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We study the microbunching instability in a bunch compressor by a parallel code with some improved

numerical algorithms. The two-dimensional charge/current distribution is represented by a Fourier series,

with coefficients determined through Monte Carlo sampling over an ensemble of tracked points. This

gives a globally smooth distribution with low noise. The field equations are solved accurately in the lab

frame using retarded potentials and a novel choice of integration variables that eliminates singularities. We

apply the scheme with parameters for the first bunch compressor system of FERMI@Elettra, with

emphasis on the amplification of a perturbation at a particular wavelength and the associated longitudinal

bunch spectrum. Gain curves are in rough agreement with those of the linearized Vlasov system at

intermediate wavelengths, but show some deviation at the smallest wavelengths treated and show the

breakdown of a coasting beam assumption at long wavelengths. The linearized Vlasov system is discussed

in some detail. A new 2D integral equation is derived which reduces to a well-known 1D integral equation

in the coasting beam case.
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I. INTRODUCTION

Bunch compressors, designed to increase the peak cur-
rent, can lead to a microbunching instability with detri-
mental effects on the beam quality. This is a major concern
for free electron lasers (FELs) where very bright electron
beams are required, i.e., beams with low emittance and
energy spread [1–11]. In this paper we compare two mod-
els, i.e., we apply our self-consistent, parallel solver to
study the microbunching instability in the first bunch com-
pressor system of FERMI@Elettra and compare it with the
coasting beam approximation in [12,13]. This bunch com-
pressor system was proposed as a benchmark for testing
codes at the September 2007 microbunching instability
workshop in Trieste [14].

A basic theoretical framework for understanding this
instability is the 3D Vlasov-Maxwell system (on 6D phase
space). However, the numerical integration of this system
is computationally too intensive at the moment. Our basic
Ansatz is a 2D Vlasov-Maxwell system. More precisely,
we treat the beam evolution through a bunch compressor
using our Monte Carlo mean field self-consistent approxi-

mation. We randomly generate N points from an initial
phase space density. Here we use N for the simulated
points to distinguish it from N for the number of particles
in the beam. We then calculate the charge density using a
smooth density estimation based on Fourier series. The
electric and magnetic fields are calculated from the smooth
charge/current density using a novel field formula that
avoids singularities by using the retarded time as a variable
of integration. The points are then moved forward in small
time steps using the equations of motion in the beam frame
with the fields frozen during a time step. We try to choose
N large enough so that the charge density is a good
approximation to the charge density that would be obtained
from solving the 2D Vlasov-Maxwell system exactly. We
call this method the Monte Carlo particle (MCP) method
and the underlying model the MCP model. We believe that
we calculate the charge density accurately and that for N
sufficiently large one could obtain an accurate approxima-
tion to the Vlasov phase space density. That is beyond our
current computer capability, however, and it is likely that a
better approach would be to use the method of local
characteristics to integrate the Vlasov equation directly.
Our MCP solver has been tested against other codes on

the Zeuthen benchmark bunch compressors. Our results for
the mean energy loss are in good agreement with 2D and
3D codes confirming that 1D codes underestimate the
effect of coherent synchrotron radiation (CSR) on the
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mean energy loss by a factor of 2. For more details see
[15,16] and references therein.

The system we study consists of a four-dipole chicane
between rf cavities and quadrupoles; see Fig. 4. In this
paper we limit our study to the chicane. The phase space
density on entrance to the chicane is a smooth function
a0ðz; pz; x; pxÞ modulated by a factor 1þ A cosð2�z=�0Þ
where A is a small amplitude and �0 is the perturbation
wavelength. The function a0 contains the energy chirp, the
z� pz correlation that is necessary for bunch compression.
The beam frame coordinates ðz; pz; x; pxÞ are standard and
are defined in Sec. II B. Our initial phase space density for
the MCP model is discussed in detail at the beginning of
Sec. IV.

A standard approach to study the microbunching insta-
bility consists in calculating a gain factor for a given initial
modulation wave number k0 [12,13,17]. This gain factor is
defined as

G ðk0Þ ¼j ~�½k0CðsfÞ; sf�=~�ðk0; 0Þ j; (1)

where

~�ðk; sÞ ¼
Z
R
dz expð�ikzÞ�ðz; sÞ (2)

for a given initial wavelength of �0 ¼ 2�=k0. Here �ðz; sÞ
is the longitudinal spatial density, CðsÞ ¼ 1=½1þ hR56ðsÞ�
is the compression factor of the chicane, s is the arclength
along the reference orbit, sf is the value of s at the exit of

the chicane, and h is the linear chirp parameter. Apparently
the motivation for this definition is the intuition that with-
out self-fields an initial modulation at wave number k0 will
appear at wave number k0CðsfÞ at the end of the chicane

due to the bunch compression. We will show there are
problems with this definition of the gain, by a detailed
study of ~� and its modulus j~�j in the full nonlinear calcu-
lation. We refer to j~�ð�; sÞj as the Fourier spectrum of � at s
or simply the spectrum at s.

The function ~�ðk; sÞ can be computed in the full non-
linear self-consistent scheme for the MCP model, but can
also be approximated in some cases through a solution of a
linearized Vlasov equation leading us to an analytical
model. If the initial distribution is a coasting beam with
linear energy chirp, and the collective force is given in
terms of a 1D impedance or wake potential, this equation is
equivalent to a 1D integral equation for ~�½k0CðsÞ; s�. This
equation was derived by Heifets, Stupakov, and Krinsky
[13] and also by Huang and Kim [12]. Determining an
approximate solution of the equation by iteration, Huang
and Kim found an explicit formula for the gain. We will
refer to this as the analytical model whose initial phase
space density is discussed at the beginning of Sec. IV.

Aiming to clarify the basis of the 1D integral equation,
we rederive it starting in a general framework allowing a
bunched beam and arbitrary chirp. The only restriction is
the 1DAnsatz of the collective force. We linearize about an

arbitrary solution of the nonlinear Vlasov equation, obtain-
ing a 2D integral equation for ~�ðk; sÞ, which reduces to the
1D equation for a coasting beam with linear chirp. A
numerical treatment of the 2D equation seems interesting
and feasible, but has not yet been done.
For the MCP model we compute the gain factor (1) with

our MCP solver and compare it with the analytical gain
factor as it was computed in [12]. Agreement is good at
medium wavelengths, in spite of the fact that our collective
force is computed in a more detailed way than that of [12],
the latter being derived from the impedance for steady state
CSR without account of finite magnet length. At long
wavelengths we begin to see the breakdown of the coasting
beam assumption. At short wavelengths, as little as 80 �m
in calculations to date, there are deviations from the ana-
lytical gain factor. The source of discrepancy has not yet
been analyzed. It might be due to nonlinearity, or to the
different models of the collective force, or both. As part of
our comparison we discuss in detail the Fourier spectra
j~�ðk; sÞj at s ¼ 0 and s ¼ sf and their relation to the gain

curve.
To define clearly our Vlasov-Maxwell starting point we

begin with exact equations, but for practical work we later
make approximations based on the following assumptions:
(A) The maximum bunch size � is small compared to the
minimum bending radius. (B) In beam frame coordinates
the bunch form (and also the form of the phase space
distribution) changes very little during a time �=c. Cor-
respondingly, the field of the bunch at a comoving point
changes little on such a time interval. Here � is the biggest
extent of the bunch in any direction. Under typical con-
ditions (A) and (B) should be very well satisfied. We also
assume that the beam is relativistic (� � 1), as is true in
the example studied, but that assumption could be removed
without great cost.
The paper is organized as follows. The introduction to

Sec. II is devoted to a precise statement of our Vlasov-
Maxwell system in laboratory coordinates. In Sec. II A, we
derive our formula for the fields in terms of sources. We
integrate the equations of motion in the beam frame and
Sec. II B is devoted to the definition of the beam frame and
beam coordinates, the beam frame equations of motion,
and the transformation of densities from beam frame to
laboratory frame which is needed to determine the labora-
tory frame sources. In Sec. II C, we give the details of our
MCP algorithm. An important part of this section is the
introduction of coordinates in which the charge density is
essentially stationary without self-fields. Section III is
devoted to the derivation of integral equations for deter-
mining ~�. It contains both our new 2D integral equation
and the previously derived 1D integral equation.
Section IV discusses the results of our numerical calcula-
tions. In addition to a detailed study of the Fourier spectra
we also give examples of 2D charge densities and electro-
magnetic fields to show that we can calculate these con-
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fidently and that they have no visually discernible noise. A
reader who is already familiar with the basic nomenclature
and who is only interested in the results can go immedi-
ately to Sec. IV.

II. VLASOV-MAXWELL SYSTEM

Our basic starting point is the Vlasov-Maxwell system in
3D, i.e., we assume collisions can be ignored and that the
N-particle bunch can be approximated by a continuum.
Our final scheme for computation is less ambitious, but we
think that it might be a reasonable approximation to the full
system. We reduce the problem from 3D to 2D, since we
expect that most of the acceleration by self-fields will be in
the plane of the unperturbed orbit. We use a particle
method that follows the charge density rather than the
phase space density, but hope that with sufficient attention
to smoothing the result approximates that defined by the
Vlasov-Maxwell system.

Our coordinate system, ðZ; X; YÞ, is shown in Fig. 1. We
assume an external force due to a magnetic field,
BextðZÞeY , in the Y direction. We define a reference orbit,
½RrðsÞ; 0� ¼ ½ZrðsÞ; XrðsÞ; 0�T , lying in the Y ¼ 0 plane,
where ½Rrð�ruÞ; 0�, as a function of u, is a solution of
the Lorentz equations for the magnetic field BextðZÞeY , and
u ¼ ct. Here s is arclength along the reference orbit. In
Fig. 1 we sketch ½RrðsÞ; 0� for a four-dipole magnetic
chicane bunch compressor. Writing the self-fields as E ¼
ðEZ; EX; EYÞT and B ¼ ðBZ; BX; BYÞT , we focus on the
evolution of F ¼ ðEZ; EX; BYÞT and take ðEY; BZ; BXÞ ¼
0. The latter entails planar motion in the Y ¼ const planes.
We model shielding by the vacuum chamber by taking
F ¼ 0 at Y ¼ �g, where h ¼ 2g is the height of the
vacuum chamber as shown in Fig. 1. Let HðYÞ � 0 be
the fixed vertical charge distribution, zero for jYj> g
and with

R
g
�g HðYÞdY ¼ 1. The coupled Vlasov-Maxwell

system for the field vector F ðR; Y; uÞ and the phase space
density HðYÞ�ðPYÞfLðR;P; uÞ, with the shielding bound-
ary condition, takes the form

hF ðR; Y; uÞ ¼ HðYÞSðR; uÞ; (3)

@ufL þ _R � rRfL þ _P � rPfL ¼ 0; (4)

F ðR; Y ¼ �g; uÞ ¼ 0; (5)

where _¼ d=du, h ¼ @2Z þ @2X þ @2Y � @2u, and

S ðR; uÞ ¼ Z0Q
c@Z�L þ @uJL;Z
c@X�L þ @uJL;X
@XJL;Z � @ZJL;X

0
@

1
A; (6)

_R ¼ P

m�ðPÞc ; (7)

_P ¼ q

c
f½EZðR; Y; uÞ; EXðR; Y; uÞ�T

þ c½BextðZÞ þ BYðR; Y; uÞ�ð _X;� _ZÞTg: (8)

Here Z0 is the free space impedance, Q is the total charge,
Q�LðR; uÞ is the 2D lab frame charge density (whenceR
�LdR ¼ 1), QHðYÞðJL;Z; JL;X; 0ÞTðR; uÞ is the 3D cur-

rent density, m is the electron rest mass, q is the electron
charge (so thatQ ¼ Nq where N is the number of particles
in the bunch), and � is the Lorentz factor. As will be
explained in Sec. II A, instead of F we actually use the
averaged field F L ¼ ðEL; BLÞT ¼ ðEL;Z; EL;X; BLÞT so

that instead of (8) we use

_P ¼ q

c
fELðR; uÞ þ c½BextðZÞ þ BLðR; uÞ�ð _X;� _ZÞTg:

(9)

Equations (3) and (4) are completed by specifying S in
terms of (6) and

�LðR; uÞ ¼
Z
R2

dPfLðR;P; uÞ; (10)

J LðR; uÞ ¼
Z
R2

dP½P=m�ðPÞ�fLðR;P; uÞ; (11)

where JL ¼ ðJL;Z; JL;XÞT . Note that sinceQ�L is the charge

density, �L is normalized whence

1 ¼
Z
R2

�LdR ¼
Z
R4

dRdPfLðR;P; uÞ: (12)

We use c, Z0 as our basic parameters instead of �0, �0,
where Z2

0 ¼ �0=�0, c2 ¼ 1=�0�0. We use SI units

throughout.

A. Field formula

We calculate F produced by �L, JL, but averaged over
the Y distribution:

h

FIG. 1. (Color) Basic lab frame setup.
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F LðR; uÞ ¼ hF ðR; �; uÞi ¼
Z g

�g
HðYÞF ðR; Y; uÞdY:

(13)

The averaging is appropriate, since we regard motion in the
Y direction as less important and do not allow it in com-
putations. To evaluate (13) we begin with the general
formula for F , which follows from the retarded Green
function for the 3D wave equation (3):

F ðR; Y; uÞ ¼ � 1

4�

Z
R2

dR0 Z
R
dY0	ðY0Þ

� SfR0; u� ½jR0 �Rj2 þ ðY0 � YÞ2�1=2g
½jR0 �Rj2 þ ðY0 � YÞ2�1=2 :

(14)

Here 	ðYÞ is the effective vertical distribution needed to
impose boundary conditions [F ðY ¼ �gÞ ¼ 0] at the par-
allel plates by the method of images, namely 	ðYÞ ¼P1

k¼�1ð�1ÞkHðY � khÞ. We of course assume that the

support of HðYÞ is well within the interval ð�g; gÞ and
we also assumed in (14) that H is even. The field for free
space comes from the term with k ¼ 0.

In the calculations we take u0 to be the time at which the
front of the bunch enters the first magnet of the chicane. If
SðR; uÞ ¼ 0 for u � u0, then F ðR; Y; uÞ ¼ 0 for u � u0
and (14) becomes

F ðR; Y; uÞ ¼ � 1

4�

Z
BðR;Y;u�u0Þ

dR0dY0	ðY0Þ

� SfR0; u� ½jR0 �Rj2 þ ðY0 � YÞ2�1=2g
½jR0 �Rj2 þ ðY0 � YÞ2�1=2 ;

(15)

where

BðR; Y; u� u0Þ :¼ fðR0; Y0Þ: ½jR0 �Rj2 þ ðY0 � YÞ2�1=2
� u� u0g (16)

for u � u0. FurthermoreF is the unique solution of the 3D
wave equation (3) with the boundary condition (5) and
initial condition F ðR; Y; uÞ ¼ @uF ðR; Y; uÞ ¼ 0 at u ¼
u0 (see [18], p. 82). Of course, the source SðR; uÞ is not
zero for u < u0, but the longitudinal field it produces is
very small, Oð1=�2Þ, for a relativistic bunch on a straight
path (pancake effect). Thus the self-fields in the chicane
are essentially the same as if we merely put the source
equal to zero for u < u0. For nonrelativistic particles, one
should start the integral at a much earlier time, allowing the
bunch to feel its own space charge field prior to entrance of
the first magnet. In the following F is given by (14) with
the source zero for u � u0. The specific value of u0 is
discussed in Sec. II C.

To average the field as in (13) we put 
 ¼ Y0 � Y and
find

F LðR; uÞ ¼ � 1

4�

Z
R2

dR0 Z
R
d
�ð
Þ

� SfR0; u� ½jR0 �Rj2 þ 
2�1=2g
½jR0 �Rj2 þ 
2�1=2 ; (17)

where �ð
Þ ¼ R
g
�g HðYÞ	ðY þ 
ÞdY. For a Gaussian

HðYÞ with rms width �Y , we suppose that �Y 	 g and
obtain

�ð
Þ ¼ X1
k¼�1

ð�1Þkffiffiffiffiffiffiffi
2�

p
�

exp

�
� 1

2

�

� kh

�

�
2
�
;

� ¼ ffiffiffi
2

p
�Y:

(18)

We assume that � is sufficiently small to justify replacing
the Gaussians in (18) by �ð
� khÞ. We then have just a 2D
integral, which will be the basis for our numerical work:

F LðR; uÞ ¼ � 1

4�

X1
k¼�1

ð�1Þk
Z
R2

dR0

� SfR0; u� ½jR0 �Rj2 þ ðkhÞ2�1=2g
½jR0 �Rj2 þ ðkhÞ2�1=2 : (19)

Note that if HðYÞ ¼ �ðYÞ then, for Y ¼ 0, (14) becomes
(19), i.e., in this case F LðR; uÞ ¼ F ðR; 0; uÞ. In fact, if
HðYÞ ¼ �ðYÞ, then the averaging procedure not only gives
the exact field (19) at Y ¼ 0 but also the exact ðEY; BZ; BXÞ
vanishes at Y ¼ 0. With certain reasonable approximations
it seems possible to retain a nonzero vertical spread while
maintaining a reduction to a 2D integration. The accuracy
of such a reduction is still under investigation.
The integration in (19) is restricted to a very small part

of R2, because of the small size of the bunch, but it is
awkward to locate this region owing to the fact that spatial
and temporal arguments of the source both depend on R0.
The task of integration is greatly simplified if we take the
temporal argument to be a new variable of integration. We
first transform to polar coordinates ð�; Þ, then take the
temporal argument v in place of the radial coordinate �.
That is,

R 0 �R ¼ �eðÞ; eðÞ ¼ ðcos; sinÞT;
v ¼ u� ½�2 þ ðkhÞ2�1=2:

(20)

This conveniently gets rid of the potentially small divisor
in (19), giving the field simply as an integral over the
source:

F LðR; uÞ ¼ � 1

2�

X1
k¼0

ð�1Þkð1� �k0=2Þ

�
Z u�kh

u0

dv
Z �

��
dS½ ~Rð; v;uÞ; v�; (21)

where ~Rð; v;uÞ ¼ Rþ ½ðu� vÞ2 � ðkhÞ2�1=2eðÞ.
To estimate the effective region of the  integration in

(21), note that the source in (21) has significant values only
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for ~Rð; v; uÞ restricted to a bunch-sized neighborhood of
Rrð�rvÞ; i.e., the bunch is close to the reference particle.
For the field F L at time u we are interested only in R in a
bunch-sized neighborhood of Rrð�ruÞ. Thus for R in a
small neighborhood of Rrð�ruÞ the integrand is appre-
ciable only when

j ~Rð; v; uÞ �Rrð�rvÞj 
 jRrð�ruÞ �Rrð�rvÞ
þ ½ðu� vÞ2 � ðkhÞ2�1=2
� eðÞj ¼ Oð�Þ; (22)

where � was introduced in Sec. I. For k ¼ 0 and u� v
large compared to �, this cannot be satisfied unless eðÞ
has nearly the same direction as Rrð�ruÞ �Rrð�rvÞ,
which is to say that the domain of  integration is tiny
(and close to  ¼ 0 for a chicane with small bending
angle). When u� v gets close to � the domain expands
precipitously to the full ½��;��. For k � 0 the con-
dition (22) cannot be met unless u� v � kh, so for image
charges there are no contributions to the v integral close to
its upper limit.

The  integration is over an arc centered at the observa-

tion point R at time u with radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðu� vÞ2 � ðkhÞ2p

, its
extent being its intersection with the bunch at time v. This
is illustrated in the Fig. 2 for k ¼ 0. When v is close to u
the source bunch and the observation region (the region of
the bunch at time u) overlap and the  support of the source
is large. However, for most v the  support is small and it is
important to determine the approximate support as shown
in the figure. Currently, the  integration is done with the
trapezoidal rule, which is superconvergent. The remaining
v integrand varies with v,R, and u in ways we have not yet
quantified and so we use an adaptive integrator.

B. Beam frame

In our approach the Maxwell equations are solved in the
lab frame but the equations of motion are integrated in the
beam frame. Here we discuss the beam frame coordinates
and the transformation of the densities between the two
frames.
The beam frame is defined in terms of the reference orbit

RrðsÞ ¼ ½ZrðsÞ; XrðsÞ�T which in turn is defined by the
Lorentz equations without self-fields. We take s ¼ 0 at
the entrance of the chicane, i.e., Rrð0Þ is the entry point
of the reference orbit into the chicane. The unit tangent
vector, t, to the reference orbit is just tðsÞ ¼ R0

rðsÞ and
we define the unit normal vector, n, by nðsÞ ¼
½�X0

rðsÞ; Z0
rðsÞ�T so that n is a �=2 counterclockwise rota-

tion from t as shown in Fig. 3. It follows from the Lorentz
equations that t0ðsÞ ¼ �qBext½ZrðsÞ�nðsÞ=Pr, where Pr ¼
m�r�rc is the momentum of the reference particle. This
determines the curvature � up to a sign and we choose
�ðsÞ ¼ qBext½ZrðsÞ�=Pr. Thus t0ðsÞ ¼ ��ðsÞnðsÞ and
n0ðsÞ ¼ �ðsÞtðsÞ. In terms of Fig. 1 this makes � negative
in the first magnet, positive in the second magnet and so on.
The beam frame Frenet-Serret coordinates are s, x,

where s is the arclength along the reference orbit and x is
the perpendicular distance along n. Thus the transforma-
tion from ðZ; XÞ to ðs; xÞ is

R ¼ RrðsÞ þ xnðsÞ: (23)

In addition, we define ps and px by P ¼ Pr½pstðsÞ þ
pxnðsÞ�.
Our lab to beam transformation has three steps:

ðZ; PZ; X; PX;uÞ ! ðs; ps; x; px; uÞ ! ðu; ps; x; px; sÞ
! ðz; pz; x; px; sÞ: (24)

The first step is the transformation just discussed. In the
second step the variables s and u are interchanged making

v

u-v

u∆θ

FIG. 2. Plan for  integration.

X

ZY

s

(Rr(s),0)

x•
(R,0)

(n,0)

(t,0)

FIG. 3. Beam frame coordinates.
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s the new independent variable. In the final step z ¼ s�
�ru replaces u as a dependent variable and pz ¼ ð��
�rÞ=�r replaces ps. Thus the variables z, pz, x, px are small
near the reference orbit which corresponds to z ¼ x ¼ 0.
Equation (23) defines s ¼ sðRÞ and x ¼ xðRÞ in a neigh-
borhood of the reference orbit so that z ¼ zðR; uÞ ¼
sðRÞ � �ru and we have the identity R � Rr½zðR; uÞ þ
�ru� þ xðRÞn½zðR; uÞ þ �ru�. Since z is small for R in
the bunch, expanding for small z gives R ¼ Rrð�ruÞ þ
Mð�ruÞrþOð�z2; �xzÞ and we obtain the approximate
inverse

r ¼ MTð�ruÞ½R�Rrð�ruÞ�; MðsÞ ¼ ½tðsÞ;nðsÞ�;
r ¼ ðz; xÞT: (25)

We make extensive use of formula (25) within its domain
of validity, namely, when R is in a neighborhood of
Rrð�ruÞ comparable in extent to the bunch size, and the
bunch size is small compared to the bending radius [see
Assumption A of Sec. I whereby �� 	 1whence �z 	 1,
�x 	 1 so that the O term above (25) can be neglected].

The equations of motion in ðz; pz; x; px; sÞ have the fields
F LðR; uÞ evaluated at R ¼ RrðsÞ þ xnðsÞ and u ¼ ðs�
zÞ=�r. We have the following approximations:

F L½RrðsÞ þ xnðsÞ; ðs� zÞ=�r�

 F L½Rrðsþ zÞ þ xnðsþ zÞ; s�

 F L½RrðsÞ þMðsÞr; s�: (26)

At the first approximation we use the fact that the fields are
slowly varying in s for fixed r (see Assumption B of Sec. I)
and that �r 
 1. The second approximation uses the fact
that we are only interested in the fields in the bunch for r
small [this again uses assumption A of Sec. I and drops the
O term above (25)]. From (7) and (9) it is possible to
deduce

z0 ¼ ��ðsÞx p0
z ¼ Fz1ðR̂; sÞ þ pxFz2ðR̂; sÞ

x0 ¼ px p0
x ¼ �ðsÞpz þ FxðR̂; sÞ;

(27)

where R̂ ¼ ðẐ; X̂ÞT ¼ R̂ðr; sÞ ¼ RrðsÞ þMðsÞr and 0 ¼
d=ds. The collective forces are given approximately by

Fz1ðR̂; sÞ ¼ q

Prc
ELðR̂; sÞ � tðsÞ;

Fz2ðR̂; sÞ ¼ q

Prc
ELðR̂; sÞ � nðsÞ

FxðR̂; sÞ ¼ q

Prc
f�EL;ZðR̂; sÞX0

rðsÞ þ EL;XðR̂; sÞZ0
rðsÞ

� cBLðR̂; sÞg: (28)

We have expanded Fx in order to point out that each of the
last two terms are large whereas their difference is small.
Details will be presented in [19].

The equations of motion (27), without the self-fields,
represent the Lorentz equations in linearized form for the
relativistic case �r � 1. Including the self-fields we write
the initial value problem for (27) as

� 0 ¼ AðsÞ� þ Gð�; s;F LÞ; �ð0Þ ¼ �0; (29)

where � ¼ ðz; pz; x; pxÞT . The linear part � 0 ¼ AðsÞ� can
be solved and the solution written � ¼ �ðs; 0Þ�0,
�ð0; 0Þ ¼ I4�4. Here �ðs; �Þ is the transfer map (principal
solution matrix) which is defined in terms of the dispersion
function, Dðs; �Þ, and momentum compaction function,
R56ðs; �Þ, in Sec. III B. The equations of motion in the
interaction picture become

� 00 ¼ �ð0; sÞG½�ðs; 0Þ�0; s;F L�: (30)

We have found that it is numerically more efficient to
integrate (30) than to integrate (27).
Our field formula is in the lab frame so the lab charge

and current densities must be determined from the beam
frame phase space density. The relation between the lab
frame phase space density, fL, and the beam frame phase
space density, f, is

fLðZ; PZ; X; PX; uÞ ¼ �2
r

P2
r

fðz; pz; x; px; sÞ: (31)

Here f is normalized, i.e.,

1 ¼
Z
R4

dzdpzdxdpxfðz; pz; x; px; sÞ; (32)

as is fL in (12). Equation (31) leads to

�LðR; uÞ 

Z
R2

dpzdpxf ¼ �Bðr; sÞ; (33)

J LðR; uÞ 
 �rc½�Bðr; sÞtðsÞ þ �Bðr; sÞnðsÞ�; (34)

where �Bðr; sÞ ¼
R
R2 pxfðz; pz; x; px; sÞdpzdpz. Note that

since
R
R2 �Bðz; x; sÞdzdx ¼ 1, �B is the beam frame spatial

density and Q�B is the beam frame charge density. The
main function in the definition (1) of the gain factor is ~� in
(2) where

�ðz; sÞ ¼
Z
R
dx�Bðz; x; sÞ ¼

Z
R3

dpzdxdpxfð�; sÞ: (35)

Using the fact that fðz; pz; x; px; �Þ is slowly varying and
�Bðr; sÞ has its support for r small, we have
�B½zðR; uÞ; xðR; uÞ; zðR; uÞ þ �ru� 
 �Bðr̂; �ruÞ, where
r̂ ¼ MTð�ruÞ½R�Rrð�ruÞ�. Thus

�LðR; uÞ 
 �Bðr̂; �ruÞ (36)

JLðR; uÞ 
 �rc½�Bðr̂; �ruÞtðzþ �ruÞ
þ �Bðr̂; �ruÞnðzþ �ruÞ�; (37)

where the JL approximation is derived similarly to that for
�L.
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There are subtleties in the second transformation of (24)
caused by interchanging the roles of u and s as independent
and dependent variables. The phase space density trans-
formation (31), the normalization (32), and the approxi-
mations will be discussed in detail in [19].

C. A method of solution: Monte Carlo particle method

We have discussed our method for calculating the fields
in the lab frame and the determination of the lab frame
charge and current densities from the beam frame phase
space density. Here we discuss a method of solution of the
coupled Vlasov-Maxwell system similar to traditional par-
ticle methods, variously called particle-in-cell (PIC) or
macroparticle methods. We call it the Monte Carlo particle
(MCP) method, because it uses a Monte Carlo method to
determine a smooth charge distribution from an ensemble
of particles.

Before we developed the MCP method we considered
solving the Vlasov equation using the method of local
characteristics (or ‘‘semi-Lagrangian method’’), which
has been extremely effective in problems with a 2D phase
space. This deals with the Vlasov equation in a very direct
way, defining the phase space density by its values on a
grid with interpolation to off-grid points. The density is
updated by integrating backward from grid points, with the
collective force regarded as constant during a time step.
Since the backward orbits land at off-grid points, this
update requires interpolation. In comparison with usual
particle methods, this method offers much lower noise
and the possibility of a relatively direct control of accuracy
by monitoring interpolation error. On the other hand, it is
relatively expensive in computation time and memory, and
in the case of bunch compressors it is technically compli-
cated because the density is concentrated in a narrow
region of phase space that evolves in time in a manner
that is not known a priori [20]. We are studying ways to
deal with this evolving support, since it would be ineffi-
cient to use many grid points where the density is negli-
gibly small. Possible techniques include changes of
variable [2], an evolving selection of fiducial grid points,
and the use of forward characteristics rather than backward
[21]. Although we have high hopes for success in this
direction, the present report has the more modest goal of
improving the particle method, in which it is much easier to
deal with the support question since one has to work only
with the charge density in 2D rather than the phase space
density in 4D. In particle methods the connection to the
Vlasov equation is unfortunately indirect, and the control
of accuracy relies entirely on the experiment of increasing
the number of particles. Even if one believes that a solution
of the Vlasov equation is obtained in the limit, it is usually
too expensive to make a convincing empirical demonstra-
tion of convergence.

In the Monte Carlo particle method we represent the
charge/current density in the beam frame as a truncated

Fourier series, thus giving ourselves a density that is
smooth, of class C1. The integrals representing the
Fourier coefficients are evaluated by Monte Carlo sam-
pling of the integrand, over the ensemble of particles.
Ideally, one would use the resulting Fourier series and its
gradient to evaluate the source in the field formula. That is
too expensive, however, since it involves multiple summa-
tions of the Fourier series, at points not amenable to the fast
Fourier transform. Instead, we use the Fourier series to put
the density and its gradient on a grid, and then use low
order polynomial interpolation for evaluations at off-grid
points. Thus we accomplish something similar to charge
deposition in particle-in-cell codes, but by a different route,
and get the gradient as well as the density itself at grid
points. Our method gives low noise, but is costly at high
levels of resolution. We have not yet carried out a careful
comparison with more usual methods at similar levels of
cost and resolution.
It is cost effective to make an s-dependent coordinate

transformation so that the 2D spatial density can be accu-
rately represented in a grid which does not depend on s.
Since in our studies the uncorrelated energy spread �u and
the spread in the transverse momentum �px0 at entrance of

the chicane are small, we found that the coordinate trans-
formation ðz; xÞ $ ð~z; ~xÞ via
z ¼ ½1þ hR56ðsÞ�~z�D0ðsÞ~x; x ¼ hDðsÞ~zþ ~x (38)

gives an almost stationary situation, where particles are at
rest in the limit of no self-fields, and �u ¼ 0 and�px0 ¼ 0.

Here h is the chirp parameter and DðsÞ ¼ Dðs; 0Þ and
R56ðsÞ ¼ R56ðs; 0Þ where Dðs; �Þ and R56ðs; �Þ are defined
in (84) and (85). The transformation (38) is obtained solv-
ing (29) without self-fields and with initial conditions z ¼
~z, pz ¼ h~z, x ¼ ~x, and px ¼ 0. Since we estimate the
charge density with a Fourier expansion in the unit square
½0; 1� � ½0; 1�, our final grid transformation ð~z; ~xÞ $
ðx1; x2Þ is obtained by a simple scaling and translation.
For the MCP model in Sec. IV, we show the evolution of
the spatial density both with and without self-fields in the
coordinates ðx1; x2Þ with the spatial density, �g, defined on

our s-independent grid which is explained in that section.
We now describe our algorithm more concretely. To

generate the initial positions of N particles at s ¼ 0 we
use the acceptance-rejection method [22], assuming parti-
cles are independent identically distributed (IID) according
to the initial phase space density. Since the reference
particle corresponds to z ¼ 0 and since z ¼ s� �ru, the
reference particle arrives at the chicane entrance at u ¼ 0.
At s ¼ 0 our bunch effectively has z supported in ð�a; aÞ
where the longitudinal size parameter a of the MCP model
is explained in Sec. IV. Thus the particle at the head of the
bunch arrives at s ¼ 0 at the time �a=�r and we take the
latter to be u0 whence at u ¼ u0 the particles have z
coordinates in the interval ð�2a; 0Þ. The field formula
(21) can now be applied.
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For a small step s ! sþ�s we proceed as follows.
1. Denoting �B, �B in the grid coordinates ðx1; x2Þ by �g,

�g, respectively, we expand �gðx1; x2; sÞ and �gðx1; x2; sÞ in
a finite Fourier series:

�gðx1; x2; sÞ ¼
XI
i¼0

XJ
j¼0

ijðsÞ�iðx1Þ�jðx2Þ; (39)

�gðx1; x2; sÞ ¼
XI
i¼0

XJ
j¼0

�ijðsÞ�iðx1Þ�jðx2Þ; (40)

where

ijðsÞ ¼
Z
A
dx1dx2�iðx1Þ�jðx2Þ�gðx1; x2; sÞ; (41)

�ijðsÞ ¼
Z
A
dx1dx2�iðx1Þ�jðx2Þ�gðx1; x2; sÞ: (42)

Here f�ig is the orthonormal basis �0ðxÞ ¼ 1 and �iðxÞ ¼ffiffiffi
2

p
cosði�xÞ for i � 1, x 2 ½0; 1�. Note that �g is now the

actual spatial density, in the coordinates x1, x2, with non-
zero �u and �px0

and with self-fields.

Since �g is a probability density the Fourier coefficients

ij may bewritten as the expected value E of�iðX1Þ�jðX2Þ
with respect to �gð�; sÞ

ijðsÞ ¼ Ef�iðX1Þ�jðX2Þg
¼
Z
A
dx1dx2�iðx1Þ�jðx2Þ�gðx1; x2; sÞ; (43)

where X ¼ ðX1; X2Þ is the random variable with probability
density �g. To estimate �g, which is not a probability

density, we notice that the Fourier coefficients �ij may

be written as the expected value E of�iðX1Þ�jðX2ÞPX with

respect to fgð�; sÞ
�ijðsÞ ¼ Ef�iðX1Þ�jðX2ÞPXg

¼
Z
A
dx1dx2

Z
R2

dpzdpx�iðx1Þ�jðx2Þ
� pxfgðx1; pz; x2; px; sÞ; (44)

where X ¼ ðX1; PZ; X2; PXÞ is the random variable with
probability density fgð�; sÞ. It follows that the natural esti-
mate of E is the sample mean, i.e., we have the following
two Monte Carlo formulas:

ijðsÞ 
 1

N

XN
n¼1

�iðX1nÞ�jðX2nÞ; (45)

�ijðsÞ 
 1

N

XN
n¼1

�iðX1nÞ�jðX2nÞPXn; (46)

where a realization of the random variable X ¼
ðX1; PZ; X2; PXÞ is obtained from beam frame scattered

phase space points zi, pzi, xi, pxi at s, i ¼ 1; . . . ;N [via
the transformation: ðzi; pzi ; xi; pxiÞ ! ðx1i; pzi ; x2i; pxiÞ].
This is a density estimation used in statistical estimation,
see, e.g., [23]. The Monte Carlo computation is done in
parallel, i.e., the sums in (45) and (46) are each split into
Np pieces where Np is the number of processors. In other

words, each processor only computes the sum overN =Np

terms in (45) and (46). In Sec. IV we discuss how we
determine N and ðI; JÞ for a particular simulation.
2. The force fields ELðR; sÞ � tðsÞ, ELðR; sÞ � nðsÞ,

FxðR; sÞ, which are needed in (28), are computed on the
s-independent grid defined above. That is, given a grid
point ðx1; x2Þ, we compute the associated beam frame value
x, then compute RrðsÞ þ xnðsÞ. The force fields can
then be determined at theseR values fromF LðR; sÞ. Using
(21), with k ¼ 0, we have

F LðR; sÞ ¼ � 1

4�

Z s

u0

dv
Z �

��
dS½ ~Rð; v; sÞ; v�; (47)

where

~Rð; v; sÞ ¼ Rþ ðs� vÞeðÞ: (48)

Here we have taken k ¼ 0, since for the parameters used
for the MCP model in Sec. IV it is found that shielding is
not important. For some designs shielding could well play
a role, so our code allows it to be included.
To do the double integral in (47) we apply a

Gauss-Kronrad adaptive algorithm to the outer integral.
Gauss-Kronrod picks a v and then we determine the 
support, ðmin; maxÞ. The inner  integral is then done
with the trapezoidal rule on a uniform mesh. For each point

½ ~Rð; v; sÞ; v� of demand the source value S½ ~Rð; v; sÞ; v�
is determined by a triquadratic interpolation of S values.
We notice that the Fourier method of item 1 not only gives
an analytical representation at s of �g and �g but of r�g

andr�g as well. A representation of @�g=@s and @�g=@s is

obtained by differentiating the Fourier coefficients with a
finite difference scheme. Even though it is possible to
construct the source term S by storing the ‘‘history’’ of
the Fourier coefficients, i.e. ij and �ij, dij=ds and

d�ij=ds on a grid in s, we found it is more efficient to

store �g, r�g, and @�g=@s (the same for �g) on a 3D grid

in ðx1; x2; sÞ. We use a uniform grid in ðx1; x2; sÞ. Note that
the field computation is done in parallel by letting each
processor compute EL � t, EL � n, Fx on only Ng=Np grid

points ðx1; x2Þ where Np is the number of processors and

Ng is the number of grid points.

3. We use item 2 to push the particles in the interaction
picture of (30). This allows us to use an Euler scheme
where the integration step�s is determined by the strength
and smoothness of the self-fields. The force fields have
been calculated on a grid in ðx1; x2Þ as outlined in item 2
above. To calculate the fields at particle positions needed in
(28) we use a biquadratic interpolation. The particle push-
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ing is done in parallel, i.e., each processor only pushes
N =Np particles.

4. The procedure is iterated going back to item 1.
We mentioned that the MCP method can be time con-

suming. We are attempting to improve the Monte Carlo
integrations by trying variance reduction techniques,
which build on the central limit theorem [22,24], and
also by trying quasirandom sequences (also called low-
discrepancy sequences) in place of pseudorandom sequen-
ces [24,25]. Quasirandom sequences allow one to break the
‘‘curse of dimensionality’’ in grid-based multidimensional
integration, giving a true error bound (i.e., not probabilis-
tic) of order ðlogN Þk�1=N , with only logarithmic depen-
dence on the dimension k of the space. We are also
attempting to improve the Monte Carlo integrations by
considering a discrete Fourier transform method for non-
equidistant points, called nonequidistant fast Fourier trans-
form method, which is employed by the subroutine library
NFFT [26].

As an alternative to MCP we are investigating a scheme
based on the standard PIC procedure of charge deposition
to a grid, followed by additional filtering using wavelets.
This has been applied in beam dynamics in Ref. [27]. We
are also pursuing kernel density estimation methods from
statistics [28,29]. These are closely related to quasi-
interpolation methods from scattered data approximation
[30–32].

III. LINEAR INTEGRAL EQUATION TO
DETERMINE THE GAIN FACTOR

Recalling the definitions of force components in (28),
we now consider the case when Fz2 and Fx are zero and Fz1

can be approximated by an impedance model. Our beam
frame equations of motion (29) become

� 0 ¼ AðsÞ� þGð�; s; fÞ; (49)

where the collective force term Gð�; s; fÞ in (49) is defined
by

Gð�; s; fÞ ¼ ½0; G2ðz; s; fÞ; 0; 0�T; (50)

G2ðz; s; fÞ ¼ � re
�r

Z
R4

d� 0Wðz� z0; sÞfð� 0; sÞ;

re ¼ Z0q
2

4�mc
;

(51)

and where f is the beam frame phase space density in (31).
The radiation wake function W and the radiation imped-
ance Z form a Fourier transform pair:

Zðk; sÞ ¼
Z
R
dzWðz; sÞ expð�ikzÞ;

Wðz; sÞ ¼ 1

2�

Z
R
dkZðk; sÞ expðikzÞ;

(52)

and we have Zð0; sÞ ¼ 0. The vector field defined by the

right-hand side (rhs) of (49) is divergence free, thus the
Vlasov equation is

D2fð�; sÞ þD1fð�; sÞ½AðsÞ� þGð�; s; fÞ� ¼ 0; (53)

where D2f is the partial derivative of f with respect to
(w.r.t.) s and where D1f is the row vector consisting of the
partial derivatives w.r.t. z, pz, x, and px, respectively.
The longitudinal spatial density, �, is defined by (35)

and its z-Fourier transform, ~�, by (2). Our goal is to
characterize ~� at wave numbers, k, corresponding to the
feared microbunching instability. In terms of ~� the collec-
tive force can be written as

G2ðz; s; fÞ ¼ � re
2��r

Z
R
dkZðk; sÞ~�ðk; sÞ expðikzÞ: (54)

We wish to study linear stability of a ‘‘smooth’’ solution
f0 of the initial value problem

D2f0ð�; sÞ þD1f0ð�; sÞ½AðsÞ� þGð�; s; f0Þ� ¼ 0; (55)

f0ð�; 0Þ ¼ a0ð�Þ: (56)

That is, we write

f ¼ f0 þ f1; (57)

linearize in f1, and then look for growth (in some appro-
priate sense) of an initial value of f1. Here the spatial
density from f1 will contain wavelengths less than those
of any appreciable component of f0; that is the meaning of
smooth as an attribute of f0 depending on the choice of f1.
We emphasize that f0 is smooth relative to f1, not neces-
sarily smooth by some absolute standard.
Of course it is difficult to find an f0 satisfying (55) for an

entirely arbitrary initial value a0; to do so would be the
same as solving the full problem, thus obviating any reason
to linearize. There may be some a0, however, for which the
collective forceG2ðz; s; f0Þ is initially zero and remains so;
in that case we can solve (55) and (56) by characteristics.
Defining

~�iðk; sÞ ¼
Z
R
dz�iðz; sÞ expð�ikzÞ;

�iðz; sÞ ¼
Z
R3

dpzdxdpxfið�; sÞ; ði ¼ 0; 1Þ;
(58)

we observe that the force will be initially zero if the Fourier
spectrum of �0ð�; 0Þ is zero within the support of the
impedance: Zðk; 0Þ~�0ðk; 0Þ ¼ 0. This is the case for a
coasting beam but could also arise with a bunched beam
through shielding of CSR by the vacuum chamber, so that
Z is essentially zero at wavelengths longer than the shield-
ing threshold �0. By coasting beamwemean that �0ðz; sÞ is
independent of z for each s.
If the coasting beam condition holds initially then, as

shown in Sec. III C, it holds for all s if the energy chirp is
linear. Furthermore the bunched beam under shielding
could also keep its spectrum below k0 if bunch compres-
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sion were not too extreme. Thus we have at least two cases
in which a solution of (55) and (56) is available. Others
might be obtained by time domain numerical integration of
(55) from a smooth initial condition, provided that very
small wavelengths do not appear as the integration
proceeds.

We proceed to linearize (53) about an arbitrary f0,
therefore allowing the case of a bunched beam, and cast
the linearized equation into the form of the 2D integral
equation (78) for ~�1. The 2D equation for ~�1 reduces to a
1D equation when f0 models a coasting beam with linear
energy chirp. In the case of the coasting beam in Sec. III C
this 1D integral equation reduces to the results in [12,13]
since these authors deal with this model. Inserting (57) into
(53) and applying (55) we obtain

D2f1 þD1f1½AðsÞ� þGð�; s; f0Þ�
¼ �D1f0Gð�; s; f1Þ �D1f1Gð�; s; f1Þ: (59)

Linearizing (59) in f1 gives the following initial value
problem for f1:

D2f1ð�; sÞ þD1f1ð�; sÞ½AðsÞ� þGð�; s; f0Þ�
¼ �D1f0ð�; sÞGð�; s; f1Þ; (60)

f1ð�; 0Þ ¼ a1ð�Þ: (61)

Equation (60) is a linear first-order partial differential-
integral equation in the independent variables �; s for the
s evolution of f1. The initial condition (61) will contain the
perturbation involving wavelengths of interest.

A. Derivation of 2D integral equation for ~�1

We now proceed to derive from (60) and (61) the integral
equation (78) for the Fourier transform ~�1 of �1. From a
solution of this integral equation we could obtain the full
perturbation f1 by solving (60) using the method of char-
acteristics. This follows from the fact that G2ðz; s; f1Þ in
(54) depends on f1 only via ~�1, which in turn follows from
the 1D treatment of the collective force.

To convert (60) and (61) to an integral equation we need
the characteristic equation for (55) which is

� 0 ¼ AðsÞ� þGð�; s; f0Þ; (62)

and we need two general properties of its solutions. We
write the general solution of (62) as

� ¼ ’ðs; s0; �0Þ; (63)

where ’ðs0; s0; �0Þ ¼ �0. The basic property of ’ is

’½s2; s1; ’ðs1; s0; �Þ� ¼ ’ðs2; s0; �Þ: (64)

We assume solutions exist uniquely. We also invoke a
notation for the Jacobian matrix,

�ðs; s0; �0Þ ¼ D3’ðs; s0; �0Þ; (65)

where D3’ðs; s0; �0Þ is the 4� 4 Jacobian matrix whose
ith column consists of the partial derivatives of ’ w.r.t. the
ith component of �0. Since the rhs of (62) is divergence
free, detð�Þ ¼ 1. Differentiating the identity � ¼
’½s; s0; ’ðs0; s; �Þ�, obtained from (64), with respect to � ,
the matrix inverse of �ðs; s0; �0Þ is

��1ðs; s0; �0Þ ¼ �½s0; s; ’ðs; s0; �0Þ�: (66)

We can now write the solution of Eqs. (55) and (56) in
terms of ’ as

f0ð�; sÞ ¼ a0½’ð0; s; �Þ�: (67)

Solving (63) for �0 gives �0 ¼ ’ðs0; s; �Þ and, for s0 ¼ 0,
�0 ¼ ’ð0; s; �Þ whence

a0ð�0Þ ¼ f0½’ðs; 0; �0Þ; s�: (68)

Equation (55) is the differential statement that f0 is con-
stant along characteristics, whereas (68) states this more
explicitly in terms of the characteristics and the values of
f0 on the characteristics.
We now examine the evolution of f1 along the character-

istics of the unperturbed problem. Thus we define g by

gð�; sÞ ¼ f1½’ðs; 0; �Þ; s�; (69)

and this gives, by (60) and the definition of ’,

D2gð�; sÞ ¼ D1f1½’ðs; 0; �Þ; s�D1’ðs; 0; �Þ
þD2f1½’ðs; 0; �Þ; s�

¼ �fD1f0½’ðs; 0; �Þ; s�g2G2½’1ðs; 0; �Þ; s; f1�;
(70)

gð�; 0Þ ¼ f1ð�; 0Þ ¼ a1ð�Þ; (71)

where the column vector D1’ðs; 0; �Þ is the derivative of
’ðs; 0; �Þ with respect to s. The replacement of f1 by g in
(69) is often called ‘‘passing to the interaction picture,’’
since the evolution of g is governed just by the collective
force, the ‘‘interaction.’’
By differentiating (68) we have

Da0ð�Þ ¼ D1f0½’ðs; 0; �Þ; s�D3’ðs; 0; �Þ; (72)

and hence by (65) and (66)

D1f0½’ðs; 0; �Þ; s� ¼ Da0ð�Þ�½0; s; ’ðs; 0; �Þ�; (73)

where Da0ð�Þ is the row vector consisting of the partial
derivatives of a0 w.r.t. z, pz, x, and px. From (73) we see
that the first factor on the right-hand side of (70) can be
written

fD1f0½’ðs; 0; �Þ; s�g2 ¼ Da0ð�Þ��2½0; s; ’ðs; 0; �Þ�: (74)

Let V be a matrix then V�j and Vi� denoted the jth column

and ith row of V, respectively. The symbol VT
i� will denote

the transpose of Vi� (not the ith row of VT). In view of (54)
and (74), the equation (70) for g takes the form
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D2gð�; sÞ ¼ re
2��r

Da0ð�Þ��2½0; s; ’ðs; 0; �Þ�

�
Z
R
dkZðk; sÞ~�1ðk; sÞ exp½ik’1ðs; 0; �Þ�:

(75)

From (58) and (69) we obtain

~� 1ðk; sÞ ¼
Z
R4

d�f1ð�; sÞ expð�ikzÞ

¼
Z
R4

d�gð�; sÞ exp½�ik’1ðs; 0; �Þ�: (76)

We have used the fact that detð�Þ ¼ 1 as mentioned after
(65). It is now easy to turn (75) into an integral equation for
~�1. First, integrating (75) over s and using (71) gives

gð�; sÞ ¼ a1ð�Þ þ re
2��r

Z s

0
d�

Z
R
dk~�1ðk; �ÞZðk; �Þ

�Da0ð�Þ��2½0; �; ’ð�; 0; �Þ� exp½ik’1ð�; 0; �Þ�:
(77)

Then, integrating (77) over � after the multiplication by
exp½�ik’1ðs; 0; �Þ� gives
~� 1ðk; sÞ ¼ â1ðk; sÞ

þ
Z s

0
d�

Z
R
dk1Kðs; �; k; k1Þ~�1ðk1; �Þ; (78)

where

K ðs; �; k; k1Þ ¼ re
2��r

Zðk1; �Þ

�
Z
R4

d�Da0ð�Þ��2½0; �; ’ð�; 0; �Þ�
� expf�i½k’1ðs; 0; �Þ � k1’1ð�; 0; �Þ�g;

(79)

â 1ðk; sÞ ¼
Z
R4

d�a1ð�Þ exp½�ik’1ðs; 0; �Þ�: (80)

Thus our 2D integral equation is (78) with the kernel given
in (79) and the nonhomogeneous term in (80).

B. 2D integral equation for ~�1 when Gð�; s; f0Þ ¼ 0

Equations (79) and (80) both simplify and become more
explicit when

Gð�; s; f0Þ ¼ 0; (81)

which includes the coasting beam case since Zð0; sÞ ¼ 0.
From (81) it follows that ’ and� do not depend on f0 and
are given by

’ðs; �; �Þ ¼ �ðs; �Þ�; �ðs; �; �Þ ¼ �ðs; �Þ; (82)

where the 4� 4 matrix function �ðs; �Þ is the unique
solution of

D1�ðs; �Þ ¼ AðsÞ�ðs; �Þ; �ð�; �Þ ¼ I4�4: (83)

Since Tr½AðsÞ� ¼ 0 and �ð�; �Þ ¼ I4�4, we have
det½�ðs; �Þ� ¼ 1 which is consistent with the more general
case from Sec. III A. The transfer map (principal solution
matrix) �ðs; �Þ can be written in terms of the dispersion
function,

Dðs; �Þ ¼
Z s

�
ds0

Z s0

�
ds00�ðs00Þ; (84)

and the momentum compaction function

R56ðs; �Þ ¼ �
Z s

�
ds0�ðs0ÞDðs0; �Þ; (85)

as

�ðs; �Þ ¼
1 R56ðs; �Þ �D0ðs; �Þ Dðs; �Þ � ðs� �ÞD0ðs; �Þ
0 1 0 0
0 Dðs; �Þ 1 s� �
0 D0ðs; �Þ 0 1

0
BBB@

1
CCCA; (86)

where D0ðs; �Þ ¼ D1Dðs; �Þ. The inverse is ��1ðs; �Þ ¼
�ð�; sÞ. Using (82), Eq. (67) becomes

f0ð�; sÞ ¼ a0ð�ð0; sÞ�Þ: (87)

In order to derive the new forms of K and â1, we need
the 4D Fourier transforms of a0 and a1, ~aið�Þ ¼R
R4 d�aið�Þ expð�i�T�Þ where i ¼ 0; 1 and � ¼

ð�1; �2; �3; �4ÞT . Since ��2½0; �; ’ð�; 0; �Þ� ¼ ��2ð0; �Þ,
’1ðs; 0; �Þ ¼ �1�ðs; 0Þ� and

R
R4 d�Da0ð�Þ expð�i�T�Þ ¼

i~a0ð�Þ�T , the kernel K is replaced by K1, where

K 1ðs; �; k; k1Þ ¼ ire
2��r

Zðk1; �Þ~a0½k�T
1�ðs; 0Þ

� k1�
T
1�ð�; 0Þ�k�12ðs; �Þ: (88)

Here we used the fact that ½k�1�ðs; 0Þ �
k1�1�ð�; 0Þ���2ð0; �Þ ¼ k�12ðs; �Þ. It is easy to check
that â1ðk; sÞ ¼ ~a1½k�T

1�ðs; 0Þ�, whence (78) reads as
~� 1ðk; sÞ ¼ ~a1½k�T

1�ðs; 0Þ�
þ
Z s

0
d�

Z
R
dk1K1ðs; �; k; k1Þ~�1ðk1; �Þ:

(89)
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If we choose (as we do in our two models) a0 and a1 to be
of the form

a0ð�Þ ¼ �ðzÞaCBðpz � hz; x; pxÞ; (90)

a1ð�Þ ¼ "ðzÞa0ð�Þ; (91)

where aCB is normalized then

~a 0ð�Þ ¼ ~�ð�1 þ h�2Þ~aCBð�2; �3; �4Þ: (92)

Here ~� and ~aCB are the 1D and 3D Fourier transforms,
respectively. Note that the chirp parameter h, which quan-
tifies the linear energy chirp, is the ‘‘slope’’ of the corre-
lation. With (90) the integral equation (89) gets further
structure since by (92) we have

~a 0½k�T
1�ðs; 0Þ � k1�

T
1�ð�; 0Þ�

¼ ~�

�
k

CðsÞ �
k1
Cð�Þ

�
~aCB½kdðsÞ � k1dð�Þ�; (93)

where

dðsÞ ¼ ½�12ðs; 0Þ;�13ðs; 0Þ;�14ðs; 0Þ�T; (94)

CðsÞ ¼ ½1þ hR56ðsÞ��1;

R56ðsÞ ¼ R56ðs; 0Þ ¼ �12ðs; 0Þ:
(95)

We assume that CðsÞ> 0 for s 2 ½0; sf�. Since CðsÞ is the
compression factor at s, this condition is always fulfilled in
a chicane. Inserting (93) into (88), K1 becomes

K2ðs; �; k; k1Þ ¼ ire
2��r

Zðk1; �Þ ~�
�

k

CðsÞ �
k1
Cð�Þ

�
� ~aCB½kdðsÞ � k1dð�Þ�k�12ðs; �Þ; (96)

whence (89) reads as

~� 1ðk; sÞ ¼ ~a1½k�T
1�ðs; 0Þ�

þ
Z s

0
d�

Z
R
dk1K2ðs; �; k; k1Þ~�1ðk1; �Þ: (97)

Note that for both models, used for the numerical compu-
tations presented in Sec. IV, " is given by (129) where
k0 > 0 is the wave number of the initial modulation. Using
(129),

~a1ð�Þ ¼ A

2
½ ~�ð�1 þ h�2 � k0Þ þ ~�ð�1 þ h�2 þ k0Þ�

� ~aCBð�2; �3; �4Þ; (98)

and thus

~a1½k�T
1�ðs; 0Þ� ¼

A

2

�
~�

�
k

CðsÞ � k0

�
þ ~�

�
k

CðsÞ þ k0

��
� ~aCB½kdðsÞ�: (99)

C. Coasting beam case and 1D integral equation

The simplest case which satisfies (81) is where a0 is
given by (90) with �ðzÞ ¼ �c a constant. Thus with (91)
we have

a0ð�Þ ¼ �caCBðpz � hz; x; pxÞ; (100)

a1ð�Þ ¼ "ðzÞa0ð�Þ: (101)

Note that in this case a0 is not normalizable. Equation (81)
now follows from the fact that

�0ðz; sÞ ¼
Z
R3

d�rf0½�ð0; sÞðz; �rÞT; 0� (102)

is independent of z, where �r ¼ ðpz; x; pxÞT which we now
show.
We can write

�ðs; 0Þ ¼ 1 dTðsÞ
0 �rðsÞ

� �
; �ð0; sÞ ¼ 1 eðsÞ

0 ��1
r ðsÞ

� �
;

(103)

where eðsÞ ¼ ½�R56ðsÞ; D0ðsÞ;�DðsÞ�. We make the

change of variables �r ! �̂ r ¼ ðp̂z; x̂; p̂xÞT ¼ ��1
r ðsÞ�r.

Since det½�rðsÞ� ¼ 1,

�ð0; sÞðz; �rÞT ¼ �ð0; sÞ z
�rðsÞ�̂ r

� �

¼ zþ eðsÞ�rðsÞ�̂ r
�̂ r

 !
; (104)

and f0ðz; �r; 0Þ ¼ �caCBðpz � hz; x; pxÞ we obtain

�0ðz; sÞ ¼ �c

Z
R3

dp̂zdx̂dp̂xaCBð½1þ hR56ðsÞ�p̂z

� hfzþD0ðsÞx̂þ ½sD0ðsÞ �DðsÞ�p̂xg; x̂; p̂xÞ
¼ �c½1þ hR56ðsÞ��1 ¼ �cCðsÞ; (105)

which is also in [13].
Having thus shown that (100) implies (81), we can now

apply the results of Sec. III B. Taking the 4D Fourier
transform of (100) and (101) we obtain

~a 0ð�Þ ¼ 2��c�ð�1 þ h�2Þ~aCBð�2; �3; �4Þ; (106)

~a 1ð�Þ ¼ ~"ð�1 þ h�2Þ�c~aCBð�2; �3; �4Þ: (107)

It follows that

~�ðkÞ ¼ 2��c�ðkÞ; (108)

~a 1½k�T
1�ðs; 0Þ� ¼ ~"½k=CðsÞ��c~aCB½kdðsÞ�: (109)

Because of the � function in (108), the k1 integration in
(97) can be performed and we have
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~� 1ðk; sÞ ¼ ~"½k=CðsÞ��c~aCB½kdðsÞ�

þ
Z s

0
d�K̂CBðs; �; kÞ~�1

�
kCð�Þ
CðsÞ ; �

�
; (110)

where

K̂CBðs; �; kÞ ¼ ikre�c

�r

Cð�Þ�12ðs; �ÞZ
�
kCð�Þ
CðsÞ ; �

�

� ~aCB

�
kdðsÞ � kCð�Þ

CðsÞ dð�Þ
�
: (111)

Replacing k in (110) by kCðsÞ we obtain
~� 1½kCðsÞ; s� ¼ ~"ðkÞ�c~aCB½kCðsÞdðsÞ�

þ
Z s

0
d�KCBðs; �; kÞ~�1ðkCð�Þ; �Þ;

(112)

where

KCBðs; �; kÞ ¼ K̂CB½s; �; kCðsÞ�
¼ ikre�c

�r

CðsÞCð�Þ�12ðs; �ÞZ½kCð�Þ; ��
� ~aCB½kCðsÞdðsÞ � kCð�Þdð�Þ�: (113)

Because of (105) we have ~�0½kCðsÞ; s� ¼ 2��c�ðkÞ
whence

~� 1ðk; sÞ ¼ ~�ðk; sÞ; for k � 0: (114)

Thus by (112), for k � 0,

~�½kCðsÞ; s� ¼ ~"ðkÞ�c~aCB½kCðsÞdðsÞ�
þ
Z s

0
d�KCBðs; �; kÞ~�½kCð�Þ; ��: (115)

We now compare with [12,13]. In the special case of the
analytical model we have the " of (129) and the aCB of
(137) where �c; �t are given by (127) and (128), respec-
tively. It is thus easy to show that, for the analytical model,
(112) is Eq. (30) in [13] where (as in case of our numerical
computation—see Sec. IV) �0 ¼ 0. Thus (112) is the
generalization of Eq. (30) in [13] to general ", aCB, �0.
The relation to [13] is based on the equality gkðsÞ ¼
~�1½kCðsÞ; s�. Furthermore, in the special case of the ana-
lytical model it is easy to show that (115) is Eq. (20) in [12]
when k is taken k0 in (115). The relation to [12] is based on
the equality b½kðsÞ; s� ¼ ~�½k0CðsÞ; s�.

Solving (112) for every value of the parameter k, one
would obtain the function ~�1 whence, due to the remark at
the beginning of Sec. III A, one then could derive the full
perturbation f1 of f by solving (60) by the method of
characteristics.

Defining the linear operatorQ and the functions � and �
by

ðQFÞðk; sÞ ¼
Z s

0
d�KCBðs; �; kÞFðk; �Þ;

�ðk; sÞ ¼ ~�½kCðsÞ; s�; �ðk; sÞ ¼ �c~aCB½kCðsÞdðsÞ�;
(116)

we can write (115) as

� ¼ ~"ðkÞ�þQ�; (117)

where of course k � 0. In [12] an approximate solution of
(117) is constructed by iteration:

�ðnþ1Þ ¼ ~"ðkÞ�þQ�ðnÞ; (118)

where �ðnÞ aims to approximate � with increasing accu-
racy when n increases. Using the fact that Q~"ðkÞF ¼
~"ðkÞQF and choosing �ð0Þ ¼ ~"ðkÞ� we obtain for n ¼ 2

�ð2Þ ¼ ðQ2 þQþ 1Þ�ð0Þ ¼ ~"ðkÞðQ2 þQþ 1Þ�: (119)

The gain factor defined in (1) then reads as

G ðk0Þ ¼
��������~�½k0CðsfÞ; sf�

~�ðk0; 0Þ
��������


���������ðk0; sfÞ�ðk0; 0Þ
��������



���������

ð2Þðk0; sfÞ
�ð2Þðk0; 0Þ

��������
¼
��������~"ðk0Þ½ðQ2 þQþ 1Þ��ðk0; sfÞ

~"ðk0Þ½ðQ2 þQþ 1Þ��ðk0; 0Þ
��������

¼
��������½ðQ

2 þQþ 1Þ��ðk0; sfÞ
½ðQ2 þQþ 1Þ��ðk0; 0Þ

��������
¼ 1

�c

j½ðQ2 þQþ 1Þ��ðk0; sfÞj ¼: Gð2Þðk0Þ;
(120)

where we also used the fact that k0 � 0 and that �ðk; 0Þ ¼
�c (the latter follows from the normalization of aCB). We

callGð2Þðk0Þ the analytical gain factor and it is used for the
analytical model in Sec. IV and in [12]. Here the first
approximation entails the approximations leading to
(117). We are studying the nature of these approximations
including the fact that in our two models "ðzÞ ¼ A cosðk0zÞ
so that

~"ðkÞ ¼ �Af�ðk� k0Þ þ �ðkþ k0Þg: (121)

Here we are interested only in producing a rough figure of
merit of instability. A numerical comparison of Gðk0Þ in
the MCP model with Gð2Þðk0Þ in the analytical model is
done in Sec. IV.

D. Remarks on nonlinear chirp

The assumption of linear chirp is usually not realistic,
even though one tries to minimize nonlinearity in bunch
compressor designs. Venturini [33] has raised the question
of whether nonlinear terms in the chirp might affect the
microbunching instability, having noticed a discrepancy
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between simulations with and without nonlinear terms
(albeit simulations that differed in other respects as well).
Approaching this question through the integral equation,
we can choose in place of (100) an initial density of the
form

a0ð�Þ ¼ �caCB½pz � h�ðzÞ; x; px�: (122)

That is, we still assume an initial coasting beam but with
nonlinear chirp function �ðzÞ. For the special case of a
cubic chirp, �ðzÞ ¼ zþ bz3, which may be realistic in
some cases, one can evaluate ~a0 in terms of the Airy
function [34]:

~a0ð�Þ ¼ 2��cð3vÞ�1=3Ai½�ð3vÞ�1=3u�~aCBð�2:�3; �4Þ;
u ¼ j�1 þ h�2j; v ¼ jhb�2j: (123)

The þ sign is chosen when �1 þ h�2 and hb�2 have the
same sign, the � sign when their signs are opposite. Since
(123) lacks the delta function of (106), the integral equa-
tion is now in 2D. This may be the most interesting case for
a first study of the 2D equation. Generalizing the calcu-
lation of (118) and (119), the solution might be approxi-
mated by iteration. Note that the concept of gain should be
generalized in this case, since the compression is no longer
determined by CðsÞ.

Note that the initial coasting beam condition of uniform
spatial density is not maintained when the chirp is non-
linear, even if the collective force is turned off, since �ðzÞ
acquires a nonlinear dependence on pz under unperturbed
propagation in the lattice giving, instead of (105),

�0ðz; sÞ ¼�c

Z
R3
d�̂raCBfp̂z �h�½zþ eðsÞ�rðsÞ�̂ r�; x̂; p̂xg:

(124)

Thus the spatial density becomes nonuniform in z through
chirp alone, and Gð�; s; f0Þ � 0 for s > 0. Perhaps
Gð�; s; f0Þ is nevertheless sufficiently small to be neglected
when b is small; this must be checked.

Recall that AiðxÞ has exponential decrease for x > 0, but
oscillates for x < 0, and has discontinuous slope at x ¼ 0.
Consequently, the behavior of (123) near u ¼ 0 at small v
will be complicated and will require close attention in any
numerical or analytic study.

IV. FERMI@ELETTRA BUNCH COMPRESSOR
STUDIES

Here we study the FERMI@Elettra first bunch compres-
sor system by applying the MCP solver to the MCP model
and, to a lesser extent, by applying the analytical model
which was considered by [12,13]. This bunch compressor
system was proposed as a benchmark for testing codes. The
complete layout of the system is shown in Fig. 4. The
system consists of a four-dipole chicane between rf cavities
and quadrupoles. Here we limit our study to the chicane
with parameters as listed in Table I. The results are ob-

tained in the free space case; i.e., neglecting shielding
effects from the vacuum chamber. In our simulations we
noticed that �B in (34) has a negligible effect therefore we
ignored its contribution. The lengths L1, L2, and Lb are in
terms of the lab frame Z variable, thus the total length of
the chicane is 8 m. The total arclength traversed by the
reference particle is sf ¼ 8:029 m and the compression

factor at sf is CðsfÞ ¼ ½1þ hR56ðsfÞ��1 ¼ 3:545.

To study the microbunching instability, we choose the
initial beam frame phase space density to be

fðz; pz; x; px; 0Þ ¼ ½1þ "ðzÞ�a0ðz; pz; x; pxÞ; (125)

where

a0ðz; pz; x; pxÞ ¼ �ðzÞ�cðpz � hzÞ�tðx; pxÞ; (126)

�cðpzÞ ¼ exp½�p2
z=2�

2
u�=

ffiffiffiffiffiffiffi
2�

p
�u; (127)

�tðx; pxÞ ¼ expf�½x2 þ ð�0xþ �0pxÞ2�=2�0�0g=2��0;
(128)

"ðzÞ ¼ A cosð2�z=�0Þ ¼ A cosðk0zÞ: (129)

For the MCP model we use

�ðzÞ ¼ �

4a
ftanh½ðzþ aÞ=b� � tanh½ðz� aÞ=b�g; (130)

which is a smooth flattop density, even in z, with maximum
at z ¼ 0. Thus the smooth a0 is perturbed by a modulation,
", with wavelength �0 and small amplitude A. For the
analytical model we use

�ðzÞ ¼ �c ¼ const: (131)

In the calculations we vary �0 and take A ¼ 0:05, a ¼
1180 �m, and b ¼ 150 �m. The purpose of � is to nor-
malize f in the MCP model, as demanded by (32).
However, since it is a good approximation, we use � ¼ 1
in our computations. Of course f is not normalized in the
analytical model.

TABLE I. Chicane and beam parameters.

Parameter Symbol Value Unit

Energy reference particle Er 233 MeV

Peak current I 120 A

Bunch charge Q 1 nC

Normalized emittance �x ¼ ��0 1 �m
Alpha function �0 0

Beta function �0 10 m

Linear energy chirp h �12:6 1=m
Uncorrelated energy spread �E 2 KeV

Momentum compaction at sf Rf ¼ R56ðsfÞ 0.057 m

Radius of curvature r0 5 m

Magnetic length Lb 0.5 m

Distance 1st–2nd, 3rd–4th bend L1 2.5 m

Distance 2nd–3rd bend L2 1 m

BASSI, ELLISON, HEINEMANN, AND WARNOCK Phys. Rev. ST Accel. Beams 12, 080704 (2009)

080704-14



The density �cðpz � hzÞ contains the linear energy chirp
which is created by off-crest rf acceleration such that
particles in front of the reference particle gain less energy
than particles behind the reference particle. This creates
the correlation needed for bunch compression. The uncor-
related energy spread �E ¼ 2 KeV gives �u ¼ �E=Er ¼
8:6� 10�6.

Taking the limit b ! 0þ in (130) we get� ! �0 where
�0ðzÞ ¼ ð�=2aÞIð�a;aÞðzÞ and Ið�a;aÞ is the indicator func-

tion of the open interval ð�a; aÞ. The Fourier transform of
�0 is ~�0ðkÞ ¼ � sinðkaÞ=ka ¼: �sincðkaÞ. The function
�0 is a rough pointwise approximation to �, so that the
bunch length is 
 2a. We use the smooth � instead of �0

because the discontinuous �0 gives rise to a Gibbs phe-
nomenon which causes problems in our numerics.

To better understand the effect of the self-fields on ~�, we
first discuss ~� without the self-fields. The initial longitu-
dinal spatial density is

�ðz; 0Þ ¼ ½1þ "ðzÞ��ðzÞ; (132)

whence fðz; pz; x; px; 0Þ ¼ �ðz; 0Þ�cðpz � hzÞ�tðx; pxÞ.
Let CðsfÞ ¼ Cf and R56ðsfÞ ¼ Rf then, without self-fields,

the longitudinal spatial density at s ¼ sf is

�ðz; sfÞ ¼
Z
R3

dpzdxdpxf½�ð0; sfÞ�; 0�

¼
Z
R3

dpzdxdpxfðz� Rfpz; pz; x� sfpx; px; 0Þ

¼
Z
R
dpz�ðz� Rfpz; 0Þ�cðpz=Cf � hzÞ

¼ Cf

Z
R
dy�½Cfðz� RfyÞ; 0��cðyÞ; (133)

where in the second equality we used the fact that
Dð0; sfÞ ¼ 0 ¼ D0ð0; sfÞ. It is easy to check that �ð�; sfÞ in
(133) is even and so its first moment is zero. Note that (132)
and (133) hold for both choices of � (130) and (131).
Returning to the choice (130), a short calculation shows
that the second moment of �ð�; sfÞ is equal to 1=C2

f times

the second moment of �ð�; 0Þ plus the term R2
f�

2
u. The two-

term asymptotic expansion of (133) for small �u is

�ðz; sfÞ  Cf½�ðCfz; 0Þ þD2
1�ðCfz; 0ÞðCfRf�uÞ2=2�;

as �u ! 0: (134)

For our parameters, ðCfRf�uÞ2 ¼ Oð10�12 m2Þ and, to

very good approximation,

�ðz; sfÞ ¼ Cf�ðCfz; 0Þ: (135)

This is just (133) with �c replaced by the delta function
(see also the discussion of Fig. 13). The approximation of
(133) clearly shows the compression and the meaning of
the term ‘‘compression factor’’ [see also Fig. 13 (left)]. The
Fourier transform of (133) gives

~�ðk; sfÞ ¼ ~�cðkRfÞ~�ðk=Cf; 0Þ; (136)

where ~�cðkÞ ¼ exp½�k2�2
u=2�. Thus, neglecting self-

fields, the compression effect in (136) is exact whereas in
(135) it is approximate (but nearly exact).
As discussed in Sec. II C we accurately calculate the

evolution of the two-dimensional spatial density given the
initial beam frame phase space density of the MCP model.
We will present results for the spatial density but our main
focus will be on the integrated quantities: the longitudinal
spatial density �ðz; sÞ and the modulus of its Fourier trans-
form ~�ðk; sÞ. In particular, we calculate the gain factor
Gðk0Þ ¼j ~�ðk0Cf; sfÞ=~�ðk0; 0Þ j of (1) for initial modula-

tion wavelengths �0 ¼ 2�=k0 � 80 �m.
Figure 5 (left) shows the initial spatial density which has

been generated by Monte Carlo sampling in the grid coor-
dinates ðx1; x2Þ from Sec. II C. We note that there is no
visible noise. We chose to present �0 ¼ 200 �m but the
other cases are similar. In Fig. 5 (right) we compare the

analytical gain factor Gð2Þðk0Þ defined by (120) which we
compute by Eq. (38) in [12] [the latter is an approximation

ofGð2Þðk0Þ], with the gain factorGðk0Þ calculated numeri-
cally with our solver (red squares).

The analytical gain factor Gð2Þðk0Þ, which is derived in
Sec. III C, is based on the coasting beam form (100) of a0,
i.e., based on the choice (131) of � where, in the terminol-
ogy of Sec. III,

aCBðpz; x; pxÞ ¼ �cðpzÞ�tðx; pxÞ: (137)

The analytical gain factor Gð2Þðk0Þ takes into account only
CSR effects whereas our Vlasov-Maxwell approach auto-
matically includes the effects of CSR and space charge in
Gðk0Þ. Because our approach is much more detailed than
the analytic approach we did not expect detailed agree-
ment. Nonetheless, there does seem to be rough agreement
in the 100–450 �m range.
In the remaining parts of this section we deal with the

numerical results of the MCP solver, i.e., with the choice
(130) of� and the gain factorGðk0Þ. The gain factorGðk0Þ
without self-fields is just the ~�c factor in (136), i.e.,

FIG. 4. (Color) Proposed layout of FERMI@Elettra first bunch compressor system. Accelerating rf cavities in red, quadrupole
magnets in blue, drift sections in black, and dipoles in green. Chicane parameters are discussed in Table I.
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G ðk0Þ ¼
��������~�ðk0Cf; sfÞ

~�ðk0; 0Þ
��������¼j ~�cðk0CfRfÞ j

¼ exp½�ð2�CfRf�uÞ2=2�2
0�; (138)

which is shown in Fig. 5 (right). For our parameter values,
ðRf�uÞ2 
 0:12� 10�6 mm2, thus the gain factor Gðk0Þ
is essentially 1 except for an exponential fall off for �0 near
zero.

To gain some understanding of Fig. 5 (right) we discuss
the Fourier spectrum j~�ð�; sÞj in some detail. Since � is real
the spectrum is an even function of k and we only present it
for positive k.

In Fig. 6 (left) we show the Fourier spectrum of � at s ¼
0 for A ¼ 0, i.e., j ~�j. As � is close to ð�=2aÞIð�a;aÞðzÞ the
Fourier spectrum j ~�j is similar to �jsincðkaÞj. In Fig. 6
(right) we show the Fourier spectrum with self-fields at s ¼

sf without the initial modulation. Without self-fields we

would have j~�ðk; sfÞj ¼ exp½�ðkRf�uÞ2=2�j~�ðk=Cf; 0Þj.
For our parameters and the range of k in the figure, the
exponential factor is 0.999 and so the k axis is simply
scaled by Cf. This is roughly what we see in Fig. 6 (right)

which contains the self-fields. The first peak is at
3:763 mm�1 for s ¼ 0 and 13:125 mm�1 for s ¼ sf. The

ratio is 3.488 as compared to 3.545 in the noncollective
case. There is a visible decrease in the amplitude of the
peak near k ¼ 15 mm�1 and this must also be due to the
collective effect.
Fourier spectra for �0 ¼ 300 �m are shown in Fig. 7. In

Fig. 7 (left) we show results for s ¼ 0 and the flattop and
perturbed flattop. We note that the two spectra are essen-
tially the same until k 
 16 mm�1. After this the flattop
spectrum goes rapidly to zero whereas the perturbed spec-
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trum has a substantial contribution in a neighborhood of
the perturbed wave number k0 ¼ 20:94 mm�1. We note
however that the peak is at a slightly larger k value. We see
a similar structure for the evolved spectra at s ¼ sf in

Fig. 7 (right), which is due to the fact that without self-
fields there is the simple scaling of (136) as we discussed in
the context of Fig. 6. The effect of the collective force is
seen in the diminution of the peak values of the first peak
and a slight increase in the peak values near the arrows.
The two Fourier spectra in Fig. 7 (right) are the same until
k 
 60 mm�1. After this the flattop spectrum is nearly
zero and the perturbed spectrum has a substantial contri-
bution in a neighborhood of the perturbed but amplified
wave number k0Cf ¼ 74:2 mm�1. The amplified wave

number is slightly to the left of the peak. This raises the
issue of how the gain should be defined from the Fourier
spectrum. One possibility would be to take the ratio of the
peak values. Figure 5 (right) shows the ratio of the peak
values (blue dots) as well as the gain factorGðk0Þ, i.e., the

ratio of the values at k0 and k0Cf. Perhaps a better ap-

proach would be to consider some integral of ~�ð�; sÞ.
In Fig. 8 we show the same results for �0 ¼ 200 �m.

Here the behavior is quite similar to the �0 ¼ 300 �m
case. However, there is less interference between the un-
perturbed and perturbed Fourier spectra causing the arrows
to be closer to the peaks in the Fourier spectra. The
collective effect is much increased over Fig. 7. There is a
significant decrease in the peak values associated with the
flattop and a significant increase in the peak values due to
the perturbation.
The Fourier spectra at s ¼ 0 and s ¼ sf for �0 ¼

100 �m are shown in Fig. 9 (left) and, as in the 200 �m
case, there is no visible interference between the flattop
and the perturbation. However, in contrast to the 200 �m
case, there is considerable enhancement and structure at
the end of the chicane in the neighborhood of k0Cf ¼
222:741 mm�1. Defining the gain as the ratio of the values
at the arrows appears to be somewhat arbitrary in two
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ways. One, the arrow at s ¼ sf is to the right of the peak

and two there is considerable structure between 200 and
250 mm�1.

At 80 �m it appears that our calculation shows a de-
crease in the gain as indicated by the red squares and blue
dots of Fig. 5 (right). However, this may be misleading as a
comparison of the Fourier spectra in Fig. 9 (right) and
Fig. 9 (left) does not clearly indicate a decrease in
‘‘gain’’ in going from �0 ¼ 100 �m to �0 ¼ 80 �m.
This further illustrates the need for a better definition of
gain.

We are studying the Fourier spectra for �0 < 80 �m and
preliminary results indicate a decrease in the gain and

deviations from the analytical gain Gð2Þðk0Þ. The source
of discrepancy might be due to nonlinearity, or to the
different modeling of the collective force.

Currently we are running on Encanto at the NewMexico
Computing Applications Center and on Franklin at the
National Energy Research Scientific Computing Center
(NERSC). Our run at 80 �m takes 
 5 hours using 800

processors. This along with memory considerations cur-
rently limits the minimum value of �0 we can study.
We have also considered values of �0 greater than

300 �m as seen in Fig. 5 (right). The �0 ¼ 400 �m case
is shown in Fig. 10. Here we begin to see an overlap
between the perturbed and unperturbed Fourier spectra
and the arrows are quite a bit to the left of the peak values.
The situation is even more severe at 600 �m, as can be
seen in Fig. 11. At 400 �m the red and blue markers in
Fig. 5 (right) are very close and at 600 �m the blue marker
is almost on the analytical curve, but these are likely
fortuitous results.
Recall now the coasting beam assumption that �0ðz; sÞ is

approximately independent of z so that ~�0ðk; sÞ is approxi-
mately zero for k � 0. What we see in Fig. 10 is that the
Fourier spectra of �0 and � have significant overlap in the
region where k is near k0 and k0Cf. This signals the break-

down of the coasting beam assumption. The overlap is
caused by the fact that there are only a small number of
oscillations on the perturbed flattop. For �0 ¼ 400 �m
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there are roughly four oscillations as can be deduced from
the �0 ¼ 200 �m case of Fig. 13.

The effect of the modulation on the average longitudinal

force (mean power), Fz1 of (27), and on the emittance �x ¼
�rð�2

x�
2
px � �2

xpÞ1=2 is very small for all values of �0. This

is shown for �0 ¼ 100 �m in Fig. 12. Notice that the
emittance at sf is 1.5 times the initial one. The large values

of the emittance away from the ends of the chicane is due
to dispersion while the increase at the end of the chicane is
totally due to the self-fields. There is no visible effect of the
modulation even in this case of �0 ¼ 100 �m where the
modulation has the largest effect on ~�ð�; sfÞ.

We have focused on the Fourier spectrum j~�ð�; sÞj for
s ¼ 0 and s ¼ sf because the gain factor Gðk0Þ is defined
in terms of this quantity. But it is also interesting to see the

effect of the modulation on the longitudinal spatial density,
�ð�; sÞ, itself.
In Figs. 13 and 14 we show results for the longitudinal

spatial density �. The initial modulation width (min to
max) is 2A�ðz ¼ 0Þ ¼ 42:4 m�1 thus the modulation
width at s ¼ sf, without self-fields, given by (135) is

Cf2A�ðz ¼ 0Þ ¼ 150:2 m�1.

In Fig. 13 (left) we show �ð�; sÞ for s ¼ 0 and s ¼ sf for

�0 ¼ 200 �m with no self-fields. The compression is
obvious and it is important to note that the modulation
width is enhanced by the compression factorCf. So there is

an enhancement without self-fields. As mentioned before,
(135) gives the excellent approximation �ðz; sfÞ ¼
Cf�ðCfz; 0Þ and a plot of this cannot be distinguished

from that in Fig. 13 (left).
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In Fig. 13 (right) we show �ð�; sfÞ for �0 ¼ 200 �m

both with and without the collective force. One can see the
enhancement of the modulation width with the collective
force, over and above that without the collective force. The
modulation width is now approximately 200 m�1. Also an
asymmetry due to the collective force has appeared and the
fraction of the bunch for z < 0 has decreased.

In Fig. 14 (left) the setup is the same as in Fig. 13 (right)
except �0 is now 100 �m. This is the case of maximum
gain in Fig. 5 (right). The results are similar to the 200 �m
case except the modulation width is now approximately
500 m�1, a considerable enhancement over both the
200 �m case as well as the case without self-fields. This
is to be expected from Fig. 5 (right).

Figure 14 (right) repeats the setup of Figs. 13 (right) and
14 (left) for �0 ¼ 80 �m. Here we see a slight increase in
the modulation width to approximately 650 m�1. Thus

even though there is a decrease in the gain at �0 ¼
80 �m in Fig. 5 (right), this is not seen in the modulation
width nor in the associated Fourier spectrum.
An important part of our current calculation is that we

have found an s-independent grid for the spatial density
that allows us to minimize the number of grid points as
discussed in Sec. II C. Recall that this grid is based on the
ðx1; x2Þ coordinates introduced in the context of (38) and in
these coordinates the spatial density is stationary for �u ¼
�px0

¼ 0 and no self-fields.

In Fig. 15 we present the evolution of the spatial density
for �0 ¼ 200 �m without self-fields. The density is shown
in Fig. 5 (left) at s ¼ 0 and in Fig. 15 for s ¼ 0:25sf, s ¼
0:5sf, s ¼ 0:75sf, and s ¼ sf. The grid coordinates

ðx1; x2Þ which were introduced in Sec. II C are used.
There is no visual change in the spatial density nor in the
contour plots showing that the effect of nonzero �u and
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�px0
is not important. (Here �px0

¼ 1:5� 10�5 and recall

that �u ¼ 8:6� 10�6) This means that, even though there
are large changes in the density in beam frame coordinates
as it evolves through the chicane [recall Fig. 12 (right)], the
ðx1; x2Þ coordinates allow us to eliminate that effect in the
calculations.

Next we present density plots with self-fields. In Fig. 16
we show the spatial density in grid coordinates ðx1; x2Þ for
�0 ¼ 200 �m (left) and �0 ¼ 100 �m (right) at s ¼ sf.

Here we simply reiterate that we are able to calculate
accurately this 2D spatial density, the basic quantity in
our 2D Ansatz.

In Fig. 17 we show the longitudinal force Fz1, propor-
tional to EL � t, at s ¼ sf for �0 ¼ 200 �m (left) and

100 �m (right). Notice that the maximum intensity of
Fz1 increases as �0 decreases, a behavior similar to the
oscillation amplitude of the spatial densities in Figs. 13 and
14, and in Fig. 16.

In a convergence study we compared simulation results
for �0 ¼ 200 �m at s ¼ sf for two sets of parameters

N 1 ¼ 60� 106, I1 ¼ 60, J1 ¼ 30 and N 2 ¼
120� 106, I2 ¼ 90, J2 ¼ 50. The comparison for the lon-
gitudinal spatial density is shown in Fig. 18. We have also
compared 2D plots of the spatial density at the two levels
of resolution. These are indistinguishable by eye and so we
do not show them. The gain, energy loss, and emittance
for the set of parameters ðN 1; I1; J1Þ are 1.5291,
�0:000 793 6, and 1:4498 ðmmmradÞ, respectively, while
the same quantities for the set of parameters ðN 2; I2; J2Þ
are 1.5282, �0:000 793 1, and 1:4501 ðmmmradÞ,
respectively.
Our MCP solver, based on a Monte Carlo particle

method to solve the Vlasov equation and a Green function
method to solve the Maxwell equations, demonstrated high
efficiency and scalability. Its high performance has been
tested on several parallel clusters. The number of particles
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N used in the simulations varies from few tens to few
hundreds of millions and the number of Fourier coeffi-
cients ðI; JÞ used in the estimation of the 2D charge/current
density runs from (30, 30) to (120, 50). The number of grid
points ðNx1; Nx2Þ in grid coordinates ðx1; x2Þ is fixed by
ðI; JÞ as follows. We determine Nx1 and Nx2 in order to
have 15–20 grid points per wavelength of the basis func-

tions
ffiffiffi
2

p
cosðI�x1Þ and

ffiffiffi
2

p
cosðJ�x2Þ, respectively. For a

particular simulation the grid extent is 6�z ¼ 4:6 mm thus
for a given modulation �0, for example, for �0 ¼ 100 �m,
the value of J must be bigger than 92. To determineN we
define an error � as the square of the L2 norm of �est � �an,
where �est is the estimated spatial density and �an is the

spatial density given analytically. We chooseN in order to
have � � 10�5.
The study of the gain factor at short wavelengths is

computationally expensive. Moreover, the increased length
of the 3D arrays needed to store the history of the charge/
current densities leads to intensive memory usage. Studies
are in progress to investigate wavelengths shorter than
�0 ¼ 80 �m and different amplitudes A.
An important prediction of the gain formula from [12],

i.e., from the analytical gain factorGð2Þðk0Þ, is that increas-
ing the uncorrelated energy spread reduces the gain factor.
This led to a proposal, the laser heater, to increase the
uncorrelated energy spread within FEL tolerance in order
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to damp the microbunching instability without degrading
the FEL performance. An analysis of this effect together
with the complete study of the FERMI@Elettra benchmark
bunch compressor system is in progress.

V. CONCLUSIONS

We have demonstrated a procedure with some new
features for self-consistent simulation of coherent motion,
with application to a bunch compressor. Although it is
based on tracking an ensemble of particles, as in usual
macroparticle or PIC codes, the method of smoothing the
charge distribution is quite different, using a Fourier ex-
pansion with Monte Carlo determination of the expansion
coefficients. The resulting smooth distribution is used in an
accurate solution of the field equations by a Green function
method. We hope that the resulting time evolution of the
spatial density approximates that which would be obtained
from a solution of the Vlasov-Maxwell system on the 4D
phase space, but there is no direct check on accuracy of
such an approximation. However, the evident lack of noise
in the simulation is encouraging.

Using 107–108 particles and an adequate number of
Fourier modes, we are able to study amplification of initial
density modulation down to a wavelength of 80 �m, in the
example of the first chicane bunch compressor at
FERMI@Elettra. We see clean amplification at the com-
pressed value of the initial modulation wavelength, in
accord with the prediction of the linear theory except at
the smallest wavelengths. Even at 80 �m the modulation
has a negligible effect on the final emittance and energy
loss, although the gain is large.

We anticipate improvements in the code regarding treat-
ment of the spatial density, but at present the most costly
part is the field calculation. We intend to review the choice

of integration variables and the integration algorithms to
see if the field evaluation can be speeded up. Parts of the
integration, for large retarded times, may have been done
more accurately than necessary.
We have reviewed the linearized Vlasov equation for

single-pass systems. We first avoid assumptions used pre-
viously, for instance by linearizing about an arbitrary
solution of the Vlasov equation rather than about a coasting
beam solution with linear energy chirp. Still assuming a 1D
description of the collective force, we find in general that
the linear Vlasov equation can be stated as an integral
equation in a 2D space for the Fourier transform of the
longitudinal spatial density, ~�ðk; sÞ. This applies to a
bunched beam, and allows arbitrary chirp. For linearization
about a coasting beam with linear energy chirp, we retrieve
the equation previously known. Study of the general equa-
tion is feasible and of some interest, especially regarding
nonlinear chirp.
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