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Proton beams were successfully steered through the entire ring of the CERN Large Hadron Collider

(LHC) on September the 10th of 2008. A reasonable lifetime was achieved for the counterclockwise beam,

namely beam 2, after the radiofrequency capture of the particle bunch was established. This provided the

unique opportunity of acquiring turn-by-turn betatron oscillations for a maximum of 90 turns right at

injection. Transverse coupling was not corrected and chromaticity was estimated to be large. Despite this

largely constrained scenario, reliable optics measurements have been accomplished. These measurements

together with the application of new algorithms for the reconstruction of optics errors have led to the

identification of a dominant error source.
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I. INTRODUCTION

The LHC has a beta-beating tolerance lower than any
other previous hadron collider. Table I shows the LHC
beta-beating tolerances from Ref. [1], as derived from its
tight mechanical aperture. To achieve the required control
of the beta beating, the use of the most accurate numerical
algorithms, as well as a highly performing beam position
monitor (BPM) system, is mandatory. After dedicated
studies spanning over several years, the procedures to
measure and correct the optics of the LHC ring have
been established via numerical simulations and measure-
ments in existing accelerators [2–5]. In parallel, a complete
and accurate magnetic model of the LHC has been devel-
oped based on measured field and alignment errors [6,7].
These studies show expected beta-beating levels at injec-
tion close to the above tolerances. Higher-order nonlinear
magnetic errors can generate quadrupolar errors via feed-
down. The specifications given in Ref. [1] aimed at provid-
ing beam-dynamical driven bounds on the components bn,
an of the multipolar expansions of the magnetic field. The
definition of the components bn, an is also given in
Ref. [1].

On 10 September 2008 the first beams were successfully
injected and circulated for multiple revolutions along the
LHC ring. This was the result of a meticulous preparation
as well as several synchronization tests performed during
the summer of 2008 [8]. In particular, following the
achievements of September 10th, the counterclockwise

beam was circulated in the LHC with an excellent lifetime
on September 12th, after rf capture was established [9]. A
typical beam consisted of a single bunch of about 2� 109

protons, with transverse rms geometric emittances of 5:6�
10�9 m and 2:3� 10�9 m in the horizontal and vertical
planes, respectively, and as measured in the transfer line
[10]. The rms bunch length was about 0.5 ns. At this stage
of the beam commissioning it was possible to acquire the
turn-by-turn beam positions over the first 90 turns at about
500 double-plane BPMs using the YASP [11] software. At
this commissioning stage the BPM system was set up to
acquire 90 turns, but it was planned to increase this number
at a later stage. The ring rms horizontal and vertical closed
orbits were corrected to 1.3 and 2.1 mm, respectively. The
injection oscillations enabled measuring optics parameters
by means of the techniques developed in previous years
to extract the maximum information from the available
data set.

TABLE I. Relative peak beta-beating tolerances for the LHC
as extracted from Ref. [1]. The off-momentum tolerances are
given at the maximum momentum deviation of �p ¼ 1:5� 10�3

and �p ¼ 0:86� 10�3 for injection and collision optics, respec-

tively.

On-momentum Off-momentum

ð��x

�x
Þpeak ð��y

�y
Þpeak ð��x

�x
Þpeak ð��y

�y
Þpeak

Injection optics 14% 16% 7% 5%

Collision optics 15% 19% 10% 6%
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In this paper the different techniques used to measure the
machine optics are presented in Sec. II. Section III de-
scribes new optics error reconstruction algorithms which
have been developed and applied to this exceptional situ-
ation with very limited data plus the unavailability of the
machine to iterate corrections. The coupling measurement
from the secondary spectral lines of BPM data is presented
in Sec. IV. Finally, an error analysis based on numerical
simulations is given in the Appendix.

II. THE BETA-BEATING MEASUREMENT

The LHC beam 2 optics measurement was severely
limited due to the availability of only a single turn-by-
turn BPM data acquisition right at injection and containing
only 90 turns. In addition the transverse coupling was
uncorrected and the chromaticity was estimated to be 30
units [12] based on the synchrotron sidebands of the trans-
verse spectrum. Despite these setbacks, reliable optics
measurements were accomplished [13].

The optics is probed through the phase advance between
BPMs as it provides a robust and calibration-independent
observable. The beta functions are extracted from the
phase advances between three BPMs as it was done in
the Large Electron Positron collider (LEP) [14]. No statis-
tical error can be assigned to the measurement due to the
existence of only a single data acquisition. However, by
using multiple combinations of three BPMs, various beta
functions measurements can be obtained at the same BPM.
The average and rms of these measurements yield the beta
function and its error bar, respectively. Prior to this analysis
faulty BPMs are identified and discarded following various
approaches [15,16]. The robustness of this measurement is
assessed in the Appendix by simulating the measurement
with the best knowledge of the machine conditions and the
instrumentation. The simulations reveal that the measured
horizontal and vertical beta functions differ from the input
model values by 5% and 3% rms, respectively.

Three different algorithms are used to measure the phase
advance between BPMs, namely singular value decompo-
sition (SVD) [17,18], Sussix [19], and harmonic analysis
(or discrete-time Fourier transform). The three algorithms
yield consistent beta function measurements as shown in
Fig. 1. However, the SVD approach features a more accu-
rate measurement as displayed in the histograms of the beta
functions relative error (Fig. 2). The vertical beta function
is measured with an rms error of about 2%, while for the
horizontal plane the rms error is 4%. In [3] the following
relation between rms phase beating and beta beating was
obtained via simulations for the LHC:

��rms ¼ 1ffiffiffi
2

p
�
��

�

�

rms
; (1)

which is also analytically expected since the phase advance
between the LHC arc BPMs is 45 degrees. According to
this relation, the measured rms beta-beating errors corre-

spond to vertical and horizontal rms phase errors of 0.8 and
1.6 degrees, respectively. The vertical error is already
below the 1� resolution, which is the target of the LHC
optics measurements. At 1� resolution Monte Carlo simu-
lations of LHC optics corrections show a few percent
probability of failure to achieve optics specifications [4].
The better performance of the SVD algorithm can be
attributed to the fact that it takes advantage of the correla-
tion between a large set of BPMs as in the case of the LHC.
For these reasons, the SVD measurement is used as the
reference in the rest of the paper. Alpha functions are
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FIG. 1. (Color) The measurement of the horizontal (top) and
vertical (bottom) � functions for the LHC beam 2. The three
different algorithms show consistent results. The locations of the
LHC interaction regions (IRs) are marked on the top.
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FIG. 2. (Color) Comparison of the resulting measurement errors
for the three algorithms used to reconstruct the � functions.
Histograms of the horizontal and vertical beta function relative
measurement errors are shown on the top and bottom plots,
respectively.
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measured in the same way as beta functions. Figure 3
shows the SVD based beta and alpha measurements to-
gether with the ideal model. Although �x;y contain the

same qualitative information as the �x;y, having both mea-

surements turns out especially useful in finding gradient
errors as explained in the next section. The beta beating is
the relative deviation of the measured betas from the
design betas. Figures 4 and 5 compare the LHC beam 2
reconstructed beta beating to the tolerances as presented in
Ref. [1] and to simulations with realistic errors. The hori-
zontal beta beating is within expected values for a first
measurement and not far from tolerances. However, the
large vertical beta beating can neither be explained by the
measured multipolar components of the superconducting
magnets nor by the observed closed orbit distortion [16].
This suggests that important optical errors might exist.
New algorithms have been developed in order to identify
possible gradient errors in this regime of large beta beating.

III. OPTICS ERRORS RECONSTRUCTION

A typical approach for optics correction in accelerators
uses the inverse model response matrix of gradient
strengths on some observables like phase advances, beta
functions, or dispersion, see e.g. [3,20–23]. This is illus-
trated by the following equation:

��1

��2

��3

..

.

��N

0
BBBBBB@

1
CCCCCCA
¼ R�

�K1

�K2

�K3

..

.

�KM

0
BBBBBB@

1
CCCCCCA
; (2)

where R is a rectangular matrix,

R ¼

R11 R12 R13 � � � R1M

R21 R22 R23 � � � R2M

R31 R32 R33 � � � R3M

..

. ..
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FIG. 5. (Color) Simulations (black and blue), observation (red),
and tolerances (magenta) of the peak beta beating in the LHC,
showing an unexpectedly large measured beta beating for
beam 2.
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FIG. 3. (Color) Measured � functions (top two plots) and �
functions (bottom two plots) for the LHC beam 2 together with
the design values.
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the �is represent the N phase advances between BPMs,
while theKis correspond to theM gradient variables andR
is the model response matrix that connects them. However,
this approach is not directly suitable for this exceptional
situation where the size of the errors exceeds the linear
regime and there is no possibility to iterate corrections on
the machine. Hence, a more local approach aiming at
identifying errors has been developed.

A. The segment-by-segment approach

The entire machine is split into several segments and
each of these segments is treated as an independent transfer
line. The measured alpha and beta functions at the entrance
of the segment are used as initial conditions for the optical
parameters of the respective segment. The propagation of
the initial conditions using the ideal model should follow
the measurement as long as there are no gradient errors.
Therefore, any deviation from the measured optics is easily
identified by a direct comparison, thus localizing the gra-
dient error. The amplitude of the errors within the segment
can be determined by matching the propagated optics to
the measured one via the preferred matching algorithm.
The advantage of having a segmented machine is the
considerable reduction of the dimensionality of the prob-
lem. Therefore, only the matching variables within the
segment are used to reconstruct the measured optics.
Following the illustration of Eq. (2), by having changed
the reference model in every segment we have transformed
the R matrix into a block diagonal matrix, with n inde-
pendent blocks, represented by the independent response
matrices Ri,

R ¼

R1 0 0 � � � 0
0 R2 0 � � � 0
0 0 R3 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � Rn

0
BBBBBB@

1
CCCCCCA
:

This method naturally applies to LHC by splitting the ring
into insertion regions (IRs) and arcs (see Ref. [24] for the
details concerning the LHC layout). It is important to
verify that the measured betas and alphas used as initial
conditions for the propagated optics have small measure-
ment errors.

This method proved most useful for IR3. This insertion
houses the momentum cleaning systems of both beams
[24]. Particles with a large momentum offset (typically
larger than 1� 10�3) are scattered by the primary jaw of
collimators in IR3 and are then absorbed by secondary
collimators. This prevents the generation of beam losses
in the superconducting arcs. The insertion optics is gen-
erated by 20 quadrupoles (which are shown in the top plot
of Fig. 6). The central part of the insertion, where the

collimators are installed, features normal conducting mag-
nets. The quadrupoles starting from Q6 up to the end of the
dispersion suppressor are superconducting devices.
The two bottom plots of Fig. 6 show the horizontal and

vertical beta functions from measurement and for two
models (propagated by taking the initial � and � as mea-
sured). The ideal model is represented by the blue stars
which shows an excellent agreement with the measurement
until the location 10 200 m, from which point onwards the
vertical beta functions largely differ. This suggests that a
gradient error exists between the 6th and the 9th quadru-
poles (as indexed on the top plot). To restore the good
agreement between model and measurement, the quadru-
pole mqtli7r3b2 had to be switched off or reduced by a
factor of 10 (black pentagons on the figure), clearly sug-
gesting some hardware problem with this quadrupole. This
same feature was also observed in dispersion measure-
ments [25]. The most likely hypothesis to explain this
observation was a cable swap between the magnets of the
two beams, namely mqtli7r3b2 and mqtli7r3b1. It was later
found that this hypothesis was supported by previous hard-
ware tests, which had indicated a possible voltage inver-
sion between the corresponding voltage taps [26].
However, the results from these new analyses were crucial
to determine that the voltmeters were actually properly
connected and confirm the cable swap between magnets.
The segment-by-segment method is also applied to other

sectors. Table II summarizes the current status of the find-
ings. The error found in IR2 is significantly weaker than
that of IR3. A 14% increase in the strength of one module
of the fourth magnet on the left of IP2 would partly explain
the observed local beta beating. This might be explained by
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FIG. 6. (Color) Segment-by-segment approach in IR3. The top
plot shows the gradient distribution versus longitudinal location.
The two bottom plots show the horizontal and vertical beta
functions from measurement and for two models (propagated
by taking the initial � and � as measured).
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a cable swap between beam 1 and beam 2 magnets.
However, other errors distributed within the IR2 quadru-
poles can also explain the observed beta beating. Hardware
tests are currently being done to address this observation.

The fifth quadrupoles right and left of IP7 need to be
scaled by factors �2 and 3 to reproduce the observed beta
beating. These elements are powered at 0.9 A, while the
magnetic measurements were limited to 30 A. Hence, a
large uncertainty at very low field is not discarded.
However, again this error is not the unique possibility to
explain the observed beta beating.

A 1% increase in the strength of the fourth quadrupole
left to IP6 has been assigned by the segment-by-segment
method. This error is large when compared to the expected
uncertainty of the transfer function. Therefore, this is just
an effective error to reproduce the measured optics.

Finally, the segment-by-segment approach has assigned
a systematic 0.4% error in the transfer function of the arc
2–3 defocusing quadrupoles. Other errors like sextupole
misalignments or multipolar components could also ex-
plain or contribute to the observed beta beating.

It is clear that the error found in IR3 is the most im-
portant producing by itself more than 50% peak beta beat-
ing in the vertical plane. The rest of the errors can only be
considered as a ‘‘best fit’’ and need further investigation.
Figure 7 compares the model after including all the find-
ings from the segment-by-segment approach to the mea-
surement. The agreement is still not fully satisfactory in the
vertical plane most likely due to existence of other, proba-
bly smaller, errors.

B. The model iterative correction

Yet another new method has been implemented to
achieve the best possible optics error reconstruction. This
method is based on the already mentioned inverse model
response matrix (using the periodic optics), Eq. (2), but
with an important new feature to allow for iterations. After
each iteration the change in the model phase advance
(obtained by introducing the corrections in the ideal
model) is subtracted from the measured phase advances
as a means to simulate an iterative correction in the real
machine. It is worth mentioning that any correction algo-
rithm could be used during iterations.
To obtain the best possible results, we have applied this

new model iterative correction starting from a model al-
ready including the optical errors from the segment-by-
segment approach. After five iterations a very satisfactory
agreement is found between model and measurement,
Fig. 8. The qualitative summary of the absolute values of
the correction strengths integrated over the IR side is
shown in Fig. 9.
It is reassuring to observe that the IR3 error remains the

strongest and that no other relevant error has been found in
IR3 by the iterative approach. However, IR2 needs further
investigation, since the iterative correction finds compa-
rable errors to those suggested by the segment-by-segment
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FIG. 7. (Color) Comparison of measured beta functions (red)
and the model (blue) after including all the findings from the
segment by segment.
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TABLE II. Segment-by-segment summary. The second and
third columns show the impact of the error on the ideal lattice.
The first and fourth columns show the segment and the ‘‘best fit’’
corrector. Only the IR3 error has been confirmed as a real error.

ð��x

�x
Þpeak ð��y

�y
Þpeak

Segment [%] [%] Source (change)

IR3 17 54 mqtli7r3b2 (=10)
IR2 9 5 mqya4l2b2 (þ 14%)

IR7 6 6 mqt5[rl]7 (� ½�2; 3�)
IR6 5 4 mq4l6b2 (þ 1%)

Arc 2–3 0 3 mqd23 (þ 0:4%)
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method. Figure 9 also reveals that IR1, IR5, and IR8 have
rather small optics errors.

IV. COUPLING MEASUREMENT

The linear coupling parameters are inferred from the
secondary spectral lines, i.e., the vertical tune in the hori-
zontal signal and vice versa; see, e.g., Refs. [27,28]. The
difference coupling resonance driving term f1001 is given
by the following expression as a first order approximation
on the coupling sources:

f1001ðsÞ ¼
P
j
Kj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x;j�y;j

p
eið�

s
x;j��s

y;jÞ

4ð1� e2�iðQx�QyÞÞ ; (3)

where Kj are the integrated coupling strengths, �z;j are the

beta functions at the sources, and �s
z;j are the phase ad-

vances at the sources expanding the lattice from the evalu-
ation point s, i.e., for a coupling source j0 at s0, �

s0
z;j0

¼ 0.

Figure 10 compares the measured real and imaginary
parts of the difference coupling resonance driving term
f1001 with a reconstructed model. This reconstruction is
based on the response matrix of the machine skew quad-
rupole correctors. The five periods observed in the oscil-
lations of the real part of f1001 correspond exactly to the
integer tune split between the horizontal and vertical tunes,
thus experimentally confirming that the machine had the
same integer tune split as the model.
Linear coupling is generated by the rotation of quadru-

pole magnets, a nonzero vertical closed orbit at the sextu-
poles, and the a2 magnetic errors in the superconducting
dipoles. There were no skew quadrupole correctors excited
during the measurement. Repeating this measurement with
better quality data should give an insight into the sources of
coupling guided by theory [27] and simulations [3].

V. CONCLUSIONS AND OUTLOOK

The only available turn-by-turn BPM data acquisition, at
injection, has served to test and compare various methods
to measure the periodic ring optics for the counterclock-
wise rotating beam. In the constrained circumstances with
only 90 turns, uncorrected coupling and large chromaticity,
the SVD approach proved to be the most accurate. The
measured vertical beta beating is found to be larger than
predicted by the specified field and alignment errors, sug-
gesting that a few additional large error sources may exist.
Two new methods to address the localization of optics
correction were developed, namely segment-by-segment
and model iterative correction. The application of the
segment-by-segment approach to IR3 led to the identifica-
tion of a dominant optics error for the counterclockwise
beam. Evidence from previous hardware tests supported
the hypothesis that this error was caused by a cable swap-
ping between the beam 2 and beam 1 magnets mqtli7r3b2
and mqtli7r3b1. Using the model iterative correction, the
optics has been very well reconstructed by using distrib-
uted sources all around the ring, confirming that there are
no more relevant errors in IR3, IR1, IR5, and IR8. Error
sources in IR2 still remain unclear and further investiga-
tions are needed.
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APPENDIX: SIMULATION OF MEASUREMENT
RESOLUTION AND ACCURACY

In order to fully understand the random and systematic
errors of the beta-beating measurement, numerical simu-
lations have been performed using the reconstructed model
including normal and skew quadrupolar errors. The ingre-
dients of the simulations are as follow: (i) A single on-
momentum particle is tracked for 90 turns using the re-
constructed optics, while recording the horizontal and
vertical positions at all the BPMs. (ii) The initial conditions
are set to reproduce the measured horizontal and vertical
oscillation amplitudes: Ax � 2:0� and Ay � 3:8�, where

� is the design beam size at injection, � ¼ ffiffiffiffiffiffiffi
��

p
with � ¼

7:8� 10�9 m. (iii) A Gaussian random error with 0.2 mm
standard deviation is added to the tracked positions. This
error represents the BPM resolution and is consistent with
specifications and direct measurements [13,29,30].
(iv) The same analysis as applied to the experimental
data is used in the simulations. Figure 11 shows the histo-
grams of the relative beta function error from simulation
for SVD and Sussix algorithms. This figure is to be com-
pared with Fig. 2. The agreement between measurement
and simulation confirms the expected quality of the BPM
data and that the large difference in the SVD and Sussix
performance is strictly due to the discrimination of uncor-
related noise in the SVD algorithm.

The systematic error of the measurement can be esti-
mated by computing the relative deviation of the simulated
measured betas and the betas from the model as used in the
simulation. Obviously, this can only be done in simulation.
Figure 12 shows the histogram of this systematic relative
error as obtained from the simulation. Via Gaussian fits, the
rms errors are estimated to be 5% and 3% for the horizontal

and vertical planes, respectively. These systematic errors
are slightly larger than the estimated error bars of 4% and
2% but still small confirming the robustness of the beta-
beating measurement. The systematic errors will be re-
duced in future measurements by increasing the number
of turns and improving the machine conditions.
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