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The luminosity of the ring-ring version of the proposed electron-ion collider eRHIC is limited by the

beam-beam effect on the electrons. Once the beam-beam limit is reached, the luminosity no longer

increases linearly with the bunch intensity of the ion beam, but begins to saturate and even drops again if

the beam-beam tuneshift is increased further. To overcome this limitation we investigate a compensation

scheme with an electron lens acting on the electron beam. Using weak-strong simulations we find a

possible luminosity increase of about a factor 2.
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I. INTRODUCTION

The beam-beam effect experienced by the electron beam
in the proposed circular electron-ion collider eRHIC [1] is
a major obstacle in increasing the luminosity of this facil-
ity. When the ion bunch intensity is increased in an effort to
maximize the luminosity, the nonlinear beam-beam inter-
action results in two effects on the electron beam when the
beam-beam limit is approached.

The first of these effects is an increase in the core
emittance of the electron beam, causing a beam size in-
crease at the interaction point. However, unless this emit-
tance blowup is too large, this effect can be partially
compensated for by a proper choice of the working point
of the electron ring, resulting in dynamic focusing at the
interaction point (IP).

The second beam-beam limit is characterized by the
development of a non-Gaussian halo of the electron
beam. Since this halo needs to be accommodated in the
aperture of the machine to ensure sufficient electron beam
lifetime, the aperture limitation in the low-� quadrupoles
around the IP provides a limit on the attainable ion bunch
intensity Np and therefore the luminosity.

Compensation of the nonlinear beam-beam kick in stor-
age rings by means of an electron lens located in a second
interaction region was proposed by Talman in 1976 [2],
following the failure of a four-beam compensation scheme
in DCI [3] due to coherent instabilities [4,5]. In 1993,
Tsyganov et al. studied the feasibility of beam-beam com-
pensation in proton-proton colliders [6,7]. In the late
1990s, Shiltsev et al. proposed and built an electron lens
to compensate small bunch-to-bunch tune variations
caused by long-range beam-beam effects in the Tevatron
[8–12]. The applicability of head-on beam-beam compen-
sation in RHIC and LHC is under study in both simulations
[13–15] and hardware design considerations.

For ideal beam-beam compensation, three conditions
need to be fulfilled: (i) linear transport between IP and
electron lens; (ii) betatron phase advance of k � 180� be-

tween IP and electron lens, where k is an integer; (iii) same
amplitude-dependent kick, but with opposite sign.
In this paper, we investigate the feasibility of such a

scheme to increase the beam-beam limit in the electron
ring of an electron-ion collider. We assume throughout the
rest of the paper that the beam-beam effect of the electron
beam on the ion beam does not limit the luminosity, i.e., we
are using a weak-strong model in which the electron beam
is weak and the ion beam strong.
Our case differs from the head-on beam-beam compen-

sation scheme in DCI. In DCI every beam could couple
back to the three other beams via the beam-beam interac-
tion. In our case the electron beam of the electron lens does
not couple back to the electron beam of the electron ring
except for single pass effects. We therefore do not expect
the coherent effects observed in DCI [3] and studied in
simulations later [16,17] to be present in the compensation
scheme proposed here.
Our case also differs from head-on beam-beam compen-

sation schemes with electron lenses studied for hadron
beams because the electron beam is damped through the
synchrotron light emission. For hadron beams the possi-
bility of coherent beam centroid motion was raised that
would result in emittance growth [18], in particular under
conditions with head-on beam-beam compensation [19].
However, although coherent effects have been observed in
both the Tevatron [20] and RHIC [21], the performance of
neither machine is limited by such an effect to date. In
Ref. [22] the possibility of coherent effects in eRHIC was
raised although with a linear lattice model only. Whether
strong-strong simulations will be needed is therefore an
open question.
We perform tracking studies with a simplified model of

the electron storage ring, the main parameters of which are
taken from the eRHIC ring-ring collider design [1]. While
the eRHIC design assumes a proton bunch intensity of
Np ¼ 1� 1011, corresponding to a vertical beam-beam

tuneshift parameter of �y ¼ 0:08 of the electron beam,

we increase the beam-beam parameter here by increasing
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the proton bunch intensity Np beyond that value. The same

effect could be achieved by assuming smaller emittances.
To keep the beam sizes matched, the emittance of both
beams could be reduced while keeping the � functions
unchanged.

In the course of this paper, we first describe the electron
ring model. Then we calculate luminosities over a range of
tunes for partial and full beam-beam compensation with a
beam-beam parameter larger than the largest beam-beam
parameters achieved today. Next, we investigate the effect
of the electron lens on the non-Gaussian tails over a range
of electron beam-beam parameters, and study the robust-
ness of the beam-beam compensation scheme with respect
to variations of some of the electron lens beam parameters.
Finally, we use all previously gained information to max-
imize the luminosity with an electron lens.

II. THE ELECTRON RING MODEL

The electron ring model used for the simulation studies
presented in this paper is comprised of NFODO ¼ 50 iden-
tical FODO cells, equipped with sextupoles for chromatic-
ity correction. The electron-proton interaction point (IP)
and the electron lens are separated by Nsep FODO cells,

which form one arc. The other arc of the machine therefore
consists of NFODO � Nsep FODO cells, as schematically

illustrated in Fig. 1. At both ends of each arc, an ideal
dispersion suppressor is located, resulting in both zero
dispersion D� and zero derivative D�0 ¼ dD�=ds at the
IP and the electron lens. Low-� focusing in the two
transverse planes

~x ¼ x
x0

� �
; (1)

~y ¼ y
y0

� �
(2)

at the IP and the electron lens is realized by chromatic
matrices of the form

Mtelescope ¼
ffiffiffiffiffiffi
��
�arc

q
cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���arc

p
sin�

� 1ffiffiffiffiffiffiffiffiffiffi
���arc

p sin�
ffiffiffiffiffiffi
�arc

��
q

cos�

0
B@

1
CA; (3)

with � ¼ Q0telescope � �pp , where Q0telescope is the chromatic-

ity of the low-� telescope. Quantum excitation and syn-
chrotron radiation damping are implemented at the end of
each of the two arcs, taking into account the length differ-
ence (different number of FODO cells) accordingly.
Together with the chromaticity correction sextupoles in
each FODO cell, this arrangement ensures realistic non-
linearity and stochasticity between the IP and the electron
lens. Table I lists the parameters of the electron ring model.

The presence of the beam-beam lenses at the IP and the
electron lens modifies the accelerator lattice. The effect on
the linear lattice, which can be described in terms of the

Twiss parameters, can be calculated by taking into account
the linearized beam-beam kicks at these two locations. The
one-turn matrices M�IP and M�elens describing the linear

lattice with respect to the IP and the electron lens as
reference points can be written as

M�IP ¼ MIP elens �Melens �Melens IP �MIP; (4)

M�elens ¼ Melens IP �MIP �MIP elens �Melens; (5)

whereMIP elens andMelens IP describe the linear lattices of
the two arcs between the IP and the electron lens, while
MIP and Melens are thin lenses of the form

M ¼ 1 0
1
f 1

 !
; (6)

describing the linearized beam-beam kick. The focal
lengths f of these two matrices are expressed by the �

interaction point (IP)

electron lens

Nsep FODO cells

NFODO

(a)

−Nsep

FODO cells

(b)

IP

phase rotation

telescope

dispersion suppressor

FODOFODO

FIG. 1. Schematic drawings of the model electron ring (top)
with interaction point (IP) and electron lens connected by two
arcs consisting of Nsep and NFODO � Nsep identical FODO cells.

The bottom figure depicts a low-� insertion with dispersion
suppressors, low-� telescopes, and phase-rotation matrices.
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function and the respective beam-beam tuneshift parame-
ter � of the IP and the electron lens as

f ¼ �

4��
; (7)

with the beam-beam parameter given as

�x;y ¼
Ne;p�x;yre

2���x;yð�x þ �yÞ : (8)

In this equation, Ne;p, �x, and �y denote the bunch inten-

sity and horizontal and vertical beam size of the oncoming
electron lens (subscript e) or proton (subscript p) beam,
respectively. � is the Lorentz factor of the stored electron
beam, and�x;y are its horizontal and vertical� functions at

the IP and the electron lens, while re is the classical

electron radius. It is worth mentioning here that the
beam-beam parameters at the IP and at the electron lens
have opposite signs—positive at the IP, negative at the
electron lens.
The resulting betatron tunes Q� are computed using the

trace of either resulting one-turn matrix,

cosð2�Q�Þ ¼ 1
2 TrðM�IPÞ ¼ 1

2 TrðM�elensÞ; (9)

while the � functions at the IP and the electron lens, ��IP
and ��elens, are calculated from the matrix elements M�12 of
the corresponding one-turn matricesM�IP andM�elens and the
resulting tune Q� as

��IP ¼ M�IPj12= sinð2�Q�Þ; (10)

��elens ¼ M�elensj12= sinð2�Q�Þ: (11)

In the uncompensated or partially compensated case, dy-
namic focusing leads to a significant reduction of both ��IP
and the beam-beam tuneshift jQ� �Qj< � for tunes just
above the integer or half-integer resonance. With full head-
on beam-beam compensation via the electron lens, and a
betatron phase advance between IP and electron lens ofm �
180�, where m is an integer, the dynamic focusing effects
cancel at both the IP and the electron lens, as shown in
Fig. 2. For the remainder of this paper we limit our tune
scans to the range between the integer and the quarter
resonance, 0:0<Qx;y < 0:25.

III. LUMINOSITYAS A FUNCTION OF TUNES

To determine the luminosity as a function of the working
point, 100 particles are tracked over 10 000 turns, using a
6D element-by-element tracking technique. The nonlinear
beam-beam kicks at the IP and the electron lens are im-
plemented using the complex error function representation
[23]. The number of turns, which corresponds to 5.75
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FIG. 2. (Color) Dynamic � functions at the IP, for full (Ne ¼
Np), half (Ne ¼ 0:5 � Np), and no (Ne ¼ 0) beam-beam com-

pensation, for a beam-beam parameter � ¼ 0:32, corresponding
to Np ¼ 4� 1011.

TABLE I. Parameter list of the accelerator model. � functions and rms beam sizes at the IP
and electron lens, as well as damping times, are taken from the eRHIC ring-ring design [1],
while the proton beam intensity Np is quadrupled.

Number of FODO cells NFODO 50

Number of cells between IP and electron lens Nsep 10

Phase advance/cell (horizontal/vertical) ��x=��y 79:7�=89:0�
Chromaticity (horizontal/vertical) Q0x;y ¼ �Qx;y=

�p
p þ2=þ 2

Synchrotron tune Qs 0.015

rms bunch length �s 0.0117 m

rms momentum spread �p 9:4� 10�4
� function at IP and electron lens �x=�y 0.19 m, 0.26 m

Number of positive charges/bunch Np 4� 1011

Electron lens intensity/bunch Ne 4� 1011

rms proton beam size at IP �x;p=�y;p 101 �m=50:5 �m
rms electron lens beam size �x;e=�y;e 101 �m=50:5 �m
Lorentz factor � 19 560

Electron beam-beam parameter �x=�y 0:11=0:32
Damping times �x=�y=�z 1740=1740=870 turns
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transverse damping times, has been chosen to ensure that
the equilibrium beam size is reached with an accuracy well
below 1%, while at the same time limiting the required
CPU time. The equilibrium rms beam sizes�x;e and�y;e of

the electron beam are determined by averaging over the
last 1740 turns (one transverse damping time), resulting in
a relative error of the equilibrium beam sizes of 1:7�
10�3.

Using the nominal proton beam sizes �x;p, �y;p and the

equilibrium electron beam sizes �x;e, �y;e, we define the

geometric luminosity factor as

Fgeom ¼ L

L0

(12)

¼ 2�x;p�y;pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2

x;p þ �2
x;eÞð�2

y;p þ �2
y;eÞ

q ; (13)

where L0 denotes the luminosity resulting from equal beam
sizes for both beams, �x;e ¼ �x;p, �y;e ¼ �y;p. Fgeom is a

measure of the electron beam core size increase due to the
beam-beam interaction. In the absence of any beam-beam
effects, Fgeom ¼ 1 unless the beam size is affected or beam

dynamics is unstable due to (nonlinear) lattice resonances.
Tracking with Np ¼ Ne ¼ 0 confirmed that Fgeom ¼ 1 for

all fractional tunes 0:0<Qx;y < 0:25 besides the integer

resonances Qx ¼ 0:0 or Qy ¼ 0:0, and the nonlinear cou-

pling resonance Qx ¼ 2 �Qy. Additionally, we define the

normalized luminosity as the product of the geometric
luminosity and the proton bunch intensity,

Lnorm ¼ Fgeom � Np: (14)

Lnorm is proportional to the luminosity for constant electron
bunch intensity and constant collision frequency; it is this
quantity we aim to maximize.
To determine the optimum working point for the differ-

ent scenarios, tune scans are performed in steps of�Qx;y ¼
0:01. For this purpose the betatron tunes are adjusted by
appropriate phase-rotation matrices of the general form,

Mrot ¼
cosð��Þ � sinð��Þ
� sinð��Þ

� cosð��Þ
 !

; (15)

which are introduced in the dispersion-free region between
the low-� telescope and the interaction point, as schemati-
cally shown in Fig. 1. The advantage of this method in
tracking is that it does not require matching of the lattice

 11  11.1  11.2
 12

 12.05

 12.1

 12.15

 12.2

 12.25
Ne/Np=0.0

 0.3

(a) (b)

(c) (d)

 0.4

Qx

Qy

 11  11.1  11.2
 12

 12.05

 12.1

 12.15

 12.2

 12.25
Ne/Np=0.5

     0.3
     0.4
     0.5
     0.6
     0.7
     0.8
     0.9
       1

Qx

Qy

 11  11.1  11.2
 12

 12.05

 12.1

 12.15

 12.2

 12.25
Ne/Np=0.75

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Qx

Qy

 11  11.1  11.2
 12

 12.05

 12.1

 12.15

 12.2

 12.25
Ne/Np=1.0

     0.3
     0.4
     0.5
     0.6
     0.7

Qx

Qy

FIG. 3. (Color) Geometric luminosity factor Fgeom as a function of tunes with different degrees of head-on beam-beam compensation,
with beam and machine parameters as shown in Table I.
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for each individual working point, while leaving the �
functions at the IP and the electron lens undisturbed. The
latter can easily be shown by multiplying the rotation
matrix with the linear matrix describing one of the arcs
of the machine, for instance MIP elens:

M ¼ Mrot �MIP elens

¼ cosð��Þ � sinð��Þ
� 1

� sinð��Þ cosð��Þ
 !

� cos�IP elens � sin�IP elens

� 1
� sin�IP elens cos�IP elens

 !

¼ cosð�IP elens þ ��Þ � sinð�IP elens þ ��Þ
� sinð�IP elensþ��Þ

� cosð�IP elens þ ��Þ
 !

:

(16)

Here, �IP elens denotes the betatron phase advance of the
arc between electron lens and IP, while � is the � function
at the IP and the electron lens, which are equal.

As a baseline, Fig. 3 shows contour plots of the geomet-
ric luminosity factor Fgeom for tunes below the quarter

resonance, using the parameters listed in Table I. Note
that the electron beam-beam parameters are larger than
what has been demonstrated in existing machines. Without
beam-beam compensation the maximum geometric lumi-
nosity factor remains below 0.5, while with full beam-
beam compensation, Ne ¼ Np, it reaches almost 0.7.

Furthermore, beam-beam compensation greatly reduces
the tune dependence of the luminosity. While in the ab-
sence of compensation the maximum luminosity is attained
only in a tiny spot in the tune diagram at (0.04, 0.04), a
wide tune space provides geometric luminosities above
0.65 in the fully compensated case.

IV. TRANSVERSE TAILS

Development of long, non-Gaussian transverse tails is
often referred to as the second beam-beam limit in eþe�
colliders [24,25]. A simulation code has been developed to
study the transverse electron distribution. This code uses
techniques developed by Shatilov [26] and Chen et al. [27],
and was benchmarked by reproducing the results given in
Ref. [27]. A detailed description of the simulation tech-
niques is given in Ref. [26].

For a Gaussian beam, the distribution density is given as
[26]

	ðAx; AyÞ ¼ AxAy exp

�
�A2

x þ A2
y

2

�
; (17)

the maximum density is therefore achieved at the point
ðAx; AyÞ ¼ ð1; 1Þ. Figure 4 shows the corresponding con-

tour lines for Np ¼ Ne ¼ 0, as obtained with the tracking

code.
As Fig. 5 shows, the beam dynamics is dominated by the

beam-beam limit in the uncompensated case already at a

proton bunch intensity of Np ¼ 1� 1011, which is the

eRHIC ring-ring design intensity [1]. With full electron
lens beam-beam compensation, the non-Gaussian tails are
almost completely suppressed up to a proton bunch inten-
sity of Np ¼ 2� 1011. At Np ¼ 3� 1011, the transverse

tails in the fully compensated case are similar to those
obtained in the uncompensated case for Np ¼ 1� 1011,

while the fully compensated case forNp ¼ 4� 1011 shows

a similar tail distribution as the uncompensated case for
Np ¼ 2� 1011. Without beam-beam compensation, trans-

verse tails become extremely pronounced at Np ¼
3� 1011.

V. IMPERFECTIONS

In any real-world application of an electron lens, certain
imperfections will lead to less-than-ideal operating condi-
tions. These imperfections include machine errors such as
spurious dispersion and beam offsets at the electron lens
and the IP, deviations of the betatron phase advance from
the ideal value of m � 180�, and bunch-to-bunch variations
in the corresponding proton beam that will lead to a mis-
match between the electron lens and the proton beam. The
beam-beam compensation scheme needs to be sufficiently
robust against unavoidable deviations from the ideal case
to ensure a stable operation. It should be emphasized here
that this robustness needs to be ensured at a fixed working
point, because the intensity and beam size of the oncoming
proton bunch vary on a bunch-by-bunch basis, while all
electron bunches have the same tune. We investigate the
robustness with respect to spurious dispersion, transverse
beam offsets, the phase advance between IP and electron
lens, intensity mismatch between the proton beam and the
electron lens, beam size mismatch due to variations in the
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FIG. 4. (Color) Transverse electron distributions without beam-
beam interaction (Np ¼ Ne ¼ 0). The contour lines are spaced

by a factor 10.
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FIG. 5. (Color) Transverse electron distributions for uncompensated (Ne ¼ 0), half (Ne=Np ¼ 0:5), and fully (Ne=Np ¼ 1:0)
compensated cases, for proton bunch intensities Np ranging from Np ¼ 1� 1011 to Np ¼ 4� 1011. In the uncompensated case

with Np ¼ 4� 1011, only two contour lines are shown since any further lines are outside the scale. All tail studies were performed at

those tunes that, according to tune scans, resulted in the highest luminosity for each particular case. All these tunes are in the vicinity of
(0:05=0:06). The contour lines are spaced by a factor 10.
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proton beam size, and nonlinearities between the IP and the
electron lens.

For this purpose we perform tune scans over the same
fractional tune range 0:0<Qx;y < 0:25 as before, again in

steps of �Qx;y ¼ 0:01. Using the five highest luminosity

values determined during the scan, we calculate the aver-
age and rms distribution of these five values. The latter is a
measure of the attainability of the calculated luminosity in
a real machine. For instance, if the highest luminosity is
obtained only for one specific working point, while all
other working points result in much smaller luminosities,
the rms spread becomes comparably large. On the other
hand, if the best five (or more) working points deliver
similar luminosities, the rms spread becomes very small.
In Figs. 7–12, we depicted the spread of luminosities for a
given configuration in the form of error bars. Likewise, we
assigned ‘‘errors’’ to the luminosity values given in
Tables II and III. However, the reader should be aware
that these ‘‘error bars’’ are not error bars in the regular
sense.

To avoid distorting the luminosity results by simple
geometric factors, we introduced all these distortions at
the electron lens only, while keeping ideal conditions at the
IP. This ensures that any effects on the electron beam size
at the IP are results of imperfect beam-beam compensation
rather than, for instance, due to coupling of the longitudinal

phase space into the transverse plane via spurious
dispersion.

A. Spurious dispersion

To avoid synchrobetatron resonances, one aims at zero
horizontal and vertical dispersion Dx, Dy at both the inter-

action point and the electron lens. However, in a real
machine, this is only approximately the case due to ma-
chine errors such as magnet misalignments and quadrupole
field errors. In this case, additional synchrobetatron reso-
nances occur, as illustrated in Fig. 6 for a Dx ¼ 1 cm
horizontal dispersion at the electron lens.
To investigate the effect of spurious dispersion at the

electron lens on the attainable luminosity, we performed
tune scans for different values of the dispersionDx ¼ Dy at

the electron lens. Figure 7 shows the resulting maximum
normalized luminosity Lnorm over the range 0 � Dx, Dy �
2 cm.

B. Transverse offsets

Transverse beam offsets at the IP and/or the electron lens
give rise to odd-order resonances, in addition to even-order
resonances that are driven by the head-on beam-beam
interaction. While careful steering of the beams in collision
is used to minimize these offsets, residual imperfections

TABLE II. Normalized luminosity Lnorm in units of 1011 as a function of the size ratios rx ¼ �x;e=�x;p, and ry ¼ �y;e=�y;p. The
subscript ‘‘e’’ refers to the electron lens beam, while the subscript ‘‘p’’ corresponds to the proton beam. Since we deliberately chose
the same beta functions at both the IP and the electron lens, equal beam sizes �x;e ¼ �x;p, �y;e ¼ �y;p and intensities Ne ¼ Np

correspond to the case of full beam-beam compensation.

rx
1.00 1.05 1.10 1.15 1.20 1.25

ry 1.00 2:79� 0:02 2:87� 0:02 2:96� 0:02 3:04� 0:02 3:07� 0:02 3:11� 0:07
1.05 2:85� 0:03 2:95� 0:03 3:01� 0:01 3:02� 0:03 3:09� 0:03 3:12� 0:06
1.10 2:97� 0:02 2:99� 0:05 3:03� 0:05 3:08� 0:05 2:99� 0:02 3:06� 0:05
1.15 2:97� 0:06 3:01� 0:06 3:05� 0:05 3:05� 0:03 3:06� 0:07 3:05� 0:06
1.20 2:96� 0:09 3:00� 0:08 2:99� 0:08 3:07� 0:19 3:00� 0:13 3:04� 0:03
1.25 2:93� 0:10 3:00� 0:09 3:02� 0:11 2:92� 0:14 3:05� 0:14 2:95� 0:04

TABLE III. Normalized luminosity Lnorm in units of 1011 as a function of intensity ratio Ne=Np and the beam size ratio r ¼ rx ¼
�x;e=�x;p ¼ ry ¼ �y;e=�y;p. The subscript ‘‘e’’ refers to the electron lens beam, while the subscript ‘‘p’’ corresponds to the proton

beam. Since we deliberately chose the same beta-functions at both the IP and the electron lens, equal beam sizes �x;e ¼ �x;p, �y;e ¼
�y;p and intensities Ne ¼ Np correspond to the case of full beam-beam compensation.

Ne=Np

0.80 0.85 0.90 0.95 1.00

r 1.00 3:55� 0:06 3:37� 0:06 3:18� 0:01 3:01� 0:03 2:79� 0:02
1.05 3:56� 0:10 3:42� 0:04 3:34� 0:07 3:16� 0:04 2:95� 0:03
1.10 3:48� 0:16 3:36� 0:03 3:36� 0:10 3:19� 0:09 3:03� 0:05
1.15 3:41� 0:23 3:30� 0:07 3:31� 0:09 3:18� 0:18 3:05� 0:03
1.20 3:23� 0:16 3:15� 0:15 3:15� 0:10 3:17� 0:24 3:00� 0:13
1.25 3:06� 0:24 3:06� 0:13 3:00� 0:14 2:99� 0:07 2:95� 0:04
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are practically unavoidable. It is therefore important to
ensure a sufficient robustness of the beam-beam compen-
sation scheme against such residual beam-beam offsets.

Figure 8 shows the maximum luminosity Lnorm for dif-
ferent offsets 
x=�x ¼ 
y=�y, over a range between 0 and

0.5.

C. Phase advance between IP and electron lens

In the ideal case of a perfectly linear transport channel
between the IP and the electron lens, complete compensa-
tion of the beam-beam effect would occur if the betatron
phase advance in both transverse planes was an exact
multiple of 180�. To study the dependence of the maximum
attainable luminosity on this betatron phase advance in our

nonlinear electron ring model lattice, the phase advance
has been varied in steps of 1.8� in both planes. As Fig. 9
shows, the maximum luminosity drops significantly if the
phase error exceeds about 4�. Also note that for negative
phase advance errors the maximum luminosity occurs at
working point (0.21, 0.22), very different from the best
working point for positive phase errors (0.04, 0.06).

D. Intensity mismatch

Since the intensity of the corresponding proton bunch
can vary considerably along the bunch train, it is important
to ensure that the beam-beam compensation scheme works
successfully despite an intensity mismatch between proton
bunch and electron lens beam. As Fig. 10 indicates, larger
luminosities can be gained with undercompensation
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Ne < Np and a maximum is reached around Ne=Np ¼ 0:5

Overcompensation, Ne > Np, reduces the luminosity. The

tune space where these high luminosities can be achieved
shrinks with the intensity of the electron lens beam Ne, as
Fig. 3 shows, until it eventually becomes a single point in
the uncompensated case Ne ¼ 0.

Moreover, the optimum working point in the overcom-
pensated case differs significantly from the one in the
undercompensated case. If a DC beam is used in the
electron lens it is therefore necessary to choose the electron
lens beam intensity such that no overcompensation occurs
for any bunch despite the bunch-to-bunch intensity varia-
tions of the proton beam.

E. Beam size mismatch

Besides the bunch intensity, the rms transverse beam
sizes �x;p and �y;p of the proton beam can easily vary by

10% to 20% from bunch to bunch. Since these variations
are not necessarily correlated in the two transverse planes,
we varied them independently in both planes. Table II lists
the maximum luminosity for different values of the trans-
verse beam size ratios rx ¼ �x;e=�x;p and ry ¼ �y;e=�y;p.

A beam size mismatch of 10% in both planes reduces the
maximum luminosity by about the same amount.

As already observed in the case of intensity mismatch
between proton bunch and electron lens intensity, over-
compensation with rx < 1 or ry < 1 results in the maxi-

mum luminosity occurring at a working point different
from the undercompensated cases where the maximum
luminosity occurs around (0.04, 0.06).

F. Simultaneous intensity and size mismatch

Finally, we need to ensure that simultaneous mismatches
of both beam size and intensity between proton beam and
electron lens provide sufficient luminosity. Table III shows
the resulting luminosity for different values of the intensity
ratio Ne=Np and the beam size ratio r ¼ �e=�p.

G. Nonlinearities between the interaction point and the
electron lens

In a perfectly linear lattice, and in the absence of quan-
tum excitation and radiation damping between IP and
electron lens, perfect compensation of the nonlinear
beam-beam effect can be achieved. However, this idealized
case is unrealistic. To investigate the effect of nonlinear
elements (sextupoles) on the beam-beam compensation,
we have varied the number Nsep of FODO cells, and there-

fore the number of sextupoles, between the IP and the
electron lens, while the betatron phase advances between
IP and electron lens are adjusted to be integer multiples of
180�. Together with Nsep, the amount of synchrotron ra-

diation has been varied accordingly. Figure 11 shows the
maximum achieved luminosity in the tune region 0<Qx,
Qy < 0:25 for three different numbers of FODO cells

between the IP and the electron lens, together with the
uncompensated case, as a function of the proton bunch
intensity Np.

The three cases show that with an increase in the non-
linearities, the beam-beam parameter above which the
luminosity drops is reduced. However, for the nonlineari-
ties tested, beam-beam parameters larger than 0.4 are
needed to see a difference.
In the case without beam-beam compensation, the emit-

tance growth due to the beam-beam interaction is over-
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compensated by the dynamic focusing effect at the IP for
proton bunch intensities Np up to 2� 1011, resulting in a

net luminosity enhancement due to electron beam sizes
smaller than the design value. Beyond Np ¼ 3� 1011

emittance growth overwhelms the dynamic focusing, caus-
ing the luminosity to drop rapidly when the proton bunch
intensity is further increased.

With full head-on beam-beam compensation, the lack of
dynamic focusing results in a slight luminosity reduction
due to some residual emittance blowup. However, depend-
ing on the number of FODO cells Nsep between the IP and

the electron lens, the normalized luminosity Lnorm still
increases with the proton bunch intensity Np until a maxi-

mum is reached, though the increase is less than linear.
Note that while the beam core size is smaller in the
uncompensated case for proton bunch intensities up to 3�
1011, the non-Gaussian tails are more pronounced (see
Fig. 5) and may already prevent operation at these
intensities.

VI. MAXIMIZING THE LUMINOSITY

In the previous section we found that partial compensa-
tion with Ne < Np generally results in higher luminosities

than full compensation (Ne ¼ Np). We can use this result

to maximize the luminosity. As Fig. 10 shows, the maxi-
mum luminosity for the proton intensity of Np ¼ 4� 1011

is reached at approximately half compensation, Ne=Np ¼
0:5. Figure 12 shows the maximum normalized luminosity
Lnorm as a function of the proton beam intensityNp, for half

compensation Ne=Np ¼ 0:5. With half compensation, the

luminosity with the electron lens is never smaller than the
luminosity without the compensation, and the proton in-

tensity beyond which the luminosity decreases is approxi-
mately doubled.
The electron lens also helps when the luminosity is

limited by the formation of non-Gaussian tails below the
proton intensity where it saturates. Figure 5 shows that
with half compensation, the proton intensity could be
doubled from 1� 1011 to 2� 1011, or from 2� 1011 to
4� 1011 while maintaining the size of the tails.
We conclude that use of an electron lens permits us to

approximately double the proton intensity and thereby the
luminosity for both the first and second beam-beam limits.

VII. SUMMARY

We performed weak-strong beam-beam simulations to
investigate the feasibility of head-on beam-beam compen-
sation of an electron beam in an electron-ion collider. In
the parameter regime tested, the simulations show that the
beam-beam parameter can be doubled for both the first
(beam core size) and second (non-Gaussian transverse
tails) beam-beam limit. The electron lens also reduces
the sensitivity of the luminosity to tune changes, which
offers more flexibility if the spin polarization needs to be
maintained in the electron beam.
We found that the best compensation is obtained with

about half the beam-beam strength in the interaction point.
At this strength the compensation is robust against further
intensity mismatch, as it is against beam size mismatch.
The compensation is, however, rather sensitive to phase
deviations from the optimum value of multiples of 180�.
We found that these errors have to be controlled to within
�2�.
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