated as

Ið�Þ ¼ �ð�Þ
ffiffiffi
3

p

�1=3
�

�
1

3

�
; (82)

where � is the step function given by Eq. (59). Then we
obtain the longitudinal field in the time domain:

~EsðzÞ ¼ � qe

2�"0ð3�2Þ1=3
Z z

�1

~�0ðz0Þdz0
ðz� z0Þ1=3 : (83)

Notice that Eq. (83) is derived from Eq. (76) without
approximation. It was originally derived directly in the
time domain [6,7]; on the other hand, one can derive it in
the framework of the paraxial approximation. Even in the
limit of w, h ! 1, the paraxial approximation does not
break down at high frequency: k� � 1. The approxima-
tion condition for the geometrical parameters will be dis-
cussed in Sec. VI in detail.

B. Shielding effect in rectangular pipe

As it is well known, the frequency components below
the value given by Eq. (2) are strongly suppressed by
metallic walls, therefore it is important to examine CSR
impedance in the low frequency region k < kth.

Sagan et al. investigated the shielding effect in a rect-
angular pipe and provided a heuristic explanation of the

wall effect in Appendix A of [15]. According to their
paper, the smaller one of the chamber width or the height
determines the shielding effect, because transient CSR is
emitted in the form of a cone which has a horizontal extent
equal to the vertical one. When the cone edge hits a wall of
the chamber, the CSR cone ceases to grow. Consequently,
if the aspect ratio of the pipe w=h is high or low, as
Eq. (A1) of [15] states, the shielding effect depends on
the smallest dimension. This picture is simple and intui-
tively clear but too rough, because Fig. 17 of [15] evidently
shows that the upper-lower walls are more effective at
suppressing CSR than the sidewalls.
To estimate how the sidewalls influence CSR, we will

expand the CSR impedance of the rectangular pipe at low
frequency. In the paraxial approximation, the longitudinal
wave number must be much larger than the vertical wave
number: k � p (see Appendix A), our investigation at

low frequency is valid in the region p � k < kth.

Now, we depart from the complex notation (Ai, Ci) and
switch to the real one (Ai, Bi) in discussing the impedance.
At first we expand the Airy functions Ai, Bi, and their
derivatives using the asymptotic series for large arguments;
10.4.59–10.4.67 in [14], then we expand every part of the
asymptotic expressions in Taylor series to the second order
with respect to � ( ¼ 1=4�3

p � 1), where �p is the nor-

malized vertical wave number defined in Eq. (26). We
write down the intermediate calculation of the expansions
in Appendix B. Here we show the asymptotic expression of
the impedance in the rectangular pipe at low frequency:

ZðkÞ
Z0

¼ i

�h

X1
p¼0

�p

�
k

p�
2
TðpwÞ � 3k3

2�25
p

SðpwÞ
�
;

(84)

where w, h are the pipe width and the height, and p is the

vertical wave number given by Eq. (25). In Eq. (84), for
simplicity, we are assuming that the sidewalls are symmet-
ric with respect to the beam: xb ¼ �xa ¼ w=2. The energy
is taken into consideration up to the order 1=�2. S and T are
functions of the aspect ratio of the pipe:

SðxÞ ¼ sinhx� x

coshxþ 1
; (85)

TðxÞ ¼ sinhx

coshxþ 1
; (86)

which are shown in Fig. 5.
The first term in the bracket of Eq. (84) is the space

charge field and does not depend on the curvature of the
orbit. The space charge force is the Coulomb force on a
straight orbit; it diverges for infinitely thin beam: �p ¼ 1

but goes to zero for � ! 1. The second term in the bracket
of Eq. (84) is a characteristic term on a curved orbit and

 
 

FIG. 4. Contour of free space impedance for � < 0.

 

 

FIG. 3. Contour of free space impedance for � > 0.
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originates in the radiation. The radiation field does not
depend on the particles energy in the high energy limit
and does not diverge even for infinitely thin beam.

One may find that Eq. (84) is similar but somewhat
different from Eq. (4.23) in [16]:

ZNWðkÞ
Z0

¼ i

�h

X1
p¼0

�p

��
k

p�
2
þ k

2�23
p

�
�TðpwÞ

� 3k3

2�25
p

�SðpwÞ
�
; (87)

where

�SðxÞ ¼ 1� 2ðxþ 1Þe�x; �TðxÞ ¼ 1� 2e�x: (88)

We are assuming again xb ¼ �xa ¼ w=2, and the energy
is considered to the order of 1=�2 in Eq. (87). Comparing
Eq. (84) with Eq. (87), one can tell that the paraxial
approximation correctly takes the space charge effect
into account. It turns out, however, that Eq. (84) does not
have a radiation term which is proportional to k=�2, be-
cause we are assuming in the paraxial approximation that
the longitudinal wave number is much larger than the
vertical wave number k � p; the higher order terms

ðp=kÞn (n 	 2) are unfortunately neglected in our theory.

For � ¼ 1, the impedance of Eq. (87) is zero around k�
p=

ffiffiffi
3

p
, the impedance value is positive below it, while the

value is negligibly small. Another difference is found
between the functions of the aspect ratio: SðxÞ, TðxÞ $
�SðxÞ, �TðxÞ. Considering a large aspect ratio w=h � 1, the
functions S, T asymptotically behave as �S, �T, respectively.
Presumably, the difference may be caused by their some-
what rough treatment for the exponential factors in [16]. In
any event, the difference between these functions yields
nothing significant in the current discussion.

To examine the shielding effect by a rectangular pipe,
we concentrate on the radiation term of Eq. (84) for an
infinitely thin beam in the ultrarelativistic limit:

ZðkÞ
Z0

¼ �i
3k3

2h�2

X1
p¼0

SðpwÞ
5
p

: (89)

In the limit that the sidewalls are far from the beam w !
1, Eq. (89) agrees with the parallel plates model of
Eq. (A8) of [11]. If the aspect ratio of the pipe, w=h, is
around one or larger than one, the leading term in the sum
of Eq. (89) is much larger than the sum of the rest terms and
dominates the impedance value. Accordingly, we take only
the leading term in the sum and neglect the higher vertical
modes, then we have a simple expression:

ZðkÞ
Z0

¼ �i
3k3

2��2

�
h

�

�
4
S

�
�
w

h

�
: (90)

In the case of square pipe, the truncation error of the higher
vertical modes is about 6:8� 10�3. Even if w ¼ h=2, the
error stays within 2%, which is not significant in the
current discussion. In the low frequency region, Sð�w=hÞ
gives the ratio of the impedances between the rectangular
pipe and the parallel plates. Equation (90) is plotted with a
green solid line in Fig. 6 where Ng-Warnock’s equation
given by Eq. (87) is also plotted with a red dashed line. At
very low frequency, the discrepancy between them shows
the error due to the paraxial approximation.
Equation (90) shows that, if the aspect ratio of the beam

pipe is w=h * 1, the impedance depends on the chamber
width only through the aspect ratio in the function SðxÞ,
while the upper-lower walls shield the field also by h4 in
the coefficient of the impedance. The function SðxÞ shows
the condition where one can neglect the sidewalls:

w � h

�
: (91)

In practice, as the profile of SðxÞ shows, if the chamber
width is more than 2 times larger than the height, w> 2h,
the impedance in the low frequency hardly depends on the
chamber width. Then the chamber height dominates the
shielding effect, and infinite parallel plates become a good
approximation for the rectangular pipe, to be shown in
Fig. 12. For a shorter bunch, the low frequency components
have less contribution to the field, and accordingly, the
difference between the pipe and the plates will be relatively
small. We obtained Eq. (91) after the asymptotic expansion
of the impedance, but a simple consideration similar to that
of Sagan et al. can also lead to it. That is, since CSR has a
typical horizontal spread ‘x equal to the vertical one ‘y �
1=0 ¼ h=�, comparing ‘x with the chamber width w, we
immediately obtain Eq. (91). As we will see in Sec. VIA, it
may be better to replace w in Eq. (A1) of [15] by ð2�=3Þw.

FIG. 5. Functions SðxÞ and TðxÞ in Eq. (84).
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IV. FIELD RESONANCE

If the radiation emitted from particles has a phase ve-
locity equal to the particle velocity in a curved pipe, the
radiation synchronously interacts with the particles and can
propagate in the pipe. This is the resonance of the radiation
field in a curved pipe, which cannot occur between super-
imposed parallel plates, because the radiation goes away
off the beam.

A. Resonance poles

In a rectangular pipe, the resonance points of the HE/VE
mode are determined, respectively, by solving

�s½vpðkÞ; upðkÞ� ¼ 0 HE mode; (92a)

�p½vpðkÞ; upðkÞ� ¼ 0 VE mode; (92b)

where up, vp are functions of the wave number, and we

rewrite their definition:

upðkÞ ¼
2
p


2
� 
�

�
xa
�
� 1

2�2

�
; (93)

vpðkÞ ¼
2
p


2
� 
�

�
xb
�
� 1

2�2

�
: (94)

They are variables which are concerned with the inner wall
position and the outer wall position, respectively. As we
mentioned in Sec. II B, the energy deviation of the particles
is related to the horizontal displacement,

	x ¼ �

2�2
: (95)

The ultrarelativistic limit is available if

1

�
� min

�
��z

h
;

ffiffiffiffi
w

�

s �
: (96)

In contrast, low energy particles such as

1

�
>

ffiffiffiffiffiffiffiffi
2xb
�

s
(97)

cannot radiate constantly in the beam pipe except in a
transient state around the entrance of the magnet. Equa-

FIG. 6. (Color) Imaginary impedance in the low frequency limit. We assume a thin beam of ultrarelativistic particles, i.e., �p ¼ 1 and
� ¼ 1. The green line is the asymptotic expression of Eq. (90), and the red dashed line shows Eq. (87). The blue solid line represents
the simulation result using the parabolic equation in the paraxial approximation [11], where we set the magnet length to 1 m and
assume a perfectly conducting pipe. The most realistic case is shown by the blue dashed line which is the impedance in a copper square
pipe, obtained by simulation [12]. The chamber width and the height are w� h ¼ 10 cm� 10 cm, and the bending radius is � ¼
10 m. The dashed vertical line is the vertical cutoff wave number 0 ¼ �=h, and the dot-dashed vertical line is the threshold wave
number kth. We draw also the CSR impedance in free space: the steady CSR of Eq. (79) is shown by the magenta dashed line and the
transient state [8] by the cyan dashed line. The brown dashed line is the resistive wall impedance [18] due to a copper round pipe which
is straight and has a diameter of 10 cm. (It is shown that the longitudinal resistive wall wakefield at the center of a square pipe is equal
to the one at the center of a round pipe which is inscribed in the square [12,19].)
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tion (97) is an approximate condition which corresponds to
Eq. (3) of [2] and Eq. (1) of [3].

In the following of this subsection, we put � ¼ 1 for
simplicity, which does not spoil the argument of the field
resonance. If a finite energy is to be considered, one can
simply replace the sidewall positions xi by xi � 	x (i ¼ a,
b). Several authors obtained the approximate resonance
points in a toroidal chamber at high frequency [2,3,10].
We write the resonance points using our notation:

kpm ¼ p

ffiffiffiffiffi
�

xb

s
�

�
hðm� dÞ
xbð2pþ 1Þ

�
m ¼ 1; 2; 3; 4; . . .
p ¼ 0; 1; 2; 3; . . .

� �
;

(98)

where d is the following constant:

d ¼
�
3=4 HE mode;
1=4 VE mode:

(99)

�ðrÞ is a monotonically increasing function:

�ðrÞ ¼
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2

3

s
þ 1

�
1=3 �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

3

s
� 1

�
1=3

��3=2
;

(100)

which behaves as �ðrÞ � 3r=23=2 for r large. The solution
is given in Sec. VI. In Eq. (98), m is the resonance mode
index, and p is the mode index of the vertical Fourier
series. As Eq. (98) shows, the HE/VE resonances appear
alternately on the wave number axis. In Eq. (98) it may be
better to put m� 3=4 ¼ nþ 1=4 (n ¼ 0; 1; 2; � � � ) only
for the HE mode, because then the indices n;m correspond
to the number of nodes, respectively, for the HE/VE mode
in the radial dimension of the pipe [10]. However, for
convenience in describing the time domain field in
Sec. V, we use the index m ( ¼ 1; 2; 3; . . . ) both for the
HE and the VE mode. Equation (98) also implies that the
resonance wave numbers at high frequency do not depend
on the inner wall position xa but is determined by the outer
wall position xb and the chamber height h. This means that
the field in a toroidal chamber is similar to the one in a
pillbox chamber unless the inner wall of the pipe is very
close to the beam [2]. Actually, Eq. (98) was derived
from the resonance condition of the pillbox chamber [see
Eqs. (72) and (182)].

The accuracy of Eq. (98) is discussed in [10]. The
maximum error occurs at the lowest resonance: m ¼ 1.
The error is just about 5% which is not so bad; however,
since the field rapidly depends on the lower resonance
points as to be shown in Figs. 9 and 10, the approximate
solution of Eq. (98) can yield a large error in the field. For a
square pipe, the error by using the approximate poles is
about 30% in the field value; the error becomes small as the
pipe width goes to infinity. To obtain the field value with a
good accuracy, we have to rely on a numerical calculation.
As one will see in Sec. VI, if the lowest resonance mode is
much smaller than the shielding threshold, i.e., k1 � kth,

the field does not depend on the resonance points.
Equation (98) is important in understanding the pole struc-
ture of the radiation field in a curved rectangular pipe. In
addition, as it is remarked in [2], the approximate poles can
be utilized as initial values of a Newton search for solving
Eqs. (92).

B. Imaginary poles

Now, we will go to our main business. We suppose that
the wave number is purely imaginary:

k ¼ i �k; (101)

where �k 2 R is assumed to have a positive value for the
moment, but it can be negative in general. For imaginary

wave numbers, the function 
 ¼ ð2k2=�Þ1=3 becomes


ði �kÞ ¼ c �
; (102)

where c is a complex constant,

c � ð�1Þ1=3 ¼ f�1; e�i�=3g: (103)

�
 is similar to 
 but defined only for real wave numbers
hence always real:

�
 ¼ 
ð �kÞ: (104)

For imaginary wave numbers, the arguments of the Airy
functions, up and vp, are given as follows:

upði �kÞ ¼ c�2

�
2
p

�
2
þ �
�

�
xa
�
� 1

2�2

��
; (105)

vpði �kÞ ¼ c�2

�
2
p

�
2
þ �
�

�
xb
�
� 1

2�2

��
: (106)

We give a simple example to illustrate the pole structure of
the impedance. At first, we put � ¼ 1. Suppose that the
beam pipe has horizontal symmetry: xa ¼ �xb, then for a
imaginary wave number, the variables of the Airy functions
are given by

upði �kÞ ¼ c�2vpð �kÞ; (107)

vpði �kÞ ¼ c�2upð �kÞ: (108)

If we choose c ¼ �1 in Eq. (103), we have upði �kÞ ¼ vpð �kÞ
and vpði �kÞ ¼ upð �kÞ; that is, the role of the outer wall is

exactly replaced by the inner wall. This means that there
exist imaginary wave numbers which satisfy the resonance
conditions given by Eqs. (92). If � ¼ 1 and xa ¼ �xb, the
imaginary poles are symmetric to the real ones and the
residues at the poles have a symmetry between the real axis
and the imaginary axis. Although we have shown above a
special case, even if the sidewalls are not symmetric with
respect to the beam, the cross products �sðvp; upÞ and

�pðvp; upÞ have zeros not only on the real axis but also on

the imaginary axis. If the sidewalls are not symmetric or if
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the Lorentz factor is finite, the poles on the imaginary axis
are not symmetric with respect to the real axis. They are
gotten by solving

�s½ �vpð �kÞ; �upð �kÞ� ¼ 0 HE mode; (109a)

�p½ �vpð �kÞ; �upð �kÞ� ¼ 0 VE mode; (109b)

where we defined �upðkÞ, �vpðkÞ, and �wpðkÞ for 8 k 2 C as

�upðkÞ ¼
2
p


2
þ 
�

�
xa
�
� 1

2�2

�
; (110)

�vpðkÞ ¼
2
p


2
þ 
�

�
xb
�
� 1

2�2

�
; (111)

�wpðkÞ ¼
2
p


2
� 
�

2�2
: (112)

The variables of the Airy functions up, vp, andwp have the

following property in the complex k plane:

upðk�Þ ¼ u�pðkÞ; (113)

vpðk�Þ ¼ v�
pðkÞ; (114)

wpðk�Þ ¼ w�
pðkÞ: (115)

The asterisk denotes the complex conjugate. In addition,
the Airy functions have mirror symmetry for 8 z 2 C
[17],

Xi ðz�Þ ¼ Xi�ðzÞ; (116)

where Xi represents either Ai, Bi, Ai0, or Bi0. For a purely
imaginary wave number which satisfies the resonance
condition of Eq. (92a) or (92b), the complex conjugate
satisfies the same condition:

�s½vpðk�Þ; upðk�Þ� ¼ 0 HE mode; (117a)

�p½vpðk�Þ; upðk�Þ� ¼ 0 VE mode: (117b)

Namely, the negative imaginary axis has a pole structure
symmetric to the positive imaginary axis. If one chooses

another value: c ¼ e�i�=3 in Eq. (103), the resonance
points on the imaginary axis are the same as for c ¼ �1
(Appendix C). In addition, the impedance does not depend
on the value choice of c and obeys the rule

Zð�kÞ ¼ Z�ðkÞ: (118)

If xa ¼ �xb and � ¼ 1, it has the following symmetry:

Zð�ikÞ ¼ iZðkÞ: (119)

Let us obtain the approximate poles on the imaginary
axis for large jkj. As �vpð �kÞ is positive large for �k large, the

Airy function Aið �vpÞ and Ai0ð �vpÞ become negligible.

Accordingly, the cross products �pð �vp; �upÞ, �sð �vp; �upÞ be-

have for large �k as

�sð �vp; �upÞ ’ �Bi0ð �vpÞAi0ð �upÞ; (120a)

�pð �vp; �upÞ ’ �Bið �vpÞAið �upÞ: (120b)

Bið �vpÞ and Bi0ð �vpÞ are exponential functions and have no

zeros for any wave number on the imaginary axis.
Therefore the approximate imaginary poles are obtained
by solving

Ai0ð �upÞ ¼ 0 HE mode; (121a)

Aið �upÞ ¼ 0 VE mode: (121b)

Recall that the variable �up is defined by Eq. (110) and

depends on the inner wall position xa. The imaginary poles
are determined by the inner wall position and the chamber
height; they do not depend on the outer wall position for jkj
large. But this fact seems strange, because CSR has a
typical horizontal expanse ‘x � h=� in a pipe satisfying
w> h=�, so it is hard to understand that the inner wall is
involved to determine the field, unless the beam travels
very close to the inner wall.
For negative large �up, the Airy functions Aið �upÞ and

Ai0ð �upÞ asymptotically behave as

Ai 0ð �upÞ ’ � ð� �upÞ1=4ffiffiffiffi
�

p cos

�
� �u þ �

4

�
; (122)

Ai ð �upÞ ’
ð� �upÞ�1=4ffiffiffiffi

�
p sin

�
� �u þ �

4

�
; (123)

� �u ¼ ð2=3Þð� �upÞ3=2 2 R; (124)

and the zeros of Aið �upÞ, Ai0ð �upÞ are approximately given

by

� �u ¼ �ðm� dÞ: (125)

d is the constant given by Eq. (99). We define a variable X
and coefficient a as

X ¼ 1

�


�
2
p

�xa

�
1=3

; (126)

a ¼
�

3� �u

2pð�xaÞ
�
2=3

: (127)

Equations (124) and (125) give a cubic equation to be
solved:

X3 þ aX � 1 ¼ 0: (128)

Cardano’s formula for the cubic equation gives the ap-
proximate poles on the positive imaginary axis: k ¼ i �kpm,

�k p
m ¼ p

ffiffiffiffiffiffiffiffiffi
�

�xa

s
�

�
hðm� dÞ
xað2pþ 1Þ

�
m ¼ 1; 2; 3; 4; . . .
p ¼ 0; 1; 2; 3; . . .

� �
:

(129)

�ðrÞ is a function given by Eq. (100). Because of the mirror
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symmetry of the Airy functions, the poles on the negative
imaginary axis are symmetric to the ones on the positive
imaginary axis: i �kp�m ¼ �i �kpm. If the sidewalls are sym-
metric, xa þ xb ¼ 0, and if the particles are ultrarelativis-
tic, the approximate poles are symmetric between the real
axis and the imaginary axis, �kpm ¼ kpm. The above consid-
eration has shown that the inner wall of the pipe mainly
determines the imaginary poles; on the other hand, the
outer wall by and large determines the real resonance
poles.

V. FIELDS IN THE TIME DOMAIN

A. Fourier transform and contour

In deriving the time domain field, we assume ultrarela-
tivistic particles. Since the causality of the field is compli-
cated for a finite �, we hope to discuss it elsewhere in the
future. In this section we consider a finite � only for the
expression of the impedance. The longitudinal field in the
time domain is given by

~EsðzÞ ¼ � qe
2�

Z 1

�1
��ðkÞZðkÞeikzdk: (130)

We use the real notation (Ai, Bi) for the impedance in this
section. In advance, we rewrite the bunch spectrum of
Eq. (9) using integration by parts,

�ðkÞ ¼
Z 1

�1
dz0

e�ikz0

ik

d~�ðz0Þ
dz0

: (131)

Substitution of Eq. (131) turns the integral with respect to
the wave number into a z integral,

~EsðzÞ ¼ qe
"0h

Z 1

�1
dz0

d~�ðz0Þ
dz0

X1
p¼0

�pIpðz� z0Þ; (132)

where "0 is the permittivity of vacuum. Ip is the integral

with respect to the longitudinal wave number:

Ipð�Þ ¼
Z 1

�1

dk

k2
ð �Gx þ �2

p
�GyÞeik� ; (133)

which converges for k 2 R ! �1 owing to the integra-
tion by parts of Eq. (131), because the impedance behaves

as ZðkÞ / ðikÞ1=3 in the high frequency limit for � ¼ 1.
The variable � of Eq. (133) is the longitudinal distance
between the observation point z and the position of the field
particle z0:

� ¼ z� z0: (134)

The integral Ip requires a case separation depending on the

relation between the observer and the field particle so that
the field is bounded:

=k > 0 for � > 0: ahead of source;

=k < 0 for � < 0: behind source:
(135)

That is, when the observation point is ahead of the field

source, we must close the contour in the upper half plane,
otherwise the integral Ip diverges, and vise versa. If one

considers a finite � in Ip, the case separation of Eq. (135)

is, precisely speaking, incorrect, because �Gx þ �2
p
�Gy in Ip

could asymptotically behave as an exponential function for
w, h ! 1, and =k ! �1. The integral of Eq. (208)
suggests that the critical wave number kc ( ¼ 3�3=2�)
may be involved in the field causality. We do not have
the asymptotic expression of the impedance with a finite �
in the limit w, h ! 1, and =k ! �1. Therefore we put
� ¼ 1 in deriving the time domain field.
To determine the contour on the real axis, we must

consider an infinitesimal damping for the outward waves,

k ¼ lim
�!þ0

ðkþ i�Þ; (136)

or the field does not contain a real impedance as it is shown
in Sec. III A. In Eq. (136), � is a small positive parameter
representing the infinitesimal energy loss on the pipe.
Therefore, the contour on the real line must go through
over the real poles. In addition, by Taylor series expansion
around each pole, it is readily shown that all real and
imaginary poles are simple. As we have shown in
Sec. III B, the impedance has no pole nor branch point at
the origin, the integrand of Ip is also regular at the origin.

Therefore the contours of Figs. 7 and 8 satisfy the physical
requirements of our problem.
These contours determine the impedance value which

has simple poles on the real axis, i.e.,

  

FIG. 8. Contour for � < 0.

 

 

FIG. 7. Contour for � > 0.
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1

k� km þ i�
¼ P

1

k� km
� i�	ðk� kmÞ; (137)

where the symbol P indicates the principal value of the
integral. The wave number km represents a real resonance
point of either the HE mode or the VE mode,

km ¼
�
�p

m ðHEÞ; �s½vpð�p
mÞ; upð�p

mÞ� ¼ 0;
�p
m ðVEÞ; �p½vpð�p

mÞ; upð�p
mÞ� ¼ 0:

(138)

The imaginary part of the impedance is the principal value
of Eq. (69):=ZðkÞ ¼ PZðkÞ. On the other hand, the second
term on the right-hand side of Eq. (137) corresponds to the
real impedance:

<ZðkÞ
Z0

¼ � 2�2

�h

X1
p¼0

�p

X1
m¼�1
m�0

Dp
mðkÞ; (139)

Dp
mðkÞ ¼ Rp

x ðkÞ	ðk��p
mÞ þ Rp

y ðkÞ	ðk� �p
mÞ; (140)

where we consider a finite �. The total energy loss of the
bunch per unit length is obtained from Eq. (139):

dEb

ds
¼ 2�q2e

"0h

X1
p¼0

�p

X1
m¼1

Lp
m; (141)

Lp
m ¼ Rp

x ð�p
mÞj�ð�p

mÞj2 þ Rp
y ð�p

mÞj�ð�p
mÞj2: (142)

Omitting the coefficients, Rp
x ð�p

mÞ and Rp
y ð�p

mÞ are the
residues of the impedance at the real poles of the HE/VE
mode, respectively. As a function of the wave number, they
are given by

Rp
x ðkÞ ¼ 


k

�sðvp;wpÞ �sðwp; upÞ
�s0ðvp; upÞ ; (143a)

Rp
y ðkÞ ¼ �2

p




k

�pðvp; wpÞ �pðwp; upÞ
�p0ðvp; upÞ ; (143b)

where the primes in the denominators denote the derivative
with respect to the wave number k,

d�sðvp;upÞ
dk

¼ 2


3k

�
up

dup
d


�rðvp;upÞþvp

dvp

d

�qðvp;upÞ

�
;

(144a)

d �pðvp;upÞ
dk

¼ 2


3k

�
dup
d


�qðvp;upÞþ
dvp

d

�rðvp;upÞ

�
: (144b)

The cross products �p, �q, �r, and �s are given by Eqs. (63).
Rp
x ðkÞ and Rp

y ðkÞ are functions having dimension of inverse
length, which are shown in Figs. 9 and 10 with the reso-
nance points of the HE/VE mode. As these figures show,

since Rp
x , R

p
y can rapidly change, a small error in the lower

resonance points can yield a large error to the field value.
Using the following cyclic identities,

Bi0ðwpÞ �sðvp; upÞ ¼ Bi0ðupÞ �sðvp;wpÞ þ Bi0ðvpÞ�sðwp; upÞ;
(145a)

BiðwpÞ �pðvp; upÞ ¼ BiðupÞ �pðvp;wpÞ þ BiðvpÞ �pðwp; upÞ;
(145b)

with Eq. (138), we obtain Rp
x and Rp

y at the resonance

FIG. 9. Function Rp
x ðkÞ and the resonance points �p

m for the
fundamental vertical mode (p ¼ 0). The symbols (þ ) on the
line are the resonance points of the HE mode which are obtained
numerically by a Newton search. The parameters used here
are as follows: xb ¼ �xa ¼ 5 cm, h ¼ 10 cm, � ¼ 10 m, and
� ¼ 1.

FIG. 10. Function Rp
y ðkÞ and the resonance points �p

m for p ¼
0. The symbols (� ) are the resonance points of the VE mode.
The parameters are the same as Fig. 9.
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points of the HE/VE mode:

Rp
x ð�p

mÞ ¼ � 3�

2

�s2ðvp; wpÞ
vp

dvp

d
 � up
dup
d
 fBi0ðvpÞ

Bi0ðupÞg2
; (146a)

Rp
y ð�p

mÞ ¼ þ 3�

2

�2
p �p

2ðvp; wpÞ
dvp

d
 � dup
d
 fBiðvpÞ

BiðupÞg2
; (146b)

where the functions of the wave number, up, vp, wp, �p,

and 
 on the right-hand sides, are evaluated at the HE and
the VE resonances, respectively. Ignoring the coefficients,
Eqs. (146) correspond to Eqs. (114) and (115) of [2]. The
second terms in the denominators of Eqs. (146) are smaller
than the first terms, therefore both Rp

x ð�p
mÞ and Rp

y ð�p
mÞ are

always negative for any m and p.

B. Time domain field

The contour of the Fourier transform is not unique; one
can choose another pair of contours for the integral Ip as is

possible for CSR impedance in free space, Z / ðikÞ1=3,
shown in Figs. 3 and 4 where the real poles must be
infinitesimally lowered off the real axis. According to the
contours shown in Figs. 7 and 8, or Figs. 3 and 4, the
integral Ip is calculated as

Ipð�Þ
2�i

¼ �ð�Þ X1
m¼1

�
Rp
x ði ��p

mÞ
i ��p

m
e� ��p

m� þRp
y ði ��p

mÞ
i ��p

m
e� ��p

m�

�

� �ð��Þ X�1

m¼�1

�
Rp
x ði ��p

mÞ
i ��p

m
e� ��p

m� þRp
y ði ��p

mÞ
i ��p

m
e� ��p

m�

�

� �ð��Þ X1
m¼�1
m�0

�
Rp
x ð�p

mÞ
�p

m
ei�

p
m� þRp

y ð�p
mÞ

�p
m

ei�
p
m�

�
;

(147)

where � is the step function. ��p
m, ��

p
m 2 R are the poles on

the imaginary axis for the HE/VE mode, respectively,

�k m ¼
�
��p
m ðHEÞ; �s½ �vpð ��p

mÞ; �upð ��p
mÞ� ¼ 0;

��p
m ðVEÞ; �p½ �vpð ��p

mÞ; �upð ��p
mÞ� ¼ 0:

(148)

The variables �up, �vp are given by Eqs. (110) and (111). To

avoid complex notation in the time domain, we define
functions �Rp

x , �Rp
y as

�Rp
x ðkÞ ¼ 


k

�sð �vp; �wpÞ �sð �wp; �upÞ
�s0ð �vp; �upÞ ; (149a)

�Rp
y ðkÞ ¼ �2

p




k

�pð �vp; �wpÞ �pð �wp; �upÞ
�p0ð �vp; �upÞ ; (149b)

which are real for k 2 R and satisfy

�Rp
x ðkÞ þ Rp

x ðikÞ ¼ 0; (150a)

�Rp
y ðkÞ þ Rp

y ðikÞ ¼ 0: (150b)

In addition, as it is shown in Appendix C, Rp
x;yðkÞ and

�Rp
x;yðkÞ are even functions. Similar to Eqs. (146), �Rp

x , �Rp
y

on the imaginary poles are given by

�Rp
x ð ��p

mÞ ¼ þ 3�

2

�s2ð �wp; �upÞ
�up

d �up
d
 � �vp

d �vp

d
 fBi0ð �upÞBi0ð �vpÞg2
; (151a)

�Rp
y ð ��p

mÞ ¼ � 3�

2

�2
p �p

2ð �wp; �upÞ
d �up
d
 � d �vp

d
 fBið �upÞBið �vpÞg2
; (151b)

where the variables �up, �vp, �wp,�p, and 
 on the right-hand

sides are evaluated at k ¼ ��m or ��m, respectively. �R
p
x ð ��p

mÞ,
�Rp
y ð ��p

mÞ are positive for any m and p.
According to the above, we finally obtain the longitudi-

nal field of CSR in the time domain:

~EsðzÞ ¼ 2�qe
"0h

Z 1

�1
dz0

d~�ðz0Þ
dz0

�ðz� z0Þ; (152)

�ð�Þ ¼ X1
p¼0

�p½2�ð��ÞJpð�Þ � Kpð�Þ�: (153)

Jp and Kp are given by

Jpð�Þ ¼
X1
m¼1

�
Rp
x ð�p

mÞ
�p

m
sinð�p

m�Þ þ Rp
y ð�p

mÞ
�p
m

sinð�p
m�Þ

�
;

(154)

Kpð�Þ ¼
X1
m¼1

� �Rp
x ð ��p

mÞ
��p
m

e� ��p
mj�j þ �Rp

y ð ��p
mÞ

��p
m

e� ��pmj�j
�
: (155)

Although Eq. (152) has an infinite sum with respect to the
vertical Fourier mode p, the fundamental mode dominates
the sum. In a square pipe, for example, the field magnitude
of each vertical Fourier mode is of the order of 10�3 for
p ¼ 3, and 10�5 for p ¼ 4 against the fundamental mode.
It is therefore sufficient to take the terms to p ¼ 2 or 3 in
the sum. If � ¼ 1, since the space charge effect dies out,
one can put �p ¼ 1 in Eq. (153). Furthermore, if xa ¼
�xb and � ¼ 1, we have ��p

m ¼ �p
m for the HE mode and

��p
m ¼ �p

m for the VE mode. In this special case, Rp
x;y and

�Rp
x;y have a simpler relation:

�Rp
x ðkÞ þ Rp

x ðkÞ ¼ 0; (156a)

�Rp
y ðkÞ þ Rp

y ðkÞ ¼ 0: (156b)

The longitudinal field has modes of two types: Jp is an

oscillatory mode, Kp is a damped mode (evanescent

mode). The oscillatory mode consists of the trigonometric
functions, and because of the step function, this mode
cannot overtake the source charge of � ¼ 1. In contrast
to the oscillatory mode, Kp involving the exponential

functions is a damped mode that can catch up the source
charge; the field always clings to the bunch and stays
within a short distance.
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As shown in Appendix A, the exact impedance, given by
Eq. (A1), has singularities at jkj ¼ p, and the poles reach

the singular points for infinitely wide chamber. In the
parallel plates model, correspondingly, the exponential
factors of the damped mode become

e� �kmj�j ! e�pj� j: (157)

This exponential field decay between infinite parallel
plates was predicted, i.e., the fundamental vertical mode

e�0j� j ¼ e��j�=hj agrees with Eq. (5.34b) of [5] which was
observed by considering the asymptotic behavior of the
longitudinal field at large distance in front of the source
charge. In reality, the damped mode of Eq. (155) is correct
regardless of the longitudinal distance between the ob-
server and the charge.

C. Comparison with simulation

Figure 11 shows the longitudinal field in the time do-
main given by Eq. (152). We used a Newton search to
obtain the pole values. The analytical solution (solid line)
agrees with the numerical solution (small circles) obtained
by our grid simulation using the paraxial approximation
[11,12]. The fine difference between them is due to the
transient state in the simulation, i.e., the field is still fluc-
tuating a little bit in the simulation. As the figure shows, if
we do not consider the imaginary poles (dashed line), the

analytical solution does not agree with the simulation
result, and the damped mode coming from the imaginary
poles must be taken into account. Figure 12 compares the
field in a rectangular pipe with a parallel plates model. As
we described in Sec. III B, ifw> 2h, the field in the pipe is
similar to that of parallel plates.
The Fourier transform of Eq. (67) is given as follows:

~EsðzÞ ¼ �qe
Z 1

�1
Wðz� z0Þ~�ðz0Þdz0: (158)

Accordingly, integration by parts for Eq. (152) gives the
longitudinal wakefield of CSR:

Wð�Þ ¼ � 2�

"0h

X1
p¼0

�p½2�ð��ÞUpð�Þ þ sgnð�ÞVpð�Þ�;

(159)

Upð�Þ ¼
X1
m¼1

½Rp
x ð�p

mÞ cosð�p
m�Þ þ Rp

y ð�p
mÞ cosð�p

m�Þ�;

(160)

Vpð�Þ ¼
X1
m¼1

½ �Rp
x ð ��p

mÞe� ��p
mj�j þ �Rp

y ð ��p
mÞe� ��p

mj� j�: (161)

Equation (159) depicts the longitudinal field of the oppo-
site sign at position z generated by a unit point charge at z0.

FIG. 12. (Color) Comparison of rectangular pipe with parallel
plates. The black solid line represents the field in a rectangular
pipe of w� h ¼ 5 cm� 5 cm; the cyan solid line is for a wide
pipe of w� h ¼ 10 cm� 5 cm. They are obtained from
Eq. (152). The small circles show the field between parallel
plates with a spacing h ¼ 5 cm, which is computed by a nu-
merical Fourier transform for Eq. (76). The dashed line is the
longitudinal field in free space, given by Eq. (83). The bunch is
Gaussian with a length �z ¼ 1 mm, and the charge is qe ¼
þ1 nC. The bending radius is � ¼ 10 m, and the Lorentz factor
is � ¼ 1.

FIG. 11. The longitudinal field of CSR in a square pipe. The
horizontal axis is the longitudinal position in the Gaussian bunch
in units of the rms bunch length �z ¼ 1 mm. The dot-dashed
line is the Gaussian bunch. The bunch charge is qe ¼ þ1 nC
(positron), the Lorentz factor is � ¼ 1. The solid line represents
the analytical solution of Eq. (152), the small circles indicate the
simulation result in which we set the magnet length to 20 m so
that the field becomes nearly stationary in a range of jzj< 20�z.
The dashed line is the analytical solution of Eq. (152) without Kp

of Eq. (155). The chamber cross section is xb ¼ �xa ¼ 5 cm
and h ¼ 10 cm, and the bending radius is � ¼ 10 m.
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Notice that the damped mode describes a direct interaction
between two particles on the curved orbit. Denoting the
longitudinal force due to the damped mode as ~FD

s /
sgnð�ÞVpð�Þ, we can decompose it into two terms:

~F D
s ð�Þ / �ð�Þe� �km� � �ð��Þe �km� : (162)

Equation (162) says that, when the test particle (position z)
is ahead of the source particle of the field (position z0), the
test particle is accelerated (i.e., forward force), and vise
versa. That is, ~FD

s is a repulsive force which follows the law
of action and reaction: ~FD

s ð��Þ ¼ � ~FD
s ð�Þ. Therefore, the

damped mode does not give rise to a net energy change
within a bunch. Figure 13 shows the damped mode and the
oscillatory mode. Considering a longitudinal charge distri-
bution, the damped mode is determined by the balance of
the source charges between the front and back with respect
to the observation point. Accordingly, for a Gaussian
bunch, the exponential force is zero at the bunch center.
In this regard, the damped mode somewhat resembles a
picture of usual space charge field on a straight orbit, while
it has a different dependence on the distance and on the
energy.

We would like to discuss Eq. (38) in [10], which is the
longitudinal wakefield for a single resonance mode of
CSR, induced by a single particle in a curved rectangular
waveguide. In our notation it is written as

wmð�Þ ¼ 2ßm cosðkm�Þ; (163)

where ßm is a loss factor due to the impedance of CSR.
Superposition of wm for all resonance modes gives the

longitudinal wakefield, i.e.,

Wð�Þ ¼ X1
m¼1

wmð�Þ: (164)

Considering the field causality, to be precise, Eq. (163)
should have �ð��Þ, or the integration limit of Eq. (158)
should be z0 ¼ ½z;1� for wm. Equation (163) corresponds
to Eq. (160); therefore the loss factor is obtained as

ßm ¼ � 2�

"0h

X1
p¼0

½Rp
x ð�p

mÞ þ Rp
y ð�p

mÞ�; (165)

which is also given as a resonance mode of Eq. (141) for a
unit point charge. However, Eq. (163) does not have the
damped mode of Eq. (161); the wakefield given by Eq. (38)
of [10] is therefore incomplete. CSR can overtake the field
source because the orbit is curved; one cannot apply the
usual wake-impedance relation for a straight orbit such as
in Eqs. (2.85) and (2.86) of [18]. The loss factor of
Eq. (165) is still correct, because the damped mode de-
scribes the interaction among the particles within the
bunch and thereby has no contribution to the loss factor.

VI. APPLICATION LIMIT OF THE PARAXIAL
APPROXIMATION

This section describes the conversion of the real imped-
ance given by Eq. (139) from rectangular pipe to infinite
parallel plates. This procedure is instructive to examine the
limits of the paraxial approximation. This conversion does
not agree with the assumption that the pipe width is much
smaller than the bending radius of the dipole magnet, i.e.,ffiffiffiffiffiffiffiffiffiffi
w=�

p � 1 in [10–12]; however, we will show that the
impedance is still correct.
The real impedance of Eq. (139) contains the field

damping due to an infinitesimal resistivity or energy leak
of the pipe; therefore we can just move the sidewalls away
without a particular treatment. To obtain the approximate
resonance poles on the real axis, let us rederive the results
of previous authors [2,3,10].

A. Influence of the sidewalls

At first, we will estimate the wave number which is not
affected by the sidewalls. For large real wave numbers, the
Airy functions involving the inner wall behave as

Ai ðupÞ; Ai0ðupÞ / e��u ; (166)

Bi ðupÞ; Bi0ðupÞ / eþ�u ; (167)

�u ¼ ð2=3Þu3=2p 2 R: (168)

up is defined in Eq. (93). For simplicity, we put � ¼ 1 in

discussing the shielding effect. Equations (166)–(168) give
the condition that makes the inner wall invisible:

FIG. 13. The longitudinal field of the damped mode (solid line)
and the oscillatory mode (dashed line) for a Gaussian bunch. The
parameters are the same as Fig. 11.
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2�u � 1; (169)

namely,

2

3
k�

��
p

k

�
2 þ�2xa

�

�
3=2 � 1: (170)

�u has a minimal value �min
u at k ¼ kmin:

kmin ¼ p

ffiffiffiffiffiffiffiffiffi
�

�xa

s
; (171)

�min
u ¼ ffiffiffi

3
p

pð�xaÞ: (172)

The lowest vertical mode dominates the vertical Fourier
series of the field, therefore if

� xa � h

2�
ffiffiffi
3

p ; (173)

then Eq. (170) is satisfied for8 k > 0. As we discussed in
Sec. IV, the outer wall has the same mathematical structure
as the inner wall. Accordingly, if the beam is running at the
center of the pipe, we have

w

h
� 1

�
ffiffiffi
3

p : (174)

Equation (174) roughly agrees with Eq. (91) which is the
condition that makes the sidewalls negligible in the low
frequency limit. That is, it is the condition where the
parallel plates impedance agrees with that of rectangular
pipe over the whole range of wave numbers.

Let us next consider the opposite case, i.e., w � h=�,
which is unusual in a dipole magnet of accelerators. Under
this assumption, the first term in the bracket of Eq. (170) is
much smaller than the second term; therefore the wave
number which satisfies Eq. (170) is given by

k � 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ð�2xaÞ3
s

� kðinÞth : (175)

kðinÞth is the criterion for the inner wall in the absence of the

upper-lower plates (h ! 1). If the beam travels at the
center of the cylindrical sidewalls, the criterion above
which the field does not see the sidewalls is

kðsideÞth ¼ 3

2

ffiffiffiffiffiffi
�

w3

r
: (176)

As it is understood from the parallel plates impedance
of Eq. (76), the shielding threshold of the parallel plates,
Eq. (2), is derived by solving

�w ¼ ð2=3Þw3=2
p � 1; (177)

with � ¼ 1. From Eq. (177), we actually obtain

k �
ffiffiffiffiffiffiffiffiffiffi
�

3
3
p

r
’ �

ffiffiffiffiffi
�

h3

r
¼ kth: (178)

In accordance with the condition of Eq. (169), one can use
2�w � 1 instead of Eq. (177) to obtain the shielding
threshold. In this definition the coefficient of the threshold

wave number will change by a factor of
ffiffiffi
2

p
:

kyth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

3

�
�

h

�
3

s
: (179)

The real part of the parallel plates impedance behaves as

<ZðkÞ / e�ðky
th
=kÞ2 below kyth. Regarding the shielding ef-

fect, Eqs. (176) and (179) imply the asymmetry between
the chamber width and the height:

2�

3
w $ h: (180)

The factor 2�=3 may indicate the asymmetric ratio of the
lowest contour at �2000 eV (i.e., w � h or w � h) in
Fig. 17 of [15] which shows an energy change due to CSR
for various chamber sizes. For arbitrary w and h, one can
obtain the shielding threshold by solving Eq. (170) using
Cardano’s formula for the cubic. The solution is, however,
considerably involved due to the influence both from the
upper-lower walls and the sidewalls.

B. Solution of the real poles

At high frequency such that the inner wall is invisible,

k � kðinÞth , the Airy functions AiðupÞ and Ai0ðupÞ are ex-

ponentially small as shown in Eqs. (166); then the cross
products behave for large real wave numbers as

�sðvp; upÞ ’ Ai0ðvpÞBi0ðupÞ; (181a)

�pðvp; upÞ ’ AiðvpÞBiðupÞ: (181b)

Since BiðupÞ and Bi0ðupÞ have no zeros on the real k axis,

the approximate resonance conditions are

Ai0½vpð�mÞ� ¼ 0 HE mode; (182a)

Ai½vpð�mÞ� ¼ 0 VE mode: (182b)

These are resonance conditions for the pillbox chamber of
Eq. (71) in itself. At the resonance points of the HE mode,
the cross products involving derivatives of the Airy func-
tions become as follows:

�q½vpð�mÞ; upð�mÞ� ’ Ai½vpð�mÞ�Bi0½upð�mÞ�; (183a)

�r½vpð�mÞ; upð�mÞ� ’ 0: (183b)

On the other hand, at the VE resonances, we have

�q½vpð�mÞ; upð�mÞ� ’ 0; (184a)

�r½vpð�mÞ; upð�mÞ� ’ Ai0½vpð�mÞ�Bi½upð�mÞ�: (184b)

Expanding AiðvpÞ and Ai0ðvpÞ in their asymptotic series,

Ai 0ðvpÞ ’ � ð�vpÞ1=4ffiffiffiffi
�

p cos

�
�v þ �

4

�
; (185)
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Ai ðvpÞ ’
ð�vpÞ�1=4ffiffiffiffi

�
p sin

�
�v þ �

4

�
; (186)

�v ¼ ð2=3Þð�vpÞ3=2 2 R; (187)

the resonance conditions are approximately given by

�v ¼ �ðm� dÞ ðm ¼ 1; 2; 3; . . .Þ: (188)

d is a constant of Eq. (99) and can be dropped when the
mode index m is large. From Eqs. (187) and (188), we
obtain a cubic equation:

Y3 þ bY � 1 ¼ 0; (189)

where we put

Y ¼ 1




�
2
p

xb

�
1=3

; (190)

b ¼
�

3�v
2pxb

�
2=3

: (191)

p is the pth vertical wave number given by Eq. (25); the

fundamental mode, 0 ¼ �=h, dominates the impedance
value in the vertical Fourier modes. Using Cardano’s for-
mula to solve the cubic, we get the approximate resonance
points on the real wave number axis, i.e.,

km ¼ p

ffiffiffiffiffi
�

xb

s
�

�
hðm� dÞ
xbð2pþ 1Þ

�
; (192)

where �ðrÞ is a function defined by Eq. (100).

C. Condition of the paraxial approximation

Returning to Eq. (189), we can neglect the term of Y3 in
Eq. (189) under the conditionffiffiffiffiffiffiffiffi

2xb
�

s
� p

k
; (193)

then the resonance points become equally spaced:

km ¼ ðm� dÞ�k̂; (194)

�k̂ ¼ 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ð2xbÞ3
s

: (195)

Provided that Eq. (193) holds also in the shielded region,
k < kth, the pipe width must satisfy

w � �

�
p

kth

�
2
: (196)

Since the fundamental mode is dominant in the vertical
Fourier modes, Eq. (196) is equivalent to Eq. (91), which
means k1 � kth for Eq. (194). That is, if the lowest reso-
nance occurs well below the shielding threshold of the
upper-lower walls, the sidewalls are negligible. As we

have shown in Sec. III B, if the aspect ratio of the pipe is
large, w � h=�, the low frequency components of the
field are suppressed almost only by the upper-lower walls
and do not depend on the chamber width. Therefore if the

aspect ratio is large, we do not need to assume
ffiffiffiffiffiffiffiffiffiffi
w=�

p � 1,
i.e., the chamber width can be infinitely large in the para-

xial approximation if we keep
ffiffiffiffiffiffiffiffiffi
h=�

p � 1. Owing to the
characteristics of the shielded CSR, the paraxial approxi-
mation can deal with the infinite parallel plates in the range

k � �

h
; (197)

where the shielding effect by the upper-lower plates is
considered.
On the other hand, at very high frequency, k � kth, as

the wall effect vanishes, the chamber height does not
matter and can be very large. If h ¼ �, for example, the
lowest vertical wave number is equal to the threshold wave
number of shielding: 0 ¼ kth. In this case, the valid wave
number range is given by

k � �

�
: (198)

In fact, by taking the limit as h ! 1, we obtained the free
space impedance of Eq. (79) in the framework of the
paraxial approximation. In contrast, the wakefield of
Eq. (83) was originally derived in the time domain [6,7],
where the bunch length is assumed to be much shorter than
the bending radius. This condition is equivalent to k� � 1
and consistent with the condition of the uniform asymp-
totic expansion, shown in Appendix A. According to the
above discussion, the paraxial approximation works in the
following wave number range:

k � �

min½w; h; �� : (199)

This is the condition which we assumed at (c) of Sec. II A.
To be precise, it is better to replace w in Eq. (199) by
ð2�=3Þw. Usually, one has h � w � � in accelerators;
therefore, the paraxial approximation is applicable if

�
�z

h
� 1: (200)

Then the paraxial approximation has a relative error of the

order of ð��z=hÞ2. The assumption that
ffiffiffiffiffiffiffiffiffi
h=�

p � 1 is
equivalent to 0 � kth which is needed to extend the valid
range of the wave number well below the shielding thresh-
old in order to take the wall effect into account. If a bunch
length is similar to the chamber height, the paraxial ap-
proximation breaks down. However, such a long bunch is
usually not affected by CSR, and thus there is no need to
estimate it.
One has another thing to consider at very low frequency;

that is the resistive wall effect. Although in this paper, we
have assumed a perfectly conducting pipe, in reality, as
Fig. 6 shows, the resistive wall impedance is comparable to
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CSR impedance at low frequency k� �=h. Then CSR is
overwhelmed by the resistive wall effect in k < �=h. That
is, the assumption of perfectly conducting walls also
breaks down at very low frequency.

D. Real impedance and power spectrum

Let us go back to the previous discussion about the
conversion of the impedance to that of parallel plates.
From Eqs. (183) and (184), we have

Rp
x ð�mÞ ¼

3Ai02ðwpÞ
2v0

pð�vpÞ1=2
��������k¼�m

; (201a)

Rp
y ð�mÞ ¼

3�2
p Ai

2ðwpÞ
2v0

pð�vpÞ1=2
��������k¼�m

; (201b)

where v0
p ¼ dvp=d
. If the aspect ratio of the pipe is high,

as the resonance mode index m becomes very large for a
given wave number, eventually, the resonance points of the
HE mode agree with the VE resonances, i.e., km ¼ �m ¼
�m in the limit xb ! 1. Then km becomes

km ¼ m�k̂: (202)

Accordingly, the real impedance of Eq. (139) reduces to

<ZðkÞ
Z0

¼ 2�

�h

�
2

k�

�
1=3

MðkÞ X1
p¼0

�p<F0ð�pÞ; (203)

where M is a sum with respect to the resonance mode:

MðkÞ ¼ X1
m¼�1
m�0

	ðk� kmÞ�k̂: (204)

In the limit of xb ! 1, the resonance interval �k̂ is
infinitesimal; the impedance becomes a continuous func-
tion with respect to the wave number. Consequently, M
becomes an integral:

M ¼
Z 1

�1
	ðk� k̂Þdk̂ ¼ 1; (205)

and then Eq. (203) agrees with the real part of Eq. (76). As
we have shown in Sec. III A, the real impedance can be
derived also from the imaginary impedance of Eq. (68) by
taking the limit xa ! �1 and xb ! 1 with an infinitesi-
mal damping; k ¼ kþ i� (� ! þ0).

Stupakov and Kotelnikov derived the power spectrum of
synchrotron radiation as follows [10]. Using Vainshtein’s
theory, the longitudinal electric field is described with the
group velocity which is calculated from the Poynting
vector and the energy density of the field. Considering
the energy loss rate in the high frequency limit, the power
spectrum is obtained. Since we have the impedance, the
total radiated power per unit frequency per revolution is
obtained using

dP

d!
¼ 2��jqe�ðkÞj2<ZðkÞ; (206)

where we are considering a finite �. Equation (206) is
correct only for positive real k. We now assume that the
field source is a single point charge of charge e: qe�ðkÞ ¼
e. We put t ¼ �p and bc ¼ k=
� in Eq. (203) withM ¼ 1

and consider the free space impedance. For h ! 1, similar
to Eq. (78), the sum with respect to the vertical Fourier
mode becomes the following integral:

dP

d!
¼ Z0e

2ð4k�Þ1=3
Z 1

�1
<F0ðtÞdt; (207)

¼ �Z0e
2ðk�Þ1=3

�
Ai0ðzcÞ þ b2c

21=3

Z 1

zc

AiðzÞdz
�
;

¼ Z0e
2

2�
ffiffiffi
3

p k�

�2

�
2K2=3ðk=kcÞ �

Z 1

k=kc

K1=3ðxÞdx
�
;

¼
ffiffiffi
3

p
4�

Z0e
2�

k

kc

Z 1

k=kc

K5=3ðxÞdx; (208)

where zc ¼ ð3k=2kcÞ2=3, kc is the critical wave number,
i.e., kc ¼ 3�3=2�. Thus, from the radiation impedance,
one can obtain the power spectrum of incoherent synchro-
tron radiation for a single particle.

VII. CONCLUSION

In the paraxial approximation we have obtained the
analytical expression of the longitudinal electric field of
steady CSR in the time domain, which is propagating in a
perfectly conducting rectangular pipe of constant curva-
ture. The solution is in agreement with our simulation
results using the paraxial approximation.
We have shown that the field consists of an oscillatory

mode and a damped mode. The oscillatory mode is repre-
sented by the resonance poles on the real wave number axis
and composed by superposing sinusoidal waves at the
resonance points. The oscillatory mode is always delayed
from the source charge and hence the field has a long tail
behind the bunch similar to usual wakefields on a straight
orbit. On the other hand, the damped mode is brought by
the imaginary poles of the impedance; this field can exist
also in front of the bunch; however, because of the expo-
nential decay, it always goes along with the source charge
and does not behave like a wave. This evanescent mode
forms a field of repulsive force between two particles; the
delayed particles can affect the leading particles through
this damped mode. These two kinds of modes have a
different dependence on the sidewalls of the pipe: the outer
wall dominates the oscillatory mode especially in the high
frequency; in contrast, the inner wall mainly determines
the damped mode around the bunch.
The asymptotic expansion of the impedance at low

frequency reveals that the paraxial approximation properly
considers the space charge field, though the effect is very
small at high energy: � � kh=�. The asymptotic expres-
sion also implies that the upper-lower walls of the beam
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pipe are more effective at shielding CSR than the side-
walls. The condition that makes the sidewalls negligible is
w � h=� which is about w> 2h in practice.

Our theory is based on the paraxial approximation, so
our formalism is correct provided that the longitudinal
wave number is much larger than the vertical wave num-
ber: k � �=h, and the relative error is of the order of
ð�=hkÞ2. The paraxial approximation is therefore appli-
cable for �z � h=�. In addition, the assumption of per-
fectly conducting walls also breaks down in the very low
frequency region: k & �=h. However, if the main fre-
quency components of a bunch spectrum are around the
vertical cutoff wave number, owing to the shielding effect
by the vacuum chamber, CSR would not cause a serious
issue on the bunch, unless the bunch charge is extraordi-
narily large.
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APPENDIX A: UNIFORM ASYMPTOTIC
EXPANSION FOR WARNOCK-MORTON’S

THEORY

This section describes the connection between our the-
ory and Warnock-Morton’s theory [2,4]. In this paper we
derived three longitudinal impedances of CSR: i.e., rect-
angular pipe [Eq. (69)]; pillbox chamber [Eq. (71)]; and
infinite parallel plates [Eq. (76)]. One finds that they are
similar to the ones derived by Warnock and Morton. The
torus impedance per revolution is given by

Zðn;!Þ
n

¼ iZ0

2�2�

�h

X1
p¼0

�p

�
�2Gn

x þ
2
p

�2
p

Gn
y

�
; (A1)

with

Gn
x ¼

snð�prb; �p�Þsnð�p�; �praÞ
snð�prb; �praÞ ; (A2a)

Gn
y ¼

pnð�prb; �p�Þpnð�p�; �praÞ
pnð�prb; �praÞ ; (A2b)

where pn and sn are cross products of Bessel functions of
the first and the second kind,

pnðx; yÞ ¼ JnðxÞYnðyÞ � YnðxÞJnðyÞ; (A3a)

snðx; yÞ ¼ J0nðxÞY0
nðyÞ � Y0

nðxÞJ0nðyÞ: (A3b)

p is the vertical wave number given by Eq. (25). �p is the

radial wave number:

�2
p ¼ ð�kÞ2 � 2

p; (A4)

which is imaginary in jkj<p=�. The parameters ra, rb
are the inner and the outer torus radii, respectively,

ra ¼ �þ xa; (A5a)

rb ¼ �þ xb: (A5b)

If one defines the impedance at the center of the transverse
beam position as we did, the form factor of the vertical
beam distribution �p is given by Eq. (70). The impedance

of Eq. (A1) looks similar to Eq. (69) but still differs. That
is, the field has a periodic boundary condition along the
orbit in their theory because of the circular motion of the
beam; therefore, the field is composed of frequency com-
ponents whose wavelengths are multiple integers of the
orbital circumference:

n ¼ k�; (A6)

where n 2 Z is the harmonic number of the field along the
circumference. The following figurative examples may
illustrate the difference between their theory and ours.
Imagine a recording hard disk; Warnock-Morton’s theory
writes data as fitting with the former data, while our theory
just overwrites data as if there is nothing before. One can
have another interpretation for our chamber model. The
space has another dimension; the beam pipe stretches
towards the extra dimension like a spiral staircase. As the
bunch travels along the spiral pipe, it always emits radia-
tion toward the extra dimension; hence, the new radiation
has no interference with the previous fields. Because of
such a chamber structure, in spite of the fact that the beam
pipe is assumed to have infinite length with a constant
curvature, rigorously speaking, our chamber model is not
a torus; the field has no periodic boundary condition along
the beam orbit. For removing the inner wall to obtain the
pillbox impedance of Eq. (71) in Sec. III A, it is therefore
necessary to take the limit: xa ! �1 (not xa ! ��).
Considering an actual accelerator, the wavelength of

CSR is much shorter than the circumference of the ring;
we do not have to consider the periodic boundary condition
along the ring. It means in terms of mathematics that we
can make a uniform asymptotic expansion (Olver expan-
sion) for their impedance. That is, we can take the limit
n ! 1 along n ¼ x for JnðxÞ, YnðxÞ, and their derivatives.
This expansion is applied in [2,3] to write a numerical code
or to derive the approximate resonance points, which is
shown in Sec. IVA. Let us derive our impedance of
Eq. (69) from Eq. (A1). Applying the uniform asymptotic
expansion for large n given by 9.3.35–9.3.37 and 9.3.43–
9.3.45 in [14]:
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JnðnzÞ ¼ þgðzÞ
�
Aiðn2=3�Þ

n1=3
þOðn�5=3Þ

�
; (A7a)

YnðnzÞ ¼ �gðzÞ
�
Biðn2=3�Þ

n1=3
þOðn�5=3Þ

�
; (A7b)

J0nðnzÞ ¼ � 2

zgðzÞ
�
Ai0ðn2=3�Þ

n2=3
þOðn�4=3Þ

�
; (A7c)

Y0
nðnzÞ ¼ þ 2

zgðzÞ
�
Bi0ðn2=3�Þ

n2=3
þOðn�4=3Þ

�
; (A7d)

where gðzÞ is

gðzÞ ¼
�

4�

1� z2

�
1=4

: (A8)

z and � are not the longitudinal coordinates but variables
which satisfy the following relation:

2

3
ðþ�Þ3=2 ¼ log

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
z

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ðz < 1; � > 0Þ;

(A9a)

2

3
ð��Þ3=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
� cos�1

�
1

z

�
ðz > 1; � < 0Þ: (A9b)

The truncation in the uniform asymptotic series yields the
relative error 	1 which is estimated by

	1 ’ c0ð�Þ
ðk�Þ2=3 ; (A10)

where c0ð�Þ is given by 9.3.46 of [14] and has a value of

about c0ð0Þ ¼ 22=3=10 
 0:158 74. In deriving Eq. (7), the

leading term we neglected is O½ðk�Þ�2=3� which corre-
sponds to 	1. In practice, the typical bunch length �z (or
structure size in the bunch) which concerns with harmful
CSR is very short, i.e., the typical wave number is very

large, ðk�Þ�2=3 � ð�z=�Þ2=3 � 1; therefore we can neglect
the truncation error 	1.

The argument of the Bessel functions is

nz ¼ �pð�þ xÞ; (A11)

the relevant variable z is identified to

z ¼
�
1þ x

�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p

k2
� 1

�2

s
; (A12)

where x represents xa, xb, or 0 for ra, rb, or � in Eq. (A1).
We assume that the vertical wave number is much smaller
than the longitudinal one (paraxial approximation):

�1 ¼
p

k
� 1: (A13)

In addition, we assume the following things:

�2 ¼ 1

�
� 1; (A14)

�3 ¼
ffiffiffiffi
x

�

s
� 1: (A15)

Equation (A15) is a condition in deriving Eq. (7). One
would think that it contradicts the limit w ! 1. In prac-
tice, it is sufficient to consider a region for x in which CSR
exists: x� 
�1 in free space, or x� �1

p between parallel

plates. In other words, Eq. (A15) is equivalent to 1=k� �
1 or

ffiffiffiffiffiffiffiffiffi
h=�

p � 1, respectively. So one can take the limit as
w ! 1 later with a virtual damping. z is close to 1 under
the assumptions from Eqs. (A13)–(A15),

1� z2 ¼ �21 þ �22 � 2�23 þOð�4i Þ; (A16)

� is approximately obtained as

� ¼ 1� z2

22=3

�
1þ 2

5
ð1� z2Þ þO½ð1� z2Þ2�

�
; (A17)

and the relative error is of the order of Oð�2i Þ. In general, z
is a complex variable and changes from a real number to a
purely imaginary number at k ¼ �p=� where ðJn; YnÞ
are analytically continued into ðIn; KnÞ. The real notation is
switched from ðJn; YnÞ to ðIn; KnÞ in jkj<p=�. The

asymptotic expression in the low frequency limit, given
by Eq. (87), was derived with Debye expansion (9.7.7–
9.7.10 of [14]) for In, Kn [16].
The variables of the Airy functions are given by

n2=3� ¼ ðk�=2Þ2=3ð1� z2Þf1þOð�2i Þg; (A18)

’ wp � �: (A19)

wp is defined by Eq. (28); � represents �a, �b, or 0

corresponding to ra, rb, or �. Then the cross products of
the Bessel functions, pnðx; yÞ, snðx; yÞ, are expanded for
large n and become the Airy functions:

lim
n!1ðn=2Þ

2=3pnð�prb; �praÞ ¼ � �pðvp; upÞ; (A20a)

lim
n!1ðn=2Þ

4=3snð�prb; �praÞ ¼ ��sðvp; upÞ=�2: (A20b)

In the conditions of Eqs. (A13) and (A14), the radial wave
number is close to the longitudinal wave number,

2
p

�2
p

¼ �21f1þOð�21; �22Þg: (A21)

Taking the zeroth order term in Eq. (A21) yields the
relative truncation error:

	2 ¼
2
p

k2
þ 1

�2
; (A22)

which determines the accuracy of the paraxial approxima-
tion, because the error 	1 of Eq. (A10) is usually smaller
than 	2. In general, the paraxial approximation for classi-
cal electromagnetic waves is a zeroth order theory for
Maxwell equations with respect to � ¼ k?=k; the formal-
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ism has a local error of the second order in � [20], where k?
is the transverse wave number of field and is equivalent to
the inverse transverse expanse of the electromagnetic
wave. CSR has a transverse wave number:

k? ¼
8<
:

 in free space;

p

�
between parallel plates;
in a rectangular pipe ðw * hÞ;

(A23)

correspondingly, the paraxial approximation produces in-
accuracies of 	1 and 	2.

To obtain the impedance per unit length, we divide
Eq. (A1) by the circumference of the ring; finally, substi-
tution of the cross products of Eqs. (A20) gives

Zðk�; �kÞ
Z0

¼ � 2�i

�h

�
2

k�

�
1=3 X1

p¼0

�pð �Gx þ �2
p
�GyÞ: (A24)

Thus we can obtain our CSR impedance for rectangular
pipe also from Warnock-Morton’s impedance. Other im-
pedances, pillbox chamber and infinite parallel plates, can
be obtained in a similar manner. The Airy function Ci ¼
Ai� iBi corresponds to the Hankel function Hð1Þ

n ¼ Jn þ
iYn in their formalism. Comparing with Eq. (A1),
Eq. (A24) has the single variable k and is free of high
order Bessel functions. However, the application range is
limited in k � �=h, i.e., the longitudinal wave number
must be much larger than the waveguide cutoff. In other
words, if a bunch length is similar to the chamber height,
the paraxial approximation will break down, while
Eq. (A1) is right for any wave number.

APPENDIX B: EXPANSION OF THE IMPEDANCE
IN THE LOW FREQUENCY LIMIT

To obtain the impedance in the low frequency limit, we
need to expand the cross products of the Airy functions,
�sðx; yÞ and �pðx; yÞ, in two steps: (i) the asymptotic series
expansion of the Airy functions for large arguments, given
by 10.4.59–10.4.67 of [14]; (ii) Taylor series expansion for
every portion in the asymptotic expressions. In the low
frequency limit, the cross products �pðvp; upÞ and �sðvp; upÞ
are expanded as follows. Applying the asymptotic expan-
sion of the Airy functions, they are given by

�pðvp; upÞ ¼
ðupvpÞ�1=4

2�
ðS1e�u��v � S2e

�v��uÞ; (B1a)

�sðvp; upÞ ¼ � ðupvpÞ1=4
2�

ðS3e�u��v � S4e
�v��uÞ: (B1b)

up and vp are defined in Eqs. (93) and (94). �u and �v are

�u ¼ ð2=3Þu3=2p ; �v ¼ ð2=3Þv3=2
p : (B2)

S1, S2, S3, and S4 are the following sums:

S1 ¼
X1
m¼0

X1
n¼0

ð�1Þn cmcn
�mu �

n
v

; (B3a)

S2 ¼
X1
m¼0

X1
n¼0

ð�1Þm cmcn
�mu �

n
v

; (B3b)

S3 ¼
X1
m¼0

X1
n¼0

ð�1Þn dmdn
�mu �

n
v

; (B3c)

S4 ¼
X1
m¼0

X1
n¼0

ð�1Þm dmdn
�mu �

n
v

: (B3d)

The expansion coefficients cn, dn are

cn ¼ �ð3nþ 1=2Þ
54nn!�ðnþ 1=2Þ ; dn ¼ � 6nþ 1

6n� 1
cn: (B4)

They have the following relations, respectively:

c21 þ c1 ¼ 2c2; d21 þ d1 ¼ 2d2: (B5)

We define � as

� ¼ 1

4�3
p

’ 1

2�

�
k

kth

�
2
; (B6)

which is much smaller than one at low frequency: k < kth.
�p is the vertical wave number of Eq. (26). We expand all

equations from Eqs. (B2) to (B3) and also ðupvpÞ�1=4 of

Eqs. (B1) in Taylor series to the second order in �. For
exponential factors in Eqs. (B1), as the zeroth order terms
cancel out on the power, it is necessary to expand both �u
and �v to the third order with respect to �:

6��u ¼ 1� 6�x̂a þ 6ð�x̂aÞ2 þ 4ð�x̂aÞ3; (B7)

6��v ¼ 1� 6�x̂b þ 6ð�x̂bÞ2 þ 4ð�x̂bÞ3: (B8)

x̂a and x̂b are parameters related to the position of the inner
and outer walls:

x̂a ¼ p

�
xa � �

2�2

�
; (B9a)

x̂b ¼ p

�
xb � �

2�2

�
: (B9b)

Equations (B3) are expanded to the second order as

S1 ¼ 1þ 5�2

2
ðx̂a � x̂b þ 1Þ; (B10)

S2 ¼ 1þ 5�2

2
ðx̂b � x̂a þ 1Þ; (B11)

S3 ¼ 1� 7�2

2
ðx̂a � x̂b þ 1Þ; (B12)

S4 ¼ 1� 7�2

2
ðx̂b � x̂a þ 1Þ: (B13)

ðupvpÞ�1=4 in Eqs. (B1) are given by
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�p

ðupvpÞ1=4
¼ 1þ �ðx̂a þ x̂bÞ þ �2

�
5

2
ðx̂a þ x̂bÞ2 � 4x̂ax̂b

�
;

(B14a)

ðupvpÞ1=4
�p

¼ 1� �ðx̂a þ x̂bÞ � �2
�
3

2
ðx̂a þ x̂bÞ2 � 4x̂ax̂b

�
:

(B14b)

Then the cross products in the denominators of the imped-
ance are expanded as follows:

��p �pðvp; upÞ ¼ A1 sinhðx̂b � x̂aÞ þ A2 coshðx̂b � x̂aÞ;
(B15a)

� �

�p

�sðvp; upÞ ¼ B1 sinhðx̂b � x̂aÞ þ B2 coshðx̂b � x̂aÞ;

(B15b)

where A1, A2, B1, and B2 are given by

A1 ¼ 1þ �ðx̂a þ x̂bÞ þ �2

2
fðx̂2a � x̂2bÞ2

� 8x̂ax̂b þ 5ðx̂a þ x̂bÞ2 þ 5g; (B16a)

A2 ¼ �ðx̂2a � x̂2bÞ þ
�2

2

�
4

3
ðx̂3a � x̂3bÞ þ 2ðx̂a þ x̂bÞðx̂2a � x̂2bÞ

þ 5ðx̂a � x̂bÞ
�
; (B16b)

B1 ¼ 1� �ðx̂a þ x̂bÞ þ �2

2
fðx̂2a � x̂2bÞ2 þ 8x̂ax̂b

� 3ðx̂a þ x̂bÞ2 � 7g; (B16c)

B2 ¼ �ðx̂2a � x̂2bÞ þ
�2

2

�
4

3
ðx̂3a � x̂3bÞ � 2ðx̂a þ x̂bÞðx̂2a � x̂2bÞ

� 7ðx̂a � x̂bÞ
�
: (B16d)

Then we take terms to the order of ��2 in Eqs. (B16). By
putting xa ¼ 0 or xb ¼ 0 in Eqs. (B9), we can obtain all
cross products, e.g., �pðwp; upÞ, �sðvp; wpÞ, which are parts

of the impedance. If the sidewalls are symmetric with
respect to the beam, i.e., xa þ xb ¼ 0, the summand of
Eq. (69) is expanded as

�G x þ �2
p
�Gy ¼

p�

�


�
3�SðpwÞ �

p�

�2
TðpwÞ

�
:

(B17)

The functions SðxÞ, TðxÞ are given by Eqs. (85) and (86).
We thus derived the asymptotic expression of the imped-
ance in the low frequency limit, which is given by Eq. (84).
As we mentioned, however, since our theory is based on
the paraxial approximation, the asymptotic form is valid in
the region: �=h � k < kth.

APPENDIX C: MULTIVALUE PROBLEM IN THE
IMPEDANCE

Function 
 has a unique value for positive real wave
numbers, but it is multivalued for imaginary wave numbers
and negative real ones. In this section we will show that the
impedance of Eq. (69) does not depend on the choice for 
,
but it is unique for any real wave numbers and purely

imaginary numbers. For a multivalued number, c ¼
ð�1Þ1=3, if we select c ¼ �1, all arguments of the Airy
functions up, vp, and wp do not change as k goes to ik, so

this case is trivial. Next we denote ei�=3 as &:

& � ei�=3; (C1)

and consider the values c ¼ &�1. For the rotation of k ! ik
in the complex wave number plane, the variables of the
Airy functions change as follows:

upðikÞ ¼ &2 �upðkÞ; (C2)

vpðikÞ ¼ &2 �vpðkÞ; (C3)

wpðikÞ ¼ &2 �wpðkÞ: (C4)

We apply identities of the Airy functions, 10.4.6–10.4.9 of
[14]:

Aið&�2zÞ ¼ &�1

2
½AiðzÞ  iBiðzÞ�; (C5a)

Bið&�2zÞ ¼ &�1

2
½BiðzÞ  3iAiðzÞ�; (C5b)

Ai0ð&�2zÞ ¼ &1

2
½Ai0ðzÞ  iBi0ðzÞ�; (C5c)

Bi0ð&�2zÞ ¼ &1

2
½Bi0ðzÞ  3iAi0ðzÞ�; (C5d)

where z is an arbitrary complex variable, and the primes
denote the derivatives with respect to the argument. By
these identities, the cross products change as

�pð&�2x; &�2yÞ ¼ &�2 �pðx; yÞ; (C6a)

�qð&�2x; &�2yÞ ¼ �qðx; yÞ; (C6b)

�rð&�2x; &�2uÞ ¼ �rðx; yÞ; (C6c)

�sð&�2x; &�2yÞ ¼ &2 �sðx; yÞ: (C6d)

Using Eqs. (C6), one can show that the following relations
hold for any value of c:

RjðikÞ þ �RjðkÞ ¼ 0; (C7)

where Rj, �Rj (j ¼ x, y) are given by Eqs. (143) and (149),

respectively. We define Px and Py as
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PxðkÞ ¼ 


k

�sðvp; wpÞ�sðwp; upÞ
�sðvp; upÞ ; (C8a)

PyðkÞ ¼ �2
p




k

�pðvp; wpÞ �pðwp; upÞ
�pðvp; upÞ : (C8b)

Px þ Py is the imaginary impedance of Eq. (69) omitting

the coefficient. Similarly, we define �Px and �Py as

�PxðkÞ ¼ 


k

�sð �vp; �wpÞ �sð �wp; �upÞ
�sð �vp; �upÞ ; (c9a)

�PyðkÞ ¼ �2
p




k

�pð �vp; �wpÞ �pð �wp; �upÞ
�pð �vp; �upÞ : (C9b)

From Eqs. (C6), it is shown for any value of c that

PjðikÞ ¼ i �PjðkÞ; (C10)

where j ¼ x, y. If xa þ xb ¼ 0 and � ¼ 1, the variable of
the Airy functions have special relations as

upðikÞ ¼ c�2vpðkÞ; (C11)

vpðikÞ ¼ c�2upðkÞ; (C12)

wpðikÞ ¼ c�2wpðkÞ: (C13)

Then the following relations hold:

RjðkÞ þ �RjðkÞ ¼ 0; (C14)

PjðkÞ þ �PjðkÞ ¼ 0: (C15)

In this case the impedance of a rectangular pipe has a
symmetry between the real axis and the imaginary axis:

Zð�ikÞ ¼ iZðkÞ: (C16)

For negative real wave numbers, the variable 
 becomes


ð�kÞ ¼ c2
ðkÞ: (C17)

Then the variables of the impedance change as follows:

upð�kÞ ¼ c2upðkÞ; (C18)

vpð�kÞ ¼ c2vpðkÞ; (C19)

wpð�kÞ ¼ c2wpðkÞ; (C20)

�2
pð�kÞ ¼ c2�2

pðkÞ: (C21)

For c ¼ �1, it is merely identity and trivial. For other
values, c ¼ &�1, the variables can be treated in the same
manner as the imaginary wave numbers. Then one finds

Rjð�kÞ ¼ þRjðkÞ; (C22)

Pjð�kÞ ¼ �PjðkÞ; (C23)

Zð�kÞ ¼ Z�ðkÞ: (C24)

In the paraxial approximation, thus the CSR impedance of
a rectangular pipe has a unique value for any wave number
on the real axis and the imaginary axis (while the parallel
plates impedance depends on the branch nb 2 Z in argkþ
2�nb). We used the symmetries of PjðkÞ, �PjðkÞ and RjðkÞ,
�RjðkÞ to investigate the pole structure in Sec. IVand also to

rearrange the integral of Eq. (147).
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