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We have developed a theory to calculate both longitudinal and transverse impedances of a resistive

short (typically shorter than the chamber radius) insert with cylindrical symmetry, sandwiched by

perfectly conductive chambers on both sides. It is found that unless the insert becomes extremely thin

(typically a few nm for a metallic insert) the entire image current runs on the thin insert, even in the

frequency range where the skin depth exceeds the insert thickness, and therefore the impedance increases

drastically from the conventional resistive-wall impedance. In other words, the wakefields do not leak out

of the insert unless it is extremely thin. Formulas of the impedance valid for various cases of the insert are

categorized in summary.
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I. INTRODUCTION

The impedance of a finite-length, resistive insert in a
beam pipe has recently been studied in several reports [1–
4]. To simplify this complicated problem, it is often as-
sumed that the skin depth is smaller than the radius of the
chamber and its thickness, and therefore investigations
have been limited to the behavior of the impedance in a
high frequency region [2,3]. In this case, the wakefields
inside the chamber are completely shielded and do not leak
out of the insert. However, in the frequency region where
the skin depth exceeds the chamber thickness, these theo-
ries are no longer valid.

In proton synchrotrons, the inner surface of a short
ceramic break is normally coated by a thin (typically about
10 nm) titanium nitride (TiN) to suppress the secondary
emission of electrons. The skin depth can be larger than the
thickness of the TiN coating in low frequency, and the
wakefields may interact with the outside world through
the coating. It is thus important to construct a theory of
resistive insert taking into account its thickness effects.

The resistive-wall impedance has been studied for many
years and many formulas are obtained [5–8]. But, those
formulas are sometimes applicable only to a relativistic
beam with a limited frequency range. Recently, Burov and
Lebedev, and Metral et al. have calculated the resistive-
wall impedance of chambers composed of more than one
layer [9–11]. Their theories, however, assume a beam pipe
with translational symmetry. For a finite-length insert in a
beam pipe, a new theory is needed.

Recently, we have developed the theory to describe the
impedance of a gap that is sandwiched by perfectly con-
ductive chambers [12]. This theory gives us basic under-
standing of the interaction between a beam and a gap.
Replacing this gap by an insert, we can construct a theory
of the impedance of the insert as a three-dimensional

problem. The main difference between a gap and an insert
is that the insert has a finite skin depth, and this skin depth
effect will modulate how wakefields propagate in the
chamber and the impedance of the insert.
We consider only cylindrical symmetric problems in this

paper. The main objective is to study how the impedance
will change from that of the conventional resistive-wall
theory to that of a gap when the thickness of the insert is
changed compared to the skin depth. We develop a theory
to describe the impedance of a short insert with cylindrical
symmetry by generalizing the theory of impedance of a
gap. In Secs. II and III, we develop the theory of both the
longitudinal and transverse impedances, respectively. In
these sections, we compare the impedance of the resistive
wall with finite thickness and that of the short insert. The
paper is summarized in Sec. IV.
In numerical examples shown in the figures, unless

specified otherwise, we consider a beam pipe radius a ¼
5 cm with an insert of length g ¼ 8 mm, and conductivity
�c ¼ 6� 106=� m. This can be a model for a short
ceramic break with TiN coating in a copper beam pipe.

II. LONGITUDINAL IMPEDANCEOFARESISTIVE
INSERT IN A BEAM PIPE

Let us start with deriving electromagnetic fields gener-
ated by the interaction between a beam and an insert in the
cylindrically symmetric system. We use the cylindrical
coordinates ð�; �; zÞ as shown in Fig. 1. We assume that
both the sandwiching chambers and the insert have thick-
ness t and the inner radius of a. The insert is located in the
region where�w< z < w (namely, the length of the insert
g is equal to 2w).
In order to obtain formal solutions of the fields, we apply

the field matching technique to this system. We assume
that the beam has the cylindrically uniform density with the
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radius of � and its total charge is 1C. Namely, its current
density is given by

jz ¼ �c½1��ð�� �Þ�e�jkzþj!t=ð��2Þ; (1)

where�ðxÞ is the step function, k ¼ !=�c, � ¼ v=c, v is
the velocity of the beam, c is the velocity of light, ! ¼
2�f, and f is the frequency. The formal solutions of the
fields at the frequency ! inside the chamber are given by
(see Appendix A)

Ez ¼ jk

�2

cZ0

��2

�
1
�k2
� �I0ð �k�ÞK1ð �k�Þ

�k

�
e�jkz

þ
Z 1

�1
dhAðhÞe�jhz J0ð��Þ

J0ð�aÞ ; (2)

H� ¼ �c

��
K1ð �k�ÞI1ð �k�Þe�jkz

þ jk�

Z0

Z 1

�1
dhAðhÞe�jhz J1ð��Þ

�J0ð�aÞ ; (3)

for � < �, and

Ez ¼ jcZ0

���
I1ð �k�ÞK0ð �k�Þe�jkz

þ
Z 1

�1
dhAðhÞe�jhz J0ð��Þ

J0ð�aÞ ; (4)

H� ¼ �c

��
I1ð �k�ÞK1ð �k�Þe�jkz

þ jk�

Z0

Z 1

�1
dhAðhÞe�jhz J1ð��Þ

�J0ð�aÞ ; (5)

for � > �, where �k ¼ k=�, � is the Lorentz factor, AðhÞ is
the expansion coefficient, Z0ð¼ 120�Þ is the impedance of

free space, JmðzÞ is the Bessel function, and � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2 � h2

p
. The time dependence of the fields is assumed

to be harmonic and it is expressed as the complex expo-
nential ej!t. Since Ez on the inner surface of the chamber
should be zero except in the insert, the expansion coeffi-
cient AðhÞ should satisfy the following relation:

jcZ0

���
I1ð �k�ÞK0ð �kaÞe�jkz þ

Z 1

�1
dhAðhÞe�jhz

¼
� ~V1

2w for � w< z < w
0 otherwise;

(6)

where ~V1 is the voltage inside the insert at � ¼ a. Here the
assumption was made that the longitudinal length of the
insert g is short (typically shorter than the radius of the
chamber) and thus, the z dependence of Ez on the insert can
be negligible. Then, the expansion coefficient AðhÞ is
rewritten by the insert voltage ~V1 as

jcZ0

���
I1ð �k�ÞK0ð �kaÞ�ðh� kÞ þ AðhÞ ¼ ~V1

2�

sinhw

hw
: (7)

Substituting Eq. (7) into Eqs. (2)–(5), we obtain

Ez ¼ jcZ0

��2�

�
1
�k
� �I0ð �k�ÞK1ð �k�Þ

� �I0ð �k�ÞI1ð �k�ÞK0ð �kaÞ
I0ð �kaÞ

�
e�jkz

þ ~V1

2�

Z 1

�1
dhe�jhz J0ð��Þ

J0ð�aÞ
sinhw

hw
; (8)

H� ¼ �c

��

�
K1ð �k�Þ þ I1ð �k�ÞK0ð �kaÞ

I0ð �kaÞ
�
I1ð �k�Þe�jkz

þ ~V1

2�

jk�

Z0

Z 1

�1
dhe�jhz J1ð��Þ

�J0ð�aÞ
sinhw

hw
; (9)

for � < �, and

Ez ¼ jcZ0

���
I1ð �k�Þ

�
K0ð �k�Þ � I0ð �k�ÞK0ð �kaÞ

I0ð �kaÞ
�
e�jkz

þ ~V1

2�

Z 1

�1
dhe�jhz J0ð��Þ

J0ð�aÞ
sinhw

hw
; (10)

H� ¼ �c

��
I1ð �k�Þ

�
K1ð �k�Þ þ K0ð �kaÞI1ð �k�Þ

I0ð �kaÞ
�
e�jkz

þ ~V1

2�

jk�

Z0

Z 1

�1
dhe�jhz J1ð��Þ

�J0ð�aÞ
sinhw

hw
; (11)

for � > �.
For the fields outside the chamber, we follow Silver and

Saunders’s theory [13] and describe those as (see
Appendix B)

Ez ¼
~V2

2�

Z 1

�1
Hð2Þ

0 ð��Þ
Hð2Þ

0 ½�ðaþ tÞ�
sinhw

hw
e�jhzdh; (12)

H� ¼ j
�k

Z0

~V2

2�

Z 1

�1
Hð2Þ

1 ð��Þ
�Hð2Þ

0 ½�ðaþ tÞ�
sinhw

hw
e�jhzdh;

(13)

FIG. 1. (Color) The insert (denoted by green objects), which is
sandwiched by the perfectly conductive metal chambers and the
cylindrical coordinate system ð�; �; zÞ.
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for � > aþ t, where Hð2Þ
m ðzÞ is the Hankel functions of the

second kind and ~V2 is the voltage inside the insert at � ¼
aþ t. Here we should notice that Eq. (12) satisfies the
condition that it should be zero on the outer surface of the
chamber except in the insert. These insert voltages ~V1 and
~V2 will be determined by boundary conditions.
In order to match the solution for � < a and that for � >

aþ t, we have to find the relation of fields at � ¼ a and
� ¼ aþ t, especially inside the insert. Hence, as shown in

Fig. 2, we consider the one-dimensional problem of a wall
with thickness t in free space. We call region (x < 0) region
I, (0< x < t) region II, and (t < x <1) region III. The
beam running in region I creates fields on the inner surface
of the wall (x ¼ 0), which are written as Ezð0Þ and H�ð0Þ.
If we assume that the insert obeys Ohm’s law, ~j ¼ �c

~E,
Maxwell equations in region II are written as follows:

� @Ez

@x
ðxÞ ¼ �jk�Z0H�ðxÞ; (14)

@H�ðxÞ
@x

¼
�
�c þ j

k��0

Z0

�
EzðxÞ; (15)

where �0 is the relative dielectric constant of the insert,
usually negligible compared to the first term in Eq. (15)
[14]. The solutions are

EzðxÞ ¼ Ezð0Þ cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0

�
�c þ j

k��0

Z0

�s
x

þH�ð0Þ
jZ0k� sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�c þ j k��0

Z0
Þ

q
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jk�Z0ð�c þ j k��0
Z0

Þ
q ; (16)

H�ðxÞ ¼ H�ð0Þ cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0

�
�c þ j

k��0

Z0

�s
xþ Ezð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�c þ j k��0

Z0
Þ

q
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�c þ j k��0

Z0
Þ

q
x

jZ0k�
: (17)

Since the fields inside the chamber [given by Eqs. (4) and (5)] and outside the chamber [given by Eqs. (12) and (13)]
must be connected through the relations (16) and (17), one of the insert voltages ~V1 can be solved as follows:

~V 1 ¼ �

2�cZ0I1ð �k�Þe�jkz

jk2�aI0ð �kaÞ ð1þ k2�2w tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�cþjk��

0
Z0

Þ
q

t

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�cþjk��

0
Z0

Þ
q Þ

J þ Y � ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�cþjk��

0
Z0

Þ
q

k2�2w
þ k2�2wJY

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�cþjk��

0
Z0

Þ
q Þ tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�c þ j k��0

Z0
Þ

q
t

; (18)

where J and Y are defined as

J ¼ 1

2w

Z 1

�1
dh

Z w

�w
d	

e�jhðz�	Þ

�

J1ð�aÞ
J0ð�aÞ ; Y ¼ � 1

2w

Z 1

�1
dh

Z w

�w
d	

e�jhðz�	Þ

�

Hð2Þ
1 ½�ðaþ tÞ�

Hð2Þ
0 ½�ðaþ tÞ� ; (19)

z is the matching point that should be inside of the insert, i.e.,�w< z < w. The average value of Ez [expressed by Eq. (2)
over �] gives the coupling impedance (see Appendix A 1). Since the condition

k2�2w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�c þ j k��0

Z0
Þ

q
w

tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0

�
�c þ j

k��0

Z0

�s
t � 1 (20)

is satisfied in most of the cases, it can be approximately expressed as

ZL ¼ � jZ0

k���2

�
1� 2K0ð �kaÞI21ð �k�Þ

I0ð �kaÞ
� 2I1ð �k�ÞK1ð �k�Þ

�
Lþ Zinsert;L; (21)

FIG. 2. Awall with thickness t, the conductivity of �c, and the
relative dielectric constant of �0. The beam runs in region I.
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Zinsert;L ’ 4Z0I
2
1ð �k�Þe�jkz

j���2a �k3I20ð �kaÞ½J þ Y � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�cþjk��

0
Z0

Þ
q

k2�2w
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�c þ j k��0

Z0
Þ

q
t�
; (22)

where L is the length of the beam pipe. The first term in Eq. (21) represents the nonrelativistic space charge impedance
(see Appendix A 1) [12]. The second term Zinsert;L in Eq. (21) is the coupling impedance of the insert.

The integration of the Bessel functions can be done simply by picking up residues in the complex plane h. However, the
integration of the Hankel functions is a quite complicated and difficult task since there are branch points at h ¼ �k� in the
complex plane h. To proceed further, we follow the manipulation explained in Ref. [12]. We first rewrite the integration of
the Hankel functions as shown in Eq. (C3). This manipulation enables the integration of the Hankel functions over h with
the usual residue theorem. We choose the path of integration to be below the poles for h < 0 and above the poles for h > 0.
Finally, we obtain the expression of the longitudinal coupling impedance as

ZL;insert ¼ 4Z0I
2
1ð �k�Þe�jkz

j���2a �k3I20ð �kaÞ½Ypole þ Ycut �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�cþjk��

0
Z0

Þ
q

k2�2w
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�c þ j k��0

Z0
Þ

q
t�
; (23)

where

Ypole ¼ �X1
s¼1

�að2� e�jðbs=aÞðzþwÞ � ejðbs=aÞðz�wÞÞ
wb2s

; (24)

Ycut ¼ � 1

w�ðaþ tÞ
Z 1

0
d


2� e
�jðzþwÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2þ 


ðaþtÞ2
q

� e
jðz�wÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2þ 


ðaþtÞ2
q


ðk2�2 þ 

ðaþtÞ2ÞHð1Þ

0 ðejð�=2Þ ffiffiffi



p ÞHð2Þ
0 ðejð�=2Þ ffiffiffi



p Þ ’

2ð1� jÞffiffiffiffiffiffiffiffiffiffi
k�w

p : (25)

Here, b2s ¼ k2�2a2 � j20;s ¼ ��2
s ; j0;s are sth zeros of

J0ðzÞ and Hð1Þ
m ðzÞ is the Hankel function of the first kind.

We should notice that bs approaches �j�s for j0;s > k�a.
In the above derivation, we used Eqs. (C1) and (C3) of
Appendix C. The integration in Eq. (25) over 
 is much
more straightforward than the integration in Eq. (22) over
h, since there is no singular point except 
 ¼ 0 along the
integration path.

A. Frequency dependence and length dependence of the
impedance

In this subsection, we assume that the chamber thickness
t satisfies the condition

t > tmin �
�

4g

�2Z3
0�

3
c

�
1=4

: (26)

We exclude an extremely thin insert case here. This as-
sumption allows us to neglect the effect from radiation
terms such as Ypole and Ycut in Eq. (23) in the low frequency

region where the skin depth exceeds the insert thickness t.
The thickness tmin is typically a few 10 nm for a metallic
insert.

Krinsky et al. and Stupakov [2,3] studied the impedance

of a short insert. Their results indicate that when g �
ðZ0�a

4=4�Þ1=3 and

f � fD � c

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z0�c

g

s
; (27)

(the frequency fD is typically of the order of THz in our
short insert), then

ZL ’ ð1� jÞ2Z0
ffiffiffi
g

p
2�a

ffiffiffiffiffiffiffi
�k

p ; (28)

and is proportional to
ffiffiffi
g

p
.

Let us consider the case that the thickness of the insert is

larger than 21=2�3=4tmin and see if our theory can reproduce
Eq. (28) in the extremely high frequency region f � fD.
In this frequency region, we may take a limit of t to infinity
in Eq. (23), and the following inequality can be applied to
Eq. (23):

jYcutj �
���������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0�c

p
k2�2w

þ Ypole

��������: (29)

Then, Eq. (23) becomes

ZL;insert ’
ð1� jÞ2Z0

ffiffiffi
g

p
2�aI20ð �kaÞ

ffiffiffiffiffiffiffiffiffiffi
��k

p ; (30)

by choosing the matching point z as zero for an extremely
thin beam (the beam radius � ¼ 0). Specifically for a
relativistic beam, Eq. (30) reproduces Eq. (28). These
results show that the impedance decreases in proportion
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to k�1=2 in the extremely high frequency, as predicted by
the diffraction theory [15].

In the intermediate region of f � fD where the skin
depth � is still smaller than the insert thickness t, we can
apply the following inequality to Eq. (23):

jYpole þ Ycutj �
���������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0�c

p
k2�2w

��������: (31)

We then obtain the conventional formula of the resistive-
wall impedance for a relativistic beam [7]:

ZL;insert ’ gZ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!

cZ0�c

s
1þ j

4�a
; (32)

which is proportional to the length of the insert g.
In the low frequency region where the skin depth ex-

ceeds the insert thickness t,

f < f� � c

�Z0�ct
2
; (33)

but the effect from radiation terms such as Ypole and Ycut are

still negligible in Eq. (23), we obtain

ZL;insert ’ g

2�a�ct
: (34)

When the thickness of the insert is smaller than

21=2�3=4tmin but larger than tmin, Eq. (34) becomes valid
all the way up to fD.

B. Dependence of the insert impedance on its thickness

Before studying the thickness dependence of the insert
impedance, let us study the thickness dependence of the
resistive-wall impedance in order to compare them with
our results afterwards. We numerically calculate the
resistive-wall impedance for different thicknesses of the
chamber by borrowing the general formulas of the
resistive-wall impedance with finite thickness from
Metral et al.’s recent work [10] (see Appendix A 2):

ZL ¼ � jZ0g �k

2���

�
K0ð �kaÞ
I0ð �kaÞ

þ C3

�
; (35)

where

C3 ¼ ½�cZ0K0ð �kaÞI1ð�2aÞ þ j���2K1ð �kaÞI0ð�2aÞ��� �cZ0K0ð �kaÞK1ð�2aÞ þ j���2K1ð �kaÞK0ð�2aÞ
½��cZ0I0ð �kaÞI1ð�2aÞ þ j���2I1ð �kaÞI0ð�2aÞ��þ �cZ0I0ð �kaÞK1ð�2aÞ þ j���2I1ð �kaÞK0ð�2aÞ

; (36)

� ¼ �cZ0K1½�2ðaþ tÞ�K0½ �kðaþ tÞ� � j���2K0½�2ðaþ tÞ�K1½ �kðaþ tÞ�
�cZ0I1½�2ðaþ tÞ�K0½ �kðaþ tÞ� þ j���2I0½�2ðaþ tÞ�K1½ �kðaþ tÞ� ; (37)

where �2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ jk�Z0�c

p
. The results for a relativistic

beam are shown in Fig. 3. The red, the blue, and the black
lines show the cases that the insert thickness t is equal to
infinity, 10 m and 1 m, respectively. The impedance
starts to deviate from that for the infinitely thick chamber
when the skin depth exceeds the chamber thickness.
Apparently, the wakefields leak out at low frequency. The
dependence of ZL on the conductivity �c, the frequency f,
and the chamber thickness t, for the case that the skin depth
exceeds t, can be approximately written as

<½ZL� ’ 2g�Z2
0�cf

2t3

3ac2
: (38)

Contrary to our intuition, the impedance becomes larger as
the conductivity of the material �c increases.

Now, let us discuss the properties of the impedance of
the insert by changing the thickness of it. The thickness
dependence of the real part of the insert impedance ob-
tained by Eq. (23) is shown in Fig. 4. The red, the blue, the
black, the black dashed, the black dot, the green and the
blue dashed, and the red dashed lines represent the cases
that the thickness t is equal to 100 m, 10 m, 1 m,
100 nm, 10 nm, 1 nm, 100 pm, and 10 pm, respectively.
When the skin depth is smaller than the thickness of the
insert but the frequency f is lower than fD, the impedance
of the insert is identical to the resistive-wall impedance

given by Eq. (32) (see the results for the case that t is equal
to 100 m). As we find from the result of t ¼ 10 m in
Fig. 4, if the skin depth exceeds the insert thickness [f� ’
0:42 GHz in this case; see Eq. (33)], the real part of the
impedance becomes independent of the frequency. The
imaginary part is still inductive for the insert with this
thickness. This indicates that the whole wall current runs
in the thin insert, despite the fact that the skin depth
exceeds the insert thickness in most of the frequencies.
In other words, the beam current is completely shielded by
the wall current in the insert, and the wakefields do not
propagate out of the chamber. If this picture is correct, the
real part of impedance should be equal to the resistance of
the wall current Zwall. Actually, the results of t ¼ 1 m to
t ¼ 100 nm (even including the result of 10 nm that is
smaller than tmin) described in Fig. 4 are equal to the
resistance of the wall current Zwall:

Zwall ¼ g

�c�½ðaþ tÞ2 � a2� ’
g

2�a�ct
: (39)

This behavior of the insert impedance is quite different
from that of the resistive-wall impedance of the chamber
with finite thickness for a relativistic beam, which was
discussed in the first paragraph of this subsection.
When the thickness of the insert is extremely thin like

t � tmin, the situation is quite different from the above
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case. The results of t ¼ 1 nm to t ¼ 10 pm in Fig. 4
correspond to this case. The frequency fD and the skin
depth � are no longer dominant parameters. The new
parameter,

fc � �2
cZ

2
0t

2c

4�g
; (40)

plays a more important role in the impedance. In the

frequency region f � fc, the contribution from the wall
current dominates in the impedance. In the rest of the
frequency, the radiation effects become dominant contri-
butions. The dips for these cases in Fig. 4 correspond to the
cutoff frequencies of the chamber. The imaginary part of
impedance becomes capacitive, which is opposite to the
result of t > tmin.
Figure 5 represents the dependence of the impedance on

the length of the insert g when the thickness of the insert t
is equal to 1 nm and Lorentz factor � is equal to 1000. The
red, the blue, and the black lines show the longitudinal
impedances per a unit length for the cases that the length of
the insert g is equal to 2 mm, 8 mm, and 18 mm, respec-
tively. The impedances themselves (not normalized by the
gap length g) are proportional to

ffiffiffi
g

p
in f > fc, while they

are proportional to g in f � fc. As the insert becomes
longer, the frequency fc becomes lower [see Eq. (40)], and
the frequency rangewhere the radiation effects dominate in
the impedance becomes wider.
The physical reason of why the whole wall current tends

to run on the thin insert except for the extremely thin insert
case is that the nature tries to minimize the energy loss of a
beam, which is smaller when the wall current runs on the
thin insert with large resistance than when it converts to the
radiation out to free space ð¼ gap impedanceÞ. When t �
tmin, the real part of the correct impedances using the
present theory is smaller than the hypothetical impedances
calculated by extending the simple formula (39) to these
extreme thicknesses. The real part of the impedance, i.e.
the energy loss of a beam, becomes smaller by the wall
current converting to outer radiation than it staying in the
extremely thin insert.

FIG. 5. (Color) The longitudinal impedances per a unit length
for the case that the thickness of the insert t is equal to 1 nm and
Lorentz factor � is equal to 1000. The red, the blue, and the black
lines show the cases that the length of the insert g is equal to 2, 8,
and 18 mm, respectively. The impedance itself (not normalized
by the gap length g) is proportional to

ffiffiffi
g

p
in f > fc, while it is

proportional to g in f � fc.

FIG. 4. (Color) The thickness dependence of the longitudinal
impedance of the insert in the relativistic beam case. The red, the
blue, the black, the black dashed, the black dot, the green, and
the blue dashed and the red dashed lines represent the cases that
thickness t is equal to 100 m, 10 m, 1 m, 100 nm, 10 nm,
1 nm, 100 pm, and 10 pm, respectively. The matching point is
z ¼ 0.

µ

FIG. 3. (Color) The dependence of the real part of the longitu-
dinal resistive-wall impedance of a uniform beam pipe (no
insert) on the thickness of the chamber. The length of the
beam pipe g ¼ 8 mm. Lorentz factor � ¼ 1000. The red, the
blue, and the black lines show the cases that the chamber
thickness t is equal to infinity, 10 and 1 m, respectively. The
impedance for finite thickness starts to deviate from that for
infinite thickness at the frequency where the skin depth exceeds
the chamber thickness.
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Finally, we briefly mention the nonrelativistic beam case
for the insert that satisfies t > tmin as a typical case. The
same discussion as in the relativistic beam case is valid in
this case as well. Simple formula which is based on the
formulas

Zwall ¼ g

��c½ðaþ �Þ2 � a2� ; (41)

and Eq. (39) in the frequency region where the skin depth is
smaller than the thickness t, and is larger than the thickness
t, respectively, provides good approximation to the correct
impedance of the insert.

III. TRANSVERSE IMPEDANCE OF A RESISTIVE
INSERT IN A BEAM PIPE

Following the manipulation for the longitudinal case, we
consider the situation where a beam is traveling in the
chamber with the charge distribution of the azimuthal
dependence as jz ¼ q�c�ð�� rbÞ cos�e�jkz=�rb. At
first, we describe fields inside the chamber as in Ref. [12]
(see Appendix A):

Ez ¼ i1

�
jk

�2

cZ0

�

�
K1ð �krbÞ � K1ð �kaÞ I1ð

�krbÞ
I1ð �kaÞ

�
I1ð �k�Þ e

�jkz

rb

þ ~V2

Z 1

�1
dhe�jhz sinhw

hw

J1ð��Þ
J1ð�aÞ

�
cos�; (42)

for � < rb and

Ez ¼ i1

�
jk

�2

cZ0

�
K1ð �k�ÞI1ð �krbÞ e

�jkz

rb

þ
Z 1

�1
dhAðhÞe�jhz J1ð��Þ

J1ð�aÞ
�
cos�; (43)

H� ¼ i1

�
c�

�k

2�
½K0ð �k�Þ þ K2ð �k�Þ�I1ð �krbÞ e

�jkz

rb

�
Z 1

�1
dhe�jhz jh

�2

�
BðhÞJ1ð��Þ
�J1ð�aÞ

þ k��

Z0h
AðhÞ J

0
1ð��Þ
J1ð�aÞ

��
cos�; (44)

Hz ¼ i1
Z 1

�1
dhBðhÞe�jhz J1ð��Þ

J1ð�aÞ sin�; (45)

E� ¼ i1

�
cZ0

��
K1ð �k�ÞI1ð �krbÞ e

�jkz

rb
þ

Z 1

�1
dhe�jhz jk�Z0

�2

�
�
BðhÞ� J01ð��Þ

J1ð�aÞ þ
h

Z0k��
AðhÞ J1ð��Þ

J1ð�aÞ
��

sin�;

(46)

for � > rb, where i1 ¼ qrb, and AðhÞ and BðhÞ are expan-

sion coefficients. Since Ez and E� on the inner surface of
the chamber should be zero except in the insert, the ex-
pansion coefficients AðhÞ and BðhÞ should satisfy the fol-
lowing relations:

jk

�2

cZ0

�
K1ð �kaÞI1ð �krbÞ e

�jkz

rb
þ

Z 1

�1
dhAðhÞe�jhz

¼
�
� ~V2

w for � w< z < w
0 otherwise;

(47)

cZ0

�a
K1ð �k�ÞI1ð �krbÞ e

�jkz

rb

þ
Z 1

�1
dhe�jhz jk�Z0

�2

�
BðhÞ� J01ð�aÞ

J1ð�aÞ þ
h

Z0k�a
AðhÞ

�

¼
� � ~V1

w for � w< z < w

0 otherwise;
(48)

where ~V1 and ~V2 are the voltages inside the insert at � ¼ a.
Then, the expansion coefficients AðhÞ and BðhÞ are rewrit-
ten by the insert voltages ~V1 and ~V2 as

jk

�2

cZ0

�
K1ð �kaÞI1ð �krbÞ�ðh� kÞ

rb
þ AðhÞ ¼ ~V2

sinhw

hw
;

(49)

cZ0

�a
K1ð �k�ÞI1ð �krbÞ�ðh� kÞ

rb

þ jk�Z0

�2

�
BðhÞ� J01ð�aÞ

J1ð�aÞ þ
h

Z0k�a
AðhÞ

�
¼ ~V1

sinhw

hw
:

(50)

Substituting Eqs. (49) and (50) into Eqs. (43)–(46), we
obtain

Ez ¼ i1

�
jk

�2

cZ0

�

�
K1ð �k�Þ � I1ð �k�Þ

I1ð �kaÞ
K1ð �kaÞ

�
I1ð �krbÞ e

�jkz

rb

þ ~V2

Z 1

�1
dhe�jhz sinhw

hw

J1ð��Þ
J1ð�aÞ

�
cos�; (51)

H� ¼ i1

�
c�

�k

2�
½K0ð �k�Þ þ K2ð �k�Þ�I1ð �krbÞ e

�jkz

rb

þ c�
�k

�I1ð �kaÞ
K1ð �kaÞI01ð �k�ÞI1ð �krbÞ

e�jkz

rb

� i1
Z 1

�1
dhe�jhz jh

Z0�

� ~V1J1ð��Þ
jk��J01ð�aÞ

þ ~V2

�
k�J01ð��Þ
hJ1ð�aÞ � hJ1ð��Þ

�k�a�2J01ð�aÞ
���

cos�;

(52)
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Hz ¼ i1
Z 1

�1
dhe�jhz sinhw

hw

�
~V1 � jh ~V2

�2a

�
�

jk�Z0

J1ð��Þ
J01ð�aÞ

� sin�; (53)

E� ¼ i1

�
cZ0

��

�
K1ð �k�Þ� I1ð �k�Þ

I1ð �kaÞ
K1ð �kaÞ

�
I1ð �krbÞe

�jkz

rb

þ ~V1

Z 1

�1
dhe�jhz sinhw

hw

J01ð��Þ
J01ð�aÞ

þ ~V2

Z 1

�1
dhe�jhz jh

�2

sinhw

hw

�
J1ð��Þ
�J1ð�aÞ�

J01ð��Þ
aJ01ð�aÞ

��
� sin�; (54)

for � > rb.
Second, we have to know fields outside the chamber to

apply the field matching technique [6]. They are (see
Appendix B)

Ez ¼ i1V2

Z 1

�1
dh

Hð2Þ
1 ð��Þ

Hð2Þ
1 ½�ðaþ tÞ�

sinhw

hw
e�jhz cos�;

(55)

H� ¼ i1V2

Z 1

�1
dh

�
�j

k�

Z0

H0ð2Þ
1 ð��Þ

�Hð2Þ
1 ½�ðaþ tÞ� þ j

h2

�

� Hð2Þ
1 ð��Þ

Z0k�ðaþ tÞ�3H0ð2Þ
1 ½�ðaþ tÞ�

�

� sinhw

hw
e�jhz cos�� i1V1

Z 1

�1
dh

h

�

� Hð2Þ
1 ð��Þ

Z0k��H0ð2Þ
1 ½�ðaþ tÞ�

sinhw

hw
e�jhz cos�;

(56)

Hz ¼ �
Z 1

�1
dhj�2

�
i1V1 � j

i1V2h

ðaþ tÞ�2

�

� Hð2Þ
1 ð��Þ

Z0k��H0ð2Þ
1 ½�ðaþ tÞ�

sinhw

hw
e�jhz sin�; (57)

E� ¼ i1V2

Z 1

�1
dh

�
j

h

��2

Hð2Þ
1 ð��Þ

Hð2Þ
1 ½�ðaþ tÞ� � j

h

ðaþ tÞ�2

� H0ð2Þ
1 ð��Þ

H0ð2Þ
1 ½�ðaþ tÞ�

�
sinhw

hw
e�jhz sin�

þ i1V1

Z 1

�1
dh

H0ð2Þ
1 ð��Þ

H0ð2Þ
1 ½�ðaþ tÞ�

sinhw

hw
e�jhz sin�;

(58)

whereHð2Þ
m ðzÞ is the Hankel function of the second kind, the

prime means the differential by its argument z, V1, and V2

are the voltages inside the insert at � ¼ aþ t. In the
process of obtaining the above equation, we used the
approximation that V1 and V2 are almost constant.
We have to find the relation between fields at � ¼ a and

those at � ¼ aþ t. Similarly to the longitudinal imped-
ance, let us assume that the relation is approximately
obtained by solving the one-dimensional problem as shown
in Fig. 2. Maxwell equations in region II depicted in Fig. 2
are given by

@E�

@x
ðxÞ ¼ �jk�Z0HzðxÞ; (59)

� @HzðxÞ
@x

¼
�
�c þ j

k��0

Z0

�
E�ðxÞ; (60)

in addition to Eqs. (14) and (15). In addition to Eqs. (16)
and (17), the solutions are

E�ðxÞ ¼ E�ð0Þ cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0

�
�c þ j

k��0

Z0

�s
x

�Hzð0Þ
jZ0k� sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�c þ j k��0

Z0
Þ

q
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jk�Z0ð�c þ j k��0
Z0

Þ
q ; (61)

HzðxÞ ¼ Hzð0Þ cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0

�
�c þ j

k��0

Z0

�s
x� E�ð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�c þ j k��0

Z0
Þ

q
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0ð�c þ j k��0

Z0
Þ

q
x

jZ0k�
: (62)

Since the fields given by Eqs. (51)–(54) and those given by Eqs. (55)–(58) must be connected through these relations
[Eqs. (16), (17), (61), and (62)], one of the insert voltages ~V2 can be solved as

~V 2 ¼ jcZ0I1ð �krbÞe�jkz

�karbI1ð �kaÞð� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0�c

p
k2�2w

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0�c

p
tþ P� P3Þ

; (63)
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P ¼ 1

2w

Z 1

�1
dh

Z w

�w
d	

e�jhðz�	Þ

�

�
H0ð2Þ

1 ½�ðaþ tÞ�
Hð2Þ

1 ½�ðaþ tÞ� �
J01ð�aÞ
J1ð�aÞ

�
; (64)

P3 ¼ 1

2w

Z 1

�1
dh

Z w

�w
d	e�jhðz�	Þ h2

k2�2�3

�
Hð2Þ

1 ð�ðaþ tÞÞ
ðaþ tÞ2H0ð2Þ

1 ½�ðaþ tÞ� �
J1ð�aÞ
a2J01ð�aÞ

�
; (65)

where z is the matching point of magnetic fields.
If we substitute Eq. (63) into Eq. (42) and use the Panofsky-Wenzel theorem [7,16], we can finally obtain the expression

for the transverse impedance as

ZT ¼ RZ0k

j�3�rb

�
K1ð �krbÞ � K1ð �kaÞ I1ð

�krbÞ
I1ð �kaÞ

�
� � ~V2

c��I1ð �kaÞ
sinkw

kw
: (66)

The first term of Eq. (66) represents the transverse space charge impedance for a nonrelativistic beam (see Appendix A)
[12], while the second term gives the transverse insert impedance ZT;insert. Using Eqs. (C1), (C2), (C4), and (C5), we can
rewrite ZT;insert as

ZT;insert ’ � jZ0I1ð �krbÞe�jkz

��rbakI
2
1ð �kaÞð� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0�c

p
k2�2w

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0�c

p
tþ Y0

pole þ Y0
cutÞ

; (67)

where

Y0
pole ¼

X1
s¼1

�
��að2� e�jðb1;s=aÞðzþwÞ � ejðb1;s=aÞðz�wÞÞ

wb21;s
þ �aJ1ðj01;sÞð2� e�jðb0

1;s
=aÞðzþwÞ � ejðb

0
1;s
=aÞðz�wÞÞ

k2�2a2wj021;sJ001 ðj01;sÞ
�

� �Hð2Þ
1 ðh01;0Þð2� e�j½d0

1;0
=ðaþtÞ�ðzþwÞ � ej½d

0
1;0
=ðaþtÞ�ðz�wÞÞ

k2�2ðaþ tÞwh021;0H00ð2Þ
1 ðh01;0Þ

þ �ð2� e�jk�ðzþwÞ � ejk�ðz�wÞÞ
wk2�2

�
�

Hð2Þ
1 ðh01;0Þ

ðaþ tÞh021;0H00ð2Þ
1 ðh01;0Þ

� 1

2a

�
; (68)

Y0
cut ¼ � 1

�ðaþ tÞw
Z 1

0
d


ð2� e�jðzþwÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2þ
=ðaþtÞ2

p
� ejðz�wÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2þ
=ðaþtÞ2

p
Þ


ðk2�2 þ 

ðaþtÞ2ÞHð1Þ

1 ðejð�=2Þ ffiffiffi



p ÞHð2Þ
1 ðejð�=2Þ ffiffiffi



p Þ

þ
Z 1

0
d


ðe�jðzþwÞk� þ ejðz�wÞk� � e�jðzþwÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2þ
=ðaþtÞ2

p
� ejðz�wÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2þ
=ðaþtÞ2

p
Þ

k2�2ðaþ tÞ�w
2H0ð1Þ
1 ðejð�=2Þ ffiffiffi



p ÞH0ð2Þ

1 ðejð�=2Þ ffiffiffi



p Þ

’ 4tan�1 1ffiffiffiffiffiffiffiffiffiffiffi
2jkw

p þ
�2þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jk�w

p
sinh�1 e�jð�=4Þffiffiffiffiffiffiffiffiffi

2k�w
p þ e�jðzþwÞk� þ ejðz�wÞk�

k2�2ðaþ tÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jk�w

p ; (69)

where b1;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2a2 � j21;s

q
, b01;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2a2 � j021;s

q
,

d01;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2a2 � h021;0

q
, jn;s are the sth zeros of JnðzÞ, j01;s

are the sth zeros of J01ðzÞ, h01;0 ¼ 0:501 184þ j0:643 545:

the 0th zero of H0ð2Þ
1 ðzÞ (the differential of the Hankel

function of the second kind) and Hð1Þ
1 ðzÞ is the Hankel

function of the first kind. We should notice that b01;s ap-

proaches �j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j021;s � k2�2a2

q
for j021;s > k2�2a2. Again, we

reach the equation where the integration over 
 is just

straightforward for numerical calculations, since there is
no singular point along the integration path.

A. Parameter dependence of the transverse impedance

Now let us examine the frequency dependence of the
transverse impedance. We start to study from the extremely
high frequency and then will gradually lower the fre-
quency. When the thickness of the insert is larger than

21=2�3=4tmin [see Eq. (26)], the wakefield leaks out of the
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insert in the high frequency region specified by f � fD
[see Eq. (27)]. In this frequency range, the transverse
impedance is approximately given by

ZT ’ ð1� jÞZ0

ffiffiffiffiffiffi
kg

p
8

ffiffiffi
2

p
��2aI21ð �kaÞ

; (70)

which becomes for a relativistic beam

ZT ’ ð1� jÞZ0
ffiffiffi
g

p
2

ffiffiffi
2

p
k3=2a3

: (71)

In the frequency region where f � fD but still the skin
depth is smaller than the insert thickness, the impedance is
approximately written as

ZT;insert ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�Z0

p
gI1ð �krbÞ

2��rba
ffiffiffiffiffiffi
�c

p
I21ð �kaÞ

; (72)

which reproduces the conventional resistive-wall imped-
ance for a relativistic beam [7]:

ZT;insert ¼ gc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0!�c

2c

s
1þ j

��c!a3
: (73)

In a lower frequency where the skin depth exceeds the
thickness of the insert, the impedance becomes

ZT;insert ¼ gc

2�2fa3�ct
: (74)

When the thickness of the insert is smaller than

21=2�3=4tmin but larger than tmin, Eq. (74) gives correct
impedance all the way up to fD. Finally, in the region of

f � fL � 3c

4�Z0�cta
; (75)

the wakefields leak out of the insert again. It is almost
identical to the gap impedance Zgap;? described in

Ref. [12], and goes down toward zero as the frequency
approaches to zero.

Now, we consider the thickness dependence of the in-
sert. The dependence of the real part of the insert imped-
ance on the insert thickness is shown in Fig. 6. The red, the
blue, the black, the black dashed, the black dot, the green,
the blue dashed, and the red dashed lines represent the
cases for the thickness t equal to 100 m, 10 m, 1 m,
100 nm, 10 nm, 1 nm, 100 pm, and 10 pm, respectively.
Similar to the longitudinal case, we at first consider the
case that the thickness of the insert t is larger than tmin. The
result of t ¼ 100 m in Fig. 6 corresponds to the case that
the skin depth � is smaller than the thickness of the insert t,
which reproduces Eq. (73). The results of t ¼ 10 m to
t ¼ 100 nm in Fig. 6 represent the case that the skin depth
� exceeds the thickness of the chamber t except at the low
frequency extreme f � fL [see Eq. (75)]. These imped-
ances (even including the result for 10 nm which is smaller
than tmin) agree very well with those obtained from the
simple formula,

<½ZT� ’ 2�c

a2!
Zwall ¼ �cg

2�2fa3�ct
; (76)

where Zwall is identical to Eq. (39). The case of t ¼ 10 m
especially helps us to understand the behavior of the real
part of the impedance, which starts to deviate from Eq. (73)
and becomes proportional to f�1 when the skin depth
exceeds the insert thickness [f < f�; see Eq. (33)]. In the
frequency region specified by fL < f < f�, the whole wall
current runs on the thin insert, and wakefields are still
confined inside the chamber. Contrary to the longitudinal
impedance, this picture of the insert impedance is appli-
cable to that of the resistive-wall impedance for the trans-
verse impedance. We numerically calculate the resistive-
wall impedance for different thicknesses of the chamber by
borrowing the general formula (A49) of the resistive-wall
impedance with finite thickness from the recent work of
Metral et al. [10] (see Appendix A 2). The results for a
relativistic beam are shown in Fig. 7. The red, the blue, the
black, the black dashed, and the black dotted lines show the
cases that the insert thickness t is equal to infinity, 10 m,
1 m, 100 nm, and 10 nm, respectively. The entire wall
current runs on the chamber for the resistive-wall imped-
ance as well, after the skin depth exceeds the chamber
thickness. But at the region f < fL (but not quite lower as
in the short insert) where the skin depth is much larger than
the chamber thickness, the resistive-wall impedance starts
to fall off.
In the case that the thickness of the insert t is extremely

thin like t � tmin, the situation becomes significantly dif-
ferent. The results of t ¼ 1 nm to 10 pm in Fig. 6 corre-

FIG. 6. (Color) The thickness dependence of the transverse
impedance of the insert for the relativistic beam case. The red,
the blue, the black, the black dashed, the black dot, the green, the
blue dashed, and the red dashed lines represent the cases that
thickness t is equal to 100 m, 10 m, 1 m, 100 nm, 10 nm,
1 nm, 100 pm, and 10 pm, respectively. The impedance becomes
proportional to f�1, when the skin depth exceeds the insert
thickness. The matching point is z ¼ 0.
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spond to this case. The parameter fL should be replaced by
a new parameter:

fr � 1

2�

�
2gc3

Z2
0�

2
ca

4t2

�
1=3

: (77)

Contrary to the longitudinal case, fr as well as fc [see
Eq. (40)] are used to classify the property of the impedance
along the frequency axis. In the frequency region fr <
f � fc, the contribution from the wall current dominates
in the impedance, while the radiation effects dominate in
the rest of the frequency. Figure 8 shows the dependence of
the impedance on the length of the insert g where the
thickness of the insert t is equal to 10 nm and Lorentz
factor � is equal to 1000. The red, the blue, and the black
lines show the transverse impedance per a unit length for
the cases that the length of the insert g is equal to 2 mm,
8 mm, and 18 mm, respectively. Since the wall current
effect dominates in the impedance in the frequency region
fr < f � fc, the impedance is proportional to the length
of the insert g. The impedance is proportional to

ffiffiffi
g

p
in the

higher frequency region, as the contributions from the
radiation dominate in the impedance. The wakefield makes
dips in the impedance curve for the frequency that is larger
than the cutoff frequency of the chamber. Especially, in the
case of the infinitesimally thin insert, the impedance is
identical to the gap impedance, in the entire frequency.
Like the longitudinal case, the transition thickness of the
insert at which the wall current starts converting to the
outer radiation from running on the thin insert is deter-

mined by which case minimizes the impedance and thus
the energy loss of a beam. Figure 9 demonstrates this fact
by comparing the correct impedances with the hypothetical
ones obtained by extending the simple formula (76) to
these extreme thicknesses.
Finally we briefly mention the nonrelativistic beam case.

The same discussion as in the relativistic beam case is valid
in this case as well. The transverse resistive-wall imped-
ance [10,11] well describes that of a short insert except the
extremely thin case like t < tmin and in the low frequency
extreme: f � fL.

FIG. 7. (Color) The dependence of the real part of the transverse
resistive-wall impedance of a uniform beam pipe (no insert) on
the thickness of the chamber. The length of the beam pipe g ¼
8 mm. Lorentz factor � ¼ 1000. The red, the blue, the black, the
black dashed, and the black dotted lines show the cases that the
chamber thickness t is equal to infinity, 10 m, 1 m, 100 nm,
and 10 nm, respectively. The impedance for finite thickness
starts to deviate from that for infinite thickness at the frequency
where the skin depth exceeds the chamber thickness.

FIG. 8. (Color) The real part of the transverse impedance per a
unit length for the case that the thickness of the insert t is equal
to 10 nm and Lorentz factor � is equal to 1000. The red, the blue,
and the black lines show the case the length of the insert g is
equal to 2, 8, and 18 mm, respectively.

FIG. 9. (Color) The transverse impedances for the case of t �
tmin. The green solid and dashed, the blue solid and dashed, and
the red solid and dashed lines show the cases that the thickness of
the insert t is equal to 1 nm, 100 pm, and 10 pm, respectively.
The solid lines are based on the present theory, while the dashed
lines are calculated hypothetically by extending the simple
formula (76) to these extreme thicknesses.
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IV. SUMMARY

We have developed the theory to describe the longitudi-
nal and the transverse impedances of a short insert with
cylindrical symmetry sandwiched by the perfectly conduc-
tive chambers by generalizing the theory of a gap imped-
ance. When the thickness of the insert t is larger than

21=2�3=4tmin½¼ ð16g�=Z3
0�

3
cÞ1=4�, the impedance by our

theory in the frequency region of f�ð¼ c=�Z0�ct
2Þ<

f � fDð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2Z0�c=2�

2g
p Þ reproduces the results of the

resistive-wall impedance. Moreover, the result by our the-
ory in the higher frequency region is consistent with the
prediction of the diffraction theory. Formulas valid for
various cases of inserts (including the resistive-wall im-
pedance) are categorized in Table I.

An interesting finding for the short insert is that when
the thickness of the insert t is larger than tmin½¼ ð4g=
�2Z3

0�
3
cÞ1=4� (typically a few 10 nm for a metallic insert

and a few times larger than the thickness of TiN coating
inside a short ceramic break in a proton synchrotron), the
entire wall current runs in the thin insert even when the skin
depth exceeds the thickness of the insert [strictly speaking,
except the low frequency extreme given by f � fLð¼ 3c=
4�Z0�ctaÞ for the transverse impedance] and therefore the
impedances increase drastically from the conventional
resistive-wall impedance. This feature of the short insert
does not depend on whether a beam is relativistic or not. In
other words, this behavior is quite different from that of the
resistive-wall impedances, especially from the longitudinal

impedance for a relativistic beam. In this resistive-wall
case the wakefields immediately propagate out of the
chamber once the skin depth exceeds the thickness of the
chamber.
The physical reason of why the whole wall current tends

to run on the thin insert except for the extremely thin insert
case is that the nature tries to minimize the energy loss of a
beam, which is smaller when the wall current runs on the
thin insert with large resistance than when it converts to the
radiation out to free spaceð¼ gap impedanceÞ.
Only when the thickness of the insert t is smaller than

tmin, the contribution from the wall current in the imped-
ance of the short insert starts to diminish. For the longitu-
dinal impedance, the parameter fcð¼ �2

cZ
2
0t

2c=4�gÞ
specifies the upper limit of the frequency where the wall
current effects are dominant in the impedance. As the
insert becomes thinner, this upper limit moves to a lower
frequency. For the transverse impedance, the another pa-

rameter fr½¼ ðgc3=4�3Z2
0�

2
ca

4t2Þ1=3� specifies the lower

limit of the frequency region where the wall current effects
are dominant. As the insert becomes thinner, the lower
limit moves to a higher frequency, and as a result, the
frequency region where the wall current effects dominate
in the impedance becomes narrower from the both sides.
Finally, for the extremely thin insert, both the longitudinal
and the transverse impedances by our theory converge to
those of the gap impedance.
Since these parameters fc and fr, that specify the wall

current dominant region, are proportional to t2=g and

TABLE I. Valid formulas categorized according to various cases of inserts, where a is the
radius of the chamber, g is the length of the insert, t is the thickness of the insert, c is the velocity
of light, Z0ð¼ 120�Þ is the impedance of free space, �c is the conductivity of the insert, f is the

frequency, �ð¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=�Z0f�c

p Þ is the skin depth, f� ¼ c=�Z0�ct
2, fL ¼ 3c=4�Z0�cta, fD ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2Z0�c=2�
2g

p
, fc ¼ �2

cZ
2
0t

2c=4�g, fr ¼ ðgc3=4�3Z2
0�

2
ca

4t2Þ1=3, and tmin ¼ ð4g=�2Z3
0�

3
cÞ1=4.

Type of Z Conditions Relativistic beam Nonrelativistic beam

ZL Arbitrary Eq. (23)
t

tmin
> 21=2�3=4 f < f� Eq. (39) for <½ZL�

f� < f � fD Eq. (32) Eq. (41) for <½ZL�
f � fD Eq. (30)

1< t
tmin

< 21=2�3=4 f < fD Eq. (39) for <½ZL�
f � fD Eq. (30)

t
tmin

� 1 f � fc Eq. (39) for <½ZL�
f > fc Zgap;k in [12]

ZT Arbitrary Eq. (67)
t

tmin
> 21=2�3=4 f � fL Zgap;? in [12]

fL < f < f� Eq. (76) for <½ZT�
f� < f � fD Eq. (73) Eq. (72)

f � fD Eq. (70)

1< t
tmin

< 21=2�3=4 f � fL Zgap;? in [12]

fL < f < fD Eq. (76) for <½ZT�
f � fD Eq. (70)

t
tmin

< 1 fr < f � fc Eq. (76) for <½ZT�
ðf � frÞ [ ðfc < fÞ Zgap;? in [12]
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ðg=t2Þ1=3, respectively, the increase of the length of the
insert g has a similar effect on the impedance as the
reduction of the insert thickness, especially when the
thickness of the insert is smaller than tmin.

It is remarkable that the parameters tmin and fD are

proportional to g1=4 and g�1=2, respectively. Then, the
longer the length of the insert g is, the more easily the
radiation effect appears in the impedances. In general, as
the insert becomes longer (but still shorter than the radius
of the chamber), the wakefields tend to propagate out of the
insert.
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APPENDIX A: SOLUTIONS INSIDE THE
CHAMBER

The Maxwell equations can be written as wave equa-
tions. Assuming that electromagnetic fields have time de-
pendency of ej!t, they become Helmholtz equations:

ð�þ k2�2Þ ~E ¼ jk�Z0
~jþ ~rðcZ0 ��Þ; (A1)

ð�þ k2�2Þ ~H ¼ � ~r� ~j: (A2)

In the cylindrical coordinates for an axially symmetric
structure, the wave equation for the longitudinal compo-
nent of the electric and magnetic field contains no trans-
verse field component. They are decoupled. For the
longitudinal field, there is a source term cZ0@ ��=@zþ
jk�Z0jz, while the z component of ~r� ~j vanishes for
particles with the longitudinal velocity only.

We assume that a macroparticle with charge q travels
along the pipe at the constant radial offset position � ¼ rb,
� ¼ �b with velocity �c in the longitudinal direction.

Then, the charge density is expressed as

�� ¼ im
r1þm
b

�ð�� rbÞ�pð�� �bÞ�ðz� �ctÞ

¼ X1
m¼0

Z dk

2�
im�m; (A3)

�m ¼ 1

�r1þm
b ð1þ �m0Þ

�ð�� rbÞ cosmð�� �bÞe�jkðz��ctÞ;

im ¼ qrmb ; (A4)

where �ðxÞ is the � function, �pð�Þ is the periodic �

function, and �m;n is the Kronecker �. Since the general

solution of Maxwell equations is obtained by the superpo-
sition of those for im�m, we choose im�m as the source
term. Let us define the source field specified with subscript
S as the solution which satisfies the Maxwell equations

with �m, ~jm and vanishes at � ! 1. It is given by

HS
� ¼ ES

� ¼ HS
z ¼ 0; (A5)

ES
z ¼

8<
:

jkcZ0I0ð �krbÞ
2��2 K0ð �k�Þe�jkz for � > rb;

jkcZ0K0ð �krbÞ
2��2 I0ð �k�Þe�jkz for rb > �;

(A6)

�

Z0

ES
� ¼ HS

� ¼
8<
:

�kcI0ð �krbÞ
2�� K1ð �k�Þe�jkz for � > rb;

� �kcK0ð �krbÞ
2�� I1ð �k�Þe�jkz for rb > �;

(A7)

for m ¼ 0, and

HS
z ¼ 0; (A8)

ES
z ¼

8<
:

jkcZ0Imð �krbÞ
�rm

b
�2 Kmð �k�Þcosmð�� �bÞe�jkz for �>rb;

jkcZ0Kmð �krbÞ
�rm

b
�2 Imð �k�Þcosmð���bÞe�jkz for rb >�;

(A9)

� Z0

�
HS

� ¼ ES
� ¼

8<
:

mcZ0Imð �krbÞ
��rm

b
Kmð �k�Þ sinmð�� �bÞe�jkz for � > rb;

mcZ0Kmð �krbÞ
��rm

b
Imð �k�Þ sinmð�� �bÞe�jkz for rb > �;

(A10)

�

Z0

ES
� ¼ HS

� ¼
8<
:

�kcImð �krbÞ
2�rm

b
� ½Km�1ð �k�Þ þ Kmþ1ð �k�Þ� cosmð�� �bÞe�jkz for � > rb;

� �kcKmð �krbÞ
2�rm

b
� ½Im�1ð �k�Þ þ Imþ1ð �k�Þ� cosmð�� �bÞe�jkz for rb > �;

(A11)

for m> 0, where k ¼ 2�f=�c, �k ¼ k=�, and KmðzÞ and ImðzÞ are the modified Bessel functions, respectively.
General solutions (especially Ez, H�) inside the chamber for m ¼ 0 are expressed as
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Ez ¼ ES
z þ

Z 1

�1
dhAðhÞe�jhz J0ð��Þ

J0ð�aÞ ; (A12)

H� ¼ HS
� þ

jk�

Z0

Z 1

�1
dhAðhÞe�jhz J1ð��Þ

�J0ð�aÞ ; (A13)

and those (especially Ez, E�, H�, Hz) for m> 0 are

Ez ¼ im

�
ES
z þ

Z 1

�1
dhAðhÞe�jhz Jmð��Þ

Jmð�aÞ cosmð�� �bÞ
�
;

(A14)

H� ¼ im

�
HS

� �
Z 1

�1
dhe�jhz jh

�2

�
mBðhÞJmð��Þ

�Jmð�aÞ

þ k�

Z0h
AðhÞ

@Jmð��Þ
@�

Jmð�aÞ
�
cosmð�� �bÞ

�
; (A15)

Hz ¼
Z 1

�1
dhimBðhÞe�jhz Jmð��Þ

Jmð�aÞ sinmð�� �bÞ; (A16)

E� ¼ im

�
ES
� þ

Z 1

�1
dhe�jhz jk�Z0

�2

�
BðhÞ

@Jmð��Þ
@�

Jmð�aÞ
þ mh

Z0k��
AðhÞ Jmð��Þ

Jmð�aÞ
�
sinmð�� �bÞ

�
; (A17)

where JmðzÞ is the Bessel function and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2 � h2

p
.

1. Impedance of a perfectly conductive chamber

When a beam with the current density jz ¼ �c½1�
�ð�� �Þ�e�jkz=ð��2Þ, where �ðxÞ is the step function,
passes through the chamber, the source field (especially
Ez) is expressed as

ES
z ¼ jkcZ0e

�jkz

��2�2

�Z �

0
drbrbI0ð �krbÞK0ð �k�Þ

þ
Z �

�
drbrbK0ð �krbÞI0ð �k�Þ

�

¼ jcZ0

���2

�
1
�k
� �I0ð �k�ÞK1ð �k�Þ

�
e�jkz for � � �;

(A18)

ES
z ¼ jkcZ0e

�jkz

��2�2

Z �

0
drbrbI0ð �krbÞK0ð �k�Þ

¼ jcZ0

���
I1ð �k�ÞK0ð �k�Þe�jkz for � 	 �: (A19)

When the chamber is made of the perfectly conductive
material, the longitudinal electric field inside the chamber
is given by

Ez ¼ jcZ0

���2

�
1
�k
� �I0ð �k�ÞK1ð �k�Þ

�
e�jkz

� jcZ0

���
I1ð �k�ÞK0ð �kaÞ I0ð

�k�Þ
I0ð �kaÞ

e�jkz for � 	 �;

(A20)

Ez ¼ jcZ0

���
I1ð �k�ÞK0ð �k�Þe�jkz

� jcZ0

���
I1ð �k�ÞK0ð �kaÞ I0ð

�k�Þ
I0ð �kaÞ

e�jkz for � 	 �:

(A21)

The coupling impedance ZL is defined as the average of the
longitudinal electric field (normalized by the beam current)
over the beam cross section. Then, we obtain

ZL ¼ � jZ0

���2k

�
1� 2K0ð �kaÞI21ð �k�Þ

I0ð �kaÞ
� 2I1ð �k�ÞK1ð �k�Þ

�
L; (A22)

where L is the length of the beam pipe.
When a beam with the azimuthal dependency of jz ¼

q�c�ð�� rbÞ cos�e�jkz=�rb is running inside the cham-
ber, the longitudinal electric field is given by

Ez ¼ i1
jkcZ0I1ð �krbÞ

�rb�
2

�
K1ð �k�Þ � K1ð �kaÞ I1ð

�k�Þ
I1ð �kaÞ

�
� cosð�� �bÞe�jkz for � > rb; (A23)

Ez ¼ i1
jkcZ0I1ð �k�Þ

�rb�
2

�
K1ð �krbÞ � K1ð �kaÞ I1ð

�krbÞ
I1ð �kaÞ

�
� cosð�� �bÞe�jkz for � < rb; (A24)

where i1 ¼ qrb. Using the Panofsky-Wenzel theorem
[7,16], we can obtain the transverse wake forces from the
longitudinal electric fields. The transverse impedance is
thus given by

ZT ¼ RkZ0

j�rb�
3

�
K1ð �krbÞ � I1ð �krbÞ

I1ð �kaÞ
K1ð �kaÞ

�
: (A25)

2. Impedance of the resistive chamber with finite
thickness

a. Longitudinal impedance

General solutions (especially Ez, H�) for m ¼ 0 are
expressed as

Ez ¼ ES
z þ AðkÞe�jkzI0ð �k�Þ; (A26)

H� ¼ HS
� þ

j��

Z0

AðkÞe�jkzI1ð �k�Þ; (A27)
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inside the chamber (� < a),

Ez ¼ e�jkz½C1ðkÞI0ð�2�Þ þ C2ðkÞK0ð�2�Þ�; (A28)

H� ¼ �

�2

e�jkz½C1ðkÞI1ð�2�Þ � C2ðkÞK1ð�2�Þ�; (A29)

inside the resistive material (a < �< aþ t), and

Ez ¼ D1ðkÞe�jkzK0ð �k�Þ; (A30)

H� ¼ � j��

Z0

D1ðkÞe�jkzK1ð �k�Þ; (A31)

for open space (aþ t < �), where �2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ jk�Z0�c

p
, t

is the thickness of this chamber and AðkÞ, C1ðkÞ, C2ðkÞ, and
D1ðkÞ are arbitrary coefficients. From the matching con-
ditions on each surface specified by � ¼ a and � ¼ aþ t,
we solve the coefficient AðkÞ as

AðkÞ ¼ jkcZ0I0ð �krbÞC3

2��2
; (A32)

where C3 is given by Eq. (36).
Similarly to the perfectly conductive chamber case,

when a beam with the current density jz ¼ �c½1��ð��
�Þ�e�jkz=ð��2Þ passes through the chamber, Ez inside the
chamber is expressed as

Ez ¼ jkcZ0e
�jkz

��2�2

�Z �

0
drbrbI0ð �krbÞK0ð �k�Þ þ

Z �

�
drbrbK0ð �krbÞI0ð �k�Þ þ C3

Z �

0
drbrbI0ð �krbÞI0ð �k�Þ

�

¼ jcZ0

���2

�
1
�k
� �I0ð �k�ÞK1ð �k�Þ þ C3�I1ð �k�ÞI0ð �k�Þ

�
e�jkz for � � �; (A33)

Ez ¼ jkcZ0e
�jkz

��2�2

�Z �

0
drbrbI0ð �krbÞK0ð �k�Þ þ C3

Z �

0
drbrbI0ð �krbÞI0ð �k�Þ

�

¼ jcZ0I1ð �k�Þ
���

½K0ð �k�Þ þ C3I0ð �k�Þ�e�jkz for � 	 �: (A34)

Since the coupling impedance ZL is defined as the average
of the longitudinal electric field (normalized by the beam
current) over the beam cross section, we obtain the final
expression of the resistive-wall impedance by extracting
the space charge impedance Eq. (A22):

ZL ¼ � 2jZ0I
2
1ð �k�Þ

���2k

�
K0ð �kaÞ
I0ð �kaÞ

þ C3

�
L: (A35)

By taking a limit of � ! 0 and replacing L by the longi-
tudinal length of the chamber g, we reproduce Eq. (35).

b. Transverse impedance

General solutions (especially Ez, E�, Hz, H�) for m ¼ 1
are expressed as

Ez ¼ i1½ES
z þ AðkÞI1ð �k�Þ cosð�� �bÞe�jkz�; (A36)

H� ¼ i1

�
HS

� þ
j�
�k

�
BðkÞI1ð �k�Þ

�
þ � �kAðkÞ

Z0

I01ð �k�Þ
�

� cosð�� �bÞe�jkz

�
; (A37)

Hz ¼ i1BðkÞI1ð �k�Þ sinð�� �bÞe�jkz; (A38)

E� ¼ i1

�
ES
� �

j��Z0

�k

�
�kBðkÞI01ð �k�Þ þ

AðkÞ
Z0��

I1ð �k�Þ
�

� sinð�� �bÞe�jkz

�
; (A39)

inside the chamber (� < a),

Ez ¼ ½C3ðkÞI1ð�2�Þ þ C4ðkÞK1ð�2�Þ� cosð�� �bÞe�jkz;

(A40)

H� ¼ jk

�2
2

�
C1ðkÞI1ð�2�Þ þ C2ðkÞK1ð�2�Þ

�

þ ��2½C3ðkÞI01ð�2�Þ þ C4ðkÞK0
1ð�2�Þ�

jk

�
� cosð�� �bÞe�jkz; (A41)

Hz ¼ ½C1ðkÞI1ð�2�Þ þ C2ðkÞK1ð�2�Þ� sinð�� �bÞe�jkz;

(A42)

E� ¼ � jk

�2
2

�
C3ðkÞI1ð�2�Þ þ C4ðkÞK1ð�2�Þ

�

þ �Z0�2½C1ðkÞI01ð�2�Þ þ C2ðkÞK0
1ð�2�Þ�

�
� cosð�� �bÞe�jkz; (A43)

inside the resistive material (a < �< aþ t), and
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Ez ¼ i1D4ðkÞK1ð �k�Þ cosð�� �bÞe�jkz; (A44)

H� ¼ j�
�k

�
i1D2ðkÞK1ð �k�Þ

�
þ � �ki1D4ðkÞ

Z0

K0
1ð �k�Þ

�
� cosð�� �bÞe�jkz; (A45)

Hz ¼ i1D2ðkÞK1ð �k�Þ sinð�� �bÞe�jkz; (A46)

E� ¼ � j��Z0

�k

�
�ki1D2ðkÞK0

1ð �k�Þ þ
i1D4ðkÞ
Z0��

K1ð �k�Þ
�

� sinð�� �bÞe�jkz; (A47)

for open space (aþ t < �), AðkÞ, BðkÞ, C1ðkÞ, C2ðkÞ,
C3ðkÞ, C4ðkÞ, D2ðkÞ, and D4ðkÞ are arbitrary coefficients,
which are determined by boundary conditions.

Using the Panofsky-Wenzel theorem and extracting the
transverse impedance of perfectly conducting chamber
[Eq. (A25)], we obtain the expression of the transverse
impedance of the resistive-wall chamber as

ZT ¼ �gAðkÞ
2�c�

þ gkZ0I1ð �krbÞK1ð �kaÞ
j2��rb�

3I1ð �kaÞ
: (A48)

After taking a limit at rb ! 0, we reproduce Eq. (13) in
Ref. [11]:

ZT ¼ jgZ0
�k2K1ð �kaÞE2ð�2 � 1Þ
4���2I1ð �kaÞ

; (A49)

where the parameters E2 and �2 are two parameters out of
four,�2,�2, E2, andG2, which have to be found by solving
the following linear equations:

ð�2
2 � �k2Þ
�k�a�2

E2ð1� �2Þ þ
�
�2

I01ð �kaÞ
I1ð �kaÞ

� �k
K0

1ð�2aÞ
K1ð�2aÞ

�
G2 �

�
�2

I01ð �kaÞ
I1ð �kaÞ

� �k
I01ð�2aÞ
I1ð�2aÞ

�
G2�2 ¼ 0; (A50)

�
��2

I01ð �kaÞ
I1ð �kaÞ

þ j
Z0�c

�

K0
1ð�2aÞ

K1ð�2aÞ
�
E2 �

�
��2

I01ð �kaÞ
I1ð �kaÞ

þ j
Z0�c

�

I01ð�2aÞ
I1ð�2aÞ

�
E2�2 þ ð�2

2 � �k2Þ
�2

�ka
G2ð1� �2Þ

¼ ���2

�
K0

1ð �kaÞ
K1ð �kaÞ

� I01ð �kaÞ
I1ð �kaÞ

�
; (A51)

ð �k2 � �2
2Þ

�k�2�ðaþ tÞ
K1½�2ðaþ tÞ�

K1ð�2aÞ E2 � ð �k2 � �2
2Þ

�k�2�ðaþ tÞ
I1½�2ðaþ tÞ�

I1ð�2aÞ E2�2 þ
�
�k
K0

1½�2ðaþ tÞ�
K1ð�2aÞ � �2

K1½�2ðaþ tÞ�
K1ð�2aÞ

K0
1½ �kðaþ tÞ�

K1½ �kðaþ tÞ�
�
G2

�
�
�k
I01½�2ðaþ tÞ�

I1ð�2aÞ � �2

I1½�2ðaþ tÞ�
I1ð�2aÞ

K0
1½ �kðaþ tÞ�

K1½ �kðaþ tÞ�
�
G2�2 ¼ 0; (A52)

�
�
�2�

K0
1½ �kðaþ tÞ�

K1½ �kðaþ tÞ�
K1½�2ðaþ tÞ�

K1ð�2aÞ þ j
Z0�c

�

K0
1½�2ðaþ tÞ�
K1ð�2aÞ

�
E2

þ
�
�2�

K0
1½ �kðaþ tÞ�

K1½ �kðaþ tÞ�
I1½�2ðaþ tÞ�

I1ð�2aÞ þ j
Z0�c

�

I01½�2ðaþ tÞ�
I1ð�2aÞ

�
E2�þ ð �k2 � �2

2Þ
�2

�kðaþ tÞ
K1½�2ðaþ tÞ�

K1ð�2aÞ G2

� ð �k2 � �2
2Þ

�2
�kðaþ tÞ

I1½�2ðaþ tÞ�
I1ð�2aÞ G2�2 ¼ 0; (A53)

�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ jk�Z0�c

p
, the prime of I0nðzÞ and K0

nðzÞ means
the differential by z.

APPENDIX B: THE EXTERNAL FIELD
PRODUCED BYA SLOT

We construct the external field by superposition of basic
sets of cylindrical waves. We only consider outward trav-
eling waves (the Hankel function of the second kind). For
any field component E�ð�; �; zÞ, we can write

E�ð�; �; zÞ ¼
Z 1

�1
E�ð�; �; zÞdh: (B1)

The Fourier series of electromagnetic fields are formally

written as follows:

E � ¼ X1
n¼�1

�
�jhan

@Hð2Þ
n ð��Þ
@�

� nk�Z0

�
bnH

ð2Þ
n ð��Þ

�
e�jn�e�jhz; (B2)

E � ¼
X1

n¼�1

�
�nh

�
anH

ð2Þ
n ð��Þ

þ jk�Z0bn
@Hð2Þ

n ð��Þ
@�

�
e�jn�e�jhz; (B3)
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E z ¼
X1

n¼�1
�2anH

ð2Þ
n ð��Þe�jn�e�jhz; (B4)

H � ¼ X1
n¼�1

�
nk�

Z0�
anH

ð2Þ
n ð��Þ

� jhbn
@Hð2Þ

n ð��Þ
@�

�
e�jn�e�jhz; (B5)

H � ¼
X1

n¼�1

�
�j

k�

Z0

an
@Hð2Þ

n ð��Þ
@�

� nh

�
bnH

ð2Þ
n ð��Þ

�
e�jn�e�jhz; (B6)

H z ¼
X1

n¼�1
�2bnH

ð2Þ
n ð��Þe�jn�e�jhz; (B7)

where Hð2Þ
n ðzÞ is the Hankel function of the second kind.

The tangential electric field in the slot will have both �
and z components in general. We express them using the
prescribed functions f1ð�; zÞ and f2ð�; zÞ as

f1ð�; zÞ ¼
�
E�ða; �; zÞ on the slot ð�1 � � � �2; z1 � z � z2Þ
0 outside the slot;

(B8)

f2ð�; zÞ ¼
�
Ezða; �; zÞ on the slot ð�1 � � � �2; z1 � z � z2Þ
0 outside the slot:

(B9)

The Fourier expansion coefficients are expressed as

an ¼ 1

4�2�2Hð2Þ
n ð�aÞ

Z z2

z1

d	
Z �2ð	Þ

�1ð	Þ
d�f2ð�; 	Þejn�ejh	;

(B10)

bn ¼ � jnh

4�2k�Z0a�
2½@Hð2Þ

n ð�aÞ=@a�
�

Z z2

z1

d	
Z �2ð	Þ

�1ð	Þ
d�f2ð�; 	Þejn�ejh	

� j

4�2k�Z0½@Hð2Þ
n ð�aÞ=@a�

�
Z z2

z1

d	
Z �2ð	Þ

�1ð	Þ
d�f1ð�; 	Þejn�ejh	: (B11)

We consider the circumferential slot, which goes all the
way around the cylindrical chamber with the width of 2w
[z1 ¼ �w, z2 ¼ w, �1ðzÞ ¼ 0, �2ðzÞ ¼ 2�] (which is
much smaller than the chamber radius). Suppose that the
tangential electric field in the slot has only the z compo-
nent, which is independent of �. Namely,

f1ð�; zÞ ¼ 0; f2ð�; zÞ ¼
~V

2w
: (B12)

Then, the nonzero coefficient is only for n ¼ 0 and is
readily given by

a0 ¼
~V sinhw=hw

2��2Hð2Þ
0 ð�aÞ : (B13)

The general expression of the fields can be written as

Ez ¼
~V

2�

Z 1

�1
Hð2Þ

0 ð��Þ
Hð2Þ

0 ð�aÞ
sinhw

hw
e�jhzdh; (B14)

H� ¼ j
�k

Z0

~V

2�

Z 1

�1
Hð2Þ

1 ð��Þ
�Hð2Þ

0 ð�aÞ
sinhw

hw
e�jhzdh: (B15)

If the tangential electric field in the slot has both z and �
components (especially the n ¼ 1 case), we can get

f1ð�; zÞ ¼ i1V1�

w
sin�; f2ð�; zÞ ¼ i1V2�

w
cos�:

(B16)

Consequently, the only nonzero coefficients are

a�1 ¼ i1V2 sinhw=hw

2�2Hð2Þ
�1ð�aÞ ; (B17)

b�1 ¼ �
�
i1V1 � j

hi1V2

a�2

�
sinhw=hw

2k�Z0½@Hð2Þ
�1ð�aÞ=@a� :

(B18)
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Finally, we reach the general expression of the fields as

Ez ¼ i1V2

Z 1

�1
dh

Hð2Þ
1 ð��Þ

Hð2Þ
1 ð�aÞ

sinhw

hw
e�jhz cos�; (B19)

H� ¼ i1V2

Z 1

�1
dh

�
�j

k�

Z0

@Hð2Þ
1
ð��Þ

@�

�2Hð2Þ
1 ð�aÞ

þ j
h2

�

Hð2Þ
1 ð��Þ

Z0k�a�
2 @Hð2Þ

1
ð�aÞ

@a

�
sinhw

hw
e�jhz cos�� i1V1

�
Z 1

�1
dh

h

�

Hð2Þ
1 ð��Þ

Z0k�
@Hð2Þ

1
ð�aÞ

@a

sinhw

hw
e�jhz cos�; (B20)

Hz ¼ �
Z 1

�1
dhj�2

�
i1V1 � j

i1V2h

a�2

�
Hð2Þ

1 ð��Þ
Z0k�

@Hð2Þ
1
ð�aÞ

@a

� sinhw

hw
e�jhz sin�; (B21)

E� ¼ i1V2

Z 1

�1
dh

�
j

h

��2

Hð2Þ
1 ð��Þ

Hð2Þ
1 ð�aÞ � j

h

a�2

@Hð2Þ
1
ð��Þ

@�

@Hð2Þ
1
ð�aÞ

@a

�

� sinhw

hw
e�jhz sin�

þ i1V1

Z 1

�1
dh

@Hð2Þ
1
ð��Þ

@�

@Hð2Þ
1
ð�aÞ

@a

sinhw

hw
e�jhz sin�: (B22)

APPENDIX C: EXPANSION FORMULAS OF THE
BESSEL AND HANKEL FUNCTIONS

The Bessel functions have the following relationships:

J0nðzÞ
JnðzÞ

¼ n

z
þ X1

k¼1

2z

z2 � j2n;k
; (C1)

J1ðzÞ
zJ01ðzÞ

¼ X1
k¼1

2

z2 � j021;k

J1ðj01;kÞ
J001 ðj01;kÞ

; (C2)

where jn;k are the kth zeros of JnðzÞ and j01;k are the kth

zeros of J01ðzÞ [17].
Similar formulas can be obtained for the Hankel func-

tions after some manipulations as follows:

1ffiffiffi
z

p Hð2Þ
1 ð ffiffiffi

z
p Þ

Hð2Þ
0 ð ffiffiffi

z
p Þ ¼

Z 1

0
d


2

�2
ð
 þ zÞHð1Þ
0 ðeð�=2Þj ffiffiffi



p ÞHð2Þ

0 ðeð�=2Þj ffiffiffi



p Þ ; (C3)

1ffiffiffi
z

p H0ð2Þ
1 ð ffiffiffi

z
p Þ

Hð2Þ
1 ð ffiffiffi

z
p Þ ¼ � 1

z
�

Z 1

0
d


2

�2
ð
 þ zÞHð1Þ
1 ðeð�=2Þj ffiffiffi



p ÞHð2Þ

1 ðeð�=2Þj ffiffiffi



p Þ ; (C4)

1ffiffiffi
z

p Hð2Þ
1 ð ffiffiffi

z
p Þ

H0ð2Þ
1 ð ffiffiffi

z
p Þ ¼

2Hð2Þ
1 ðh01;0Þ

ðz� h021;0ÞH00ð2Þ
1 ðh01;0Þ

þ
Z 1

0
d


2

�2
ð
 þ zÞH0ð1Þ
1 ðeð�=2Þj ffiffiffi



p ÞH0ð2Þ

1 ðeð�=2Þj ffiffiffi



p Þ ; (C5)

where h01;0 ¼ 0:501 184þ j0:643 545: the 0th zero of
H0ð2Þ

1 ðzÞ(the differential of the Hankel function of the sec-
ond kind), and Hð1Þ

� ðzÞ is the Hankel function of the first
kind.

Let us prove the above formulas in the following way.
Let us consider the following form of the integral:

1

2�j

I Fð
Þffiffiffi



p ð
 � zÞd
: (C6)

First we take Fð
Þ as

Fð
Þ ¼ Hð2Þ
1 ð ffiffiffi



p Þ

Hð2Þ
0 ð ffiffiffi



p Þ ; (C7)

to prove Eq. (C3). We choose the path of the integral as
shown in Fig. 10. The contribution of the integral from the
infinity vanishes since Fð
Þ approaches 1 as j
j ! 1. The

contribution from C� approaches zero as � ! 0. The con-
tribution from the poles except 
 ¼ z vanishes because the

Hankel function Hð2Þ
0 ðzÞ has no poles in��=2< z < �=2,

which corresponds to ��< 
 < �. Then, the following
relationship can be found:

Hð2Þ
1 ð ffiffiffi

z
p Þffiffiffi

z
p

Hð2Þ
0 ð ffiffiffi

z
p Þ ¼ 1

2�

Z 1

0

d
ffiffiffi



p ð
 þ zÞ
�
Hð2Þ

1 ðeð�=2Þj ffiffiffi



p Þ
Hð2Þ

0 ðeð�=2Þj ffiffiffi



p Þ

þHð2Þ
1 ðe�ð�=2Þj ffiffiffi



p Þ

Hð2Þ
0 ðe�ð�=2Þj ffiffiffi



p Þ

�
: (C8)

We now derive Eq. (C3) by using the relationships

Hð2Þ
0 ðe��jzÞ ¼ �Hð1Þ

0 ðzÞ; (C9)
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Hð2Þ
1 ðe��jzÞ ¼ Hð1Þ

1 ðzÞ; (C10)

Hð1Þ
0 ðzÞHð2Þ

1 ðzÞ �Hð1Þ
1 ðzÞHð2Þ

0 ðzÞ ¼ 4j

�z
; (C11)

which can be found in Ref. [18].
Similarly, in order to prove Eq. (C4), we take Fð
Þ as

Fð
Þ ¼ H0ð2Þ
1 ð ffiffiffi



p Þ

Hð2Þ
1 ð ffiffiffi



p Þ : (C12)

In this case, the contribution from the circle C� does not
vanish. The following relationships can be found:

H0ð2Þ
1 ð ffiffiffi

z
p Þffiffiffi

z
p

Hð2Þ
1 ð ffiffiffi

z
p Þ ¼ � 1

z
þ 1

2�

Z 1

0

d
ffiffiffi



p ð
 þ zÞ

�
�
H0ð2Þ

1 ðeð�=2Þj ffiffiffi



p Þ
Hð2Þ

1 ðeð�=2Þj ffiffiffi



p Þ þ
H0ð2Þ

1 ðe�ð�=2Þj ffiffiffi



p Þ
Hð2Þ

1 ðe�ð�=2Þj ffiffiffi



p Þ
�
:

(C13)

We can derive Eq. (C4) using Eq. (C10) and the relation-
ships

H0ð2Þ
1 ðe��jzÞ ¼ �H0ð1Þ

1 ðzÞ; (C14)

Hð1Þ
1 ðzÞH0ð2Þ

1 ðzÞ �H0ð1Þ
1 ðzÞHð2Þ

1 ðzÞ ¼ � 4j

�z
: (C15)

For proof of Eq. (C5), we take Fð
Þ as

Fð
Þ ¼ Hð2Þ
1 ð ffiffiffi



p Þ

H0ð2Þ
1 ð ffiffiffi



p Þ : (C16)

The contribution from the poles of the Hankel functions
does not vanish in this case, while that from the circle C�

vanishes. Then, we can obtain the following relationships:

1ffiffiffi
z

p Hð2Þ
1 ð ffiffiffi

z
p Þ

H0ð2Þ
1 ð ffiffiffi

z
p Þ ¼

2Hð2Þ
1 ðh01;0Þ

ðz� h021;0ÞH00ð2Þ
1 ðh01;0Þ

þ 1

2�

Z 1

0

d
ffiffiffi



p ð
 þ zÞ

�
�
Hð2Þ

1 ðeð�=2Þj ffiffiffi



p Þ
H0ð2Þ

1 ðeð�=2Þj ffiffiffi



p Þ þ
Hð2Þ

1 ðe�ð�=2Þj ffiffiffi



p Þ
H0ð2Þ

1 ðe�ð�=2Þj ffiffiffi



p Þ
�
:

(C17)

Equation (C5) can be proved by using Eqs. (C10), (C14),
and (C15).
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FIG. 10. The path of integration in Eq. (C6) in order to prove
Eqs. (C3)–(C5). The horizontal and the vertical axes are the real
and the imaginary axes, respectively.
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