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Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray

wavelengths with major advances occurring since the invention of the photocathode gun and the

realization of emittance compensation. These state-of-the-art electron beams are now becoming limited

by the intrinsic thermal emittance of the cathode. In both dc and rf photocathode guns details of the

cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore

improving cathode performance is essential to increasing the brightness of beams. It is especially

important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This

paper investigates the relationship between the quantum efficiency and the thermal emittance for metal

cathodes using the Fermi-Dirac model for the electron distribution. We use a consistent theory to derive

the quantum efficiency and thermal emittance, and compare our results to those of others.
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I. INTRODUCTION

In this paper we use the three-step photoemission model
of Puff [1] and Spicer [2,3] to obtain expressions for the
quantum efficiency and the uncorrelated or thermal emit-
tance of metal cathodes. In this model, the first step is the
absorption of the incident photon by an electron described
by the two important phenomena of reflectivity and ab-
sorption as the photons travel into the cathode. The second
step contains the physics occurring while the electron drifts
to the surface. Here the relevant effects are electron-
electron scattering and the angular cone of escaping elec-
trons. In the third step the important phenomena are the
Schottky effect and the abrupt change in electron angle
across the metal-vacuum interface.

Previously we developed analytic expressions for the
quantum efficiency and thermal emittance based on the
three-step model ignoring electron-electron scattering [4].
Further work [5] expanded the quantum efficiency model
to include electron-electron scattering, resulting in excel-
lent agreement with the measured quantum efficiency of an
atomically clean copper surface. Here we apply the same
Fermi-Dirac distribution with the three-step model of pho-
toemission to give a consistent theory of the emittance and
the quantum efficiency. Other recent work [6] generalizes
this basic phenomenological process to give a common
emission theory for thermionic, photoelectric, and field
emission. Here we concentrate on the connection between
quantum efficiency and the photoelectric thermal
emittance.

The derivation for the quantum efficiency (QE) and the
thermal emittance begins with the electron gas theory for
metals and Spicer’s three-step model for photoemission as
illustrated in Fig. 1. In a previous publication [5], we
calculated the QE using this approach using the work
function as the only free parameter. In this model, the

electron is emitted by means of three sequentially inde-
pendent processes: (1) absorption of the photon with en-
ergy @!, (2) migration, including e-e scattering, to the
surface, and (3) escape for electrons with kinematics above
the barrier. Here the same methodology is used to derive
the thermal emittance for metal photocathodes.
In the next section the quantum efficiency is obtained

from Fermi-Dirac statistics for fermions. This is followed
by a derivation of the thermal or photoelectric emittance.
In the last two sections, the relationship between the cath-
ode emittance and the quantum efficiency is discussed for
metallic emitters, and the results are compared with pre-
viously published work.

II. QUANTUM EFFICIENCYAND THE FERMI-
DIRAC MODEL FOR METALS

Being fermions, electrons uniformly fill all energy states
up to the Fermi level, EF, with no more than two opposing
spin electrons per energy state. Therefore electron-electron
scattering below the Fermi level is strongly suppressed due

FIG. 1. (Color) Three-step model of photoemission.
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to the Pauli exclusion principle and the lack of unoccupied
final states, also known as Pauli blocking. As a result,
electrons move freely through the metal with long mean-
free paths which contributes to the good electrical con-
ductivity of metals. The distribution of occupied states as a
function of energy is given by the Fermi-Dirac function,

fFDðEÞ ¼ 1

1þ eðE�EFÞ=kBT ; (1)

where kBT is the electron gas thermal energy, EF is the
Fermi energy, and E is the state energy. To be more precise,
the Fermi energy in Eq. (1) should be replaced by the
chemical potential or Fermi level. However, at low tem-
peratures the Fermi energy and chemical potential are
nearly identical and at absolute zero they are identical. In
this paper we only consider low temperatures and thus the
use of the Fermi energy is appropriate.

The electron density of occupied states inside the cath-
ode and the electric potentials experienced by a single
electron immediately outside the cathode are plotted in
Fig. 2. The occupation number is shown for a Fermi-

Dirac function at finite temperature. The Schottky potential
is the sum of the image charge field and the applied field,
Fa. The Schottky work function,�Schottky, is the peak value

of the Schottky potential and is the height of the photo-
emission potential barrier typically located a few nano-
meters outside the cathode. The zero field vacuum state is
shifted downward at high electric field by the Schottky
work function reducing the barrier and increasing the
quantum yield. The effective work function, �eff , is de-
fined as

�eff � �w ��Schottky ¼ �w � e

ffiffiffiffiffiffiffiffiffiffiffi
eFa

4�"0

s

¼ �w � 0:037 947
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa ðMV=mÞ

q
eV: (2)

Incident photons with energies above the effective work
function are absorbed by electrons near the Fermi energy
which then migrate to the surface and escape.
The QE can be expressed in terms of the probabilities for

these steps to occur where it is assumed @! � EF,

QE ð!Þ ¼ ½1� Rð!Þ�
R1
EFþ�eff�@! dE½1� fFDðEþ @!Þ�fFDðEÞ

R
1
cos�maxðEÞ dðcos�ÞFe-eðE;!; �ÞR2�

0 d�R1
EF�@! dE½1� fFDðEþ @!Þ�fFDðEÞ

R
1
�1 dðcos�Þ

R
2�
0 d�

: (3)

Here Rð!Þ is the cathode optical reflectivity. The Fermi-
Dirac function, fFDðEÞ, is the density of initial states, and
[1� fFDðEþ @!Þ] is the density of final states with the
product of these two functions giving the transition proba-
bility for the excited electron to escape. Fe-eðE;!; �Þ is the
probability the excited electron reaches the surface without
scattering. This function is determined by the photon ab-

sorption length, �opt, and the electron-electron mean-free
path, �e-e. The coordinate system is shown in Fig. 5.
Unlike a semiconductor photocathode, in a metal

electron-phonon scattering can be ignored with electron-
electron scattering dominating. Since the photon energy is
less than twice the work function, any electron-electron
scattering event eliminates both electrons from the possi-
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FIG. 2. (Color) The energy distribution of occupied states for a metal (left) and the electric potentials next to the cathode surface
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bility of escaping. Hence, the fraction of electrons per unit
distance at a depth s below the surface which survive
scattering is

fðs; E; �;!Þ ¼ 1

�optð!Þ e
�sð½1=�optð!Þ�þf1=½�e-eðEÞ cos�ðEÞ�gÞ:

(4)

Here we explicitly show the complete functional depen-
dence of the scattering probability upon the photon wave-
length, the electron energy, and the angle of the electron’s
motion relative to the surface normal. For the situation of
photoemission close to the barrier, i.e., where @!-�eff is a
couple of tenths of an eV, the electron-electron mean-free
path is nearly constant over this small energy range and its
average value can be used. This is evident in Fig. 7 of
Ref. [5]. In addition, the maximum angle the electron can
have when it reaches the surface and can escape, �maxðEÞ
which is defined below, is typically 20 degrees and the
angular dependence can be ignored. Thus, to a good ap-
proximation only the wavelength dependence remains, and
the s integration of Eq. (4) gives the following for the
probability Fe-e:

Fe-eð!Þ ¼
Z 1

0
fðs; � ¼ 0; !Þds

¼
Z 1

0

1

�optð!Þ e
�sf½1=�optð!Þ�þð1= ��e-eÞ�gds

¼ 1

1þ �optð!Þ
��e-e

: (5)

The energy dependence of the average mean-free path can
be expressed in terms of a measured mean-free path, �m, at
the energy, Em, relative to the Fermi energy [5],

�� e-eð!Þ ¼
R
@!
�eff

�e-eðEÞdER
@!
�eff

dE
¼ 2�mE

3=2
m

@!
ffiffiffiffiffiffiffiffiffi
�eff

p 1

ð1þ
ffiffiffiffiffiffi
�eff

@!

q
Þ
: (6)

The effect of neglecting both the angular dependence of the
scattering probability and the energy dependence of the
mean-free path is justified later in this section. With these
assumptions, the electron-electron scattering probability
depends only upon ! allowing it to be moved outside the
integrals and the equation for the QE becomes

QE ð!Þ ¼ ½1� Rð!Þ�Fe-eð!Þ
R1
EFþ�eff�@! dE½1� fFDðEþ @!Þ�fFDðEÞ

R
1
cos�maxðEÞ dðcos�Þ

R
2�
0 d�R1

EF�@! dE½1� fFDðEþ @!Þ�fFDðEÞ
R
1
�1 dðcos�Þ

R
2�
0 d�

: (7)

The photon absorption in the three-step model conserves
energy but not momentum or otherwise only electrons
moving away from the surface would be excited by pho-
tons at normal incidence and the photoemission yield
would be vanishingly small. This assumption of momen-
tum nonconservation has a long history and was discussed
extensively by Spicer during the formative years of the
three-step model [1,2,7,8], where the optical absorption of
the photon is considered to be direct if the momentum is
conserved and indirect if not. Indirect optical transitions
would involve momentum conservation via multistep ab-
sorption. For example, after absorbing the photon the
electron elastically scatters from phonons which random-
ize its momentum [9].

Assuming the electrons in a metal behave as noninter-
acting fermions, they occupy states as given by the Fermi-
Dirac distribution, fFDðEÞ. In the above equation, fFDðEÞ is

the initial state occupation number as a function of electron
energy. fFDðEþ @!Þ is the final state occupation number
vs energy for electrons which absorb a photon. At low
thermal energy or when kBT � EF, the Fermi-Dirac dis-
tribution is well represented by the Heaviside-step func-
tion, H. Numerical results with nonzero temperatures are
described later. Although the actual density of states is not
constant over all energies, in metals at energies close to the
Fermi energy the step function approximation is still valid
because electrons are only emitted from a small energy
range where the density of states can be approximated with
a flat distribution. For applications where the photon en-
ergy significantly exceeds the effective work function,
other energy states can be excited and this approximation
may not be valid. With these assumptions, the energy
integration limits for transition probability between initial
and final states becomes

Z 1

EFþ�eff�@!
½1� fFDðEþ @!Þ�fFDðEÞdE ¼

Z 1

EFþ�eff�@!
½1�HðEF � E� @!Þ�HðEF � EÞdE ¼

Z EF

EFþ�eff�@!
dE (8)

with the equation for the QE reducing to

QE ð!Þ ¼ ½1� Rð!Þ�Fe-eð!Þ
REF

EFþ�eff�@! dE
R
1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEfþ�eff Þ=ðEþ@!Þ
p dðcos�ÞR2�

0 d�

REF

EF�@! dE
R
1
�1 dðcos�Þ

R
2�
0 d�

: (9)
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Equation (9) can be integrated to obtain

QE ð!Þ ¼ 1� Rð!Þ
1þ �optð!Þ

��e-eð!Þ

ðEF þ @!Þ
2@!

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF þ�eff

EF þ @!

s �
2
:

(10)

The QE can be expanded as a function of @!� ’eff in
the following Taylor series which is evaluated at photo-
emission threshold where @! is only slightly larger than
�eff:

QEð!Þ ¼ QEj@!¼�eff
� dQE

d@!

��������
@!¼�eff

ð@!��effÞ

þ 1

2

dQE

d@!

��������
@!¼�eff

ð@!��effÞ2 � � � � : (11)

The first two terms are zero verifying the well-known
quadratic dependence upon the photon energy for the
quantum efficiency near threshold result [10]:

QE ð!Þ � 1� Rð!Þ
1þ �optð!Þ

��e-eð!Þ

ð@!��effÞ2
8�effðEF þ�effÞ : (12)

As described earlier, multiple assumptions are required
to produce this analytic result. Therefore we also numeri-
cally integrate the above equations to test the accuracy of
several of the assumptions. Two assumptions were neces-
sary to arrive at the average mean-free path shown in

Eq. (6). The first assumption was to ignore the E�3=2

energy dependence of the mean-free path [5]. For the
parameters listed in Table I, the mean-free path energy
dependence results in a 3.2% reduction in QE. The second
assumption was to approximate the electron path length
with the shortest distance from the point of absorption to
the surface. In other words, the angular dependence of the
scattering probability was ignored. Once again for the
parameters listed in Table I, the angular dependence of
the scattering probability results in less than 1% reduction
in QE. The reason these two assumptions have little effect
on the calculated QE is because the difference between the
photon energy and effective work function is small result-
ing in a narrow energy and angular acceptance band for the
emitted electrons. As this difference increases and the
permitted energies and angles increase, the approximation
will become less accurate.

In addition we have assumed the temperature is 0 K to
allow replacing the Fermi-Dirac distribution with the
Heaviside-step function. The electron temperature is de-
fined as the temperature of the electrons prior to the
absorption of a photon. Numerical integration shows that
for the parameters in Table I the electron temperature must
be approximately 2000 K to increase the QE by 10% and
over 7000 K to increase the QE by a factor of 2. At ambient
temperatures near 300 K where most photocathodes are
operated, the effect on the QE is an approximately 0.1%
increase. The temperature has little effect until the ratio of
kBT=ðh!��effÞ approaches unity.
We have also assumed a monoenergetic photon beam in

the derivation of the QE. The photons can be considered
monoenergetic unless the photon energy spread becomes
comparable to the electron temperature. Assuming a
255 nm photon and transform limited pulse, the pulse
length must be <13 fs to produce greater than 25 meV
energy spread. Thus, the energy spread of the photon can
be ignored even for pulses with 100 fs rise times.

III. THE PHOTOELECTRIC EMITTANCE FOR
METAL CATHODES

This section derives the thermal emittance for photo-
electric emission by applying the same Fermi-Dirac model
as used to obtain the quantum efficiency and closely fol-
lows that performed for Cs2Te cathodes by Floettmann
[11]. However, before launching into the derivation of
the emittance it is necessary to discuss the boundary con-
ditions of the escaping electron.

A. The boundary condition and the maximum angle
of escape

Similar to photons, electrons change their angle or re-
fract as they move from inside to outside the cathode. This
is a result of the boundary condition requiring conservation
of transverse momentum across the cathode-vacuum inter-
face. In terms of the momenta and angles defined in Fig. 3,
this boundary condition is expressed as

pin
x ¼ pout

x ; (13)

or equivalently,

pin
total sin�in ¼ pout

total sin�out: (14)

The total energy of the electron (after absorbing a photon)
inside the cathode is Eþ @!. The electron energy outside
the cathode is this energy minus the energy of the vacuum
state, EF þ�eff as shown in Fig. 2, giving its energy after
emission as (Eþ @!� EF ��eff). Thus, the total mo-
mentum inside and outside the cathode are

pin
total ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEþ @!Þp

and

pout
total ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEþ @!� EF ��effÞ

q
:

(15)

TABLE I. Physical constants used to compute the thermal
emittance and quantum efficiency for atomically clean copper
[5].

Fermi energy, EF 7 eV

Work function, �w 4.31 eV

�Schottky @ 50 MV=m 0.268 eV

e-e scattering length @ 8.6 eV, �e-eðEmÞ 22 angstroms

Em 8.6 eV

Photonenergy @255 nm 4.86 eV
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Inserting these expressions into the above equation for the
boundary condition gives a formula similar to Snell’s law
for optics,

sin�out
sin�in

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþ @!

Eþ @!� EF ��eff

s
: (16)

An electron inside the cathode approaching the bound-
ary needs to have sufficient momentum normal to the
barrier to escape,

pz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEþ @!Þ

p
cos�in �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEF þ�effÞ

q
: (17)

This leads to the maximum internal angle for which the
electron with energy E can escape, �inmax,

cos�inmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF þ�eff

Eþ @!

s
: (18)

This relationship between the momenta inside the cathode
defining the maximum escape angle is shown graphically
in Fig. 4.

The angle on the vacuum side of the boundary corre-
sponding to the internal maximum escape angle is

sin�outmax ¼ sin�inmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ @!

Eþ @!� EF ��eff

s
) �outmax ¼ �

2
:

(19)

Electrons which are incident at the maximum escape angle
or critical angle, escape the cathode with an external angle
of �=2. Electrons incident at angles larger than the maxi-
mum escape angle are reflected back into the cathode. In
the rest of this paper we define �max � �inmax since the
maximum angle in the vacuum is always �=2.
Reflecting on these relations, it is reasonable to associate

these square-root quantities with refractive indices the
electron experiences at the cathode-vacuum interface.
Therefore we define the following electron indices of
refraction:

nin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ @!

p
(20)

and

nout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ @!� EF ��eff

p
: (21)

Introducing the concept of refraction allows us to apply the
well-known theory of optical refraction at boundaries to
describe emission from angled or curved cathode surfaces.
The idea that the emitted electrons can be focused or
collimated by the surface is intriguing [12] and its impact
on beam dynamics will be investigated in our future
studies.

B. Derivation of the photoelectric emittance for metals

The rms emittance in terms of the moments of the
electron distribution is defined as [13]

"x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihx02i � hxx0i2

q
(22)

with the slope of the electron trajectory given by

in
maxθ

ω+E

effFEE φω −−+

effFE φ+

FIG. 4. (Color) Graphical representation of the electron momen-
tum inside the cathode and the maximum angle of escape.
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FIG. 3. (Color) Diagram showing the conservation of transverse
momentum at the metal-vacuum interface. Outside the surface
the maximum angle is �=2 when the electrons are refracted with
the largest internal angle of incidence �inmax. Electrons with
angles greater than �inmax are reflected back into the metal.
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FIG. 5. (Color) Definition of the coordinate system and compo-
nents of the momentum just inside the cathode surface used to
derive the photoelectric emittance.
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x0 ¼ dx

dz
¼ d _x

d _z
¼ px

pz

: (23)

It is generally assumed that since the electrons are rapidly
accelerated from rest, their relative velocities are small and
the average longitudinal momentum of the ensemble,
which we express as ��mc, can be used in place of pz.
This assumption is fundamental to the paraxial approxi-
mation. Therefore in terms of x and px, the emittance can
be written as [14]

"x ¼ 1

��mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihp2

xi � hxpxi2
q

: (24)

If we further assume that there is no correlation between
the location of emission and the transverse momentum,
then the cross term is zero and one obtains the following
for the rms normalized emittance:

"n � ��"x ¼ �x

ffiffiffiffiffiffiffiffiffihp2
xi

p
mc

; (25)

where �x �
ffiffiffiffiffiffiffiffihx2ip

. If we define the dimensionless rms
transverse momentum, �px

, as

�px
�

ffiffiffiffiffiffiffiffiffihp2
xi

p
mc

; (26)

then the rms normalized emittance becomes simply

"n ¼ �x�px
: (27)

The momentum components of the excited electron
while still inside the metal are given in terms of a coor-
dinate system aligned to the cathode surface as shown in
Fig. 5. The variance of the transverse momentum can be
computed from the three-step model of photoemission in a
manner similar to the quantum efficiency as given above,

�2
px

¼
R1
EFþ�eff�@! dE½1� fFDðEþ @!Þ�fFDðEÞ

R
1
cos�maxðEÞ dðcos�Þ

R
2�
0 d�p2

x

R1
0 dsfðs; E; �;!Þ

ðmcÞ2 R1
EFþ�eff�@! dE½1� fFDðEþ @!Þ�fFDðEÞ

R
1
cos�maxðEÞ dðcos�Þ

R
2�
0 d�

R1
0 dsfðs; E; �;!Þ : (28)

Here again, the Fermi-Dirac function, fFD, gives the den-
sity of initial states and [1� fFDðEþ @!Þ] gives the
density of excited states. It is interesting to note that in
this case, the electron-electron-scattering function,
fðs; E; �;!Þ, appears in both the numerator and denomi-
nator. Applying the same conditions as in the QE deriva-
tion, we assume the electron-electron scattering
probability only depends upon the photon wavelength
and the Fe-eð!Þ functions cancel. When the full angular
and energy dependence of the electron-scattering function
are included the scattering probability does not cancel.
However, the effect on the transverse momentum is small
and numerical integration results including these effects
are described below.We also assume the temperature is 0 K
to simplify the integration and produce an analytic result.
The effect of nonzero temperatures is also described below.
Replacing the Fermi-Dirac distributions with Heaviside-
step functions results in the following expression for the
variance of the transverse momentum:

�2
px

¼
REF

EFþ�eff�@! dE
R
1
cos�max

dðcos�ÞR2�
0 d�p2

x

ðmcÞ2 REF

EFþ�eff�@! dE
R
1
cos�max

dðcos�ÞR2�
0 d�

:

(29)

As described earlier the maximum angle of escape in-
side the metal, �max, is determined by the requirement that
the energy perpendicular to the surface exceeds the vac-
uum state energy,

p2
z

2m
� EF þ�eff : (30)

As given by the vector relation in Fig. 4, the maximum
cosine angle of emission is

cos�max ¼ pz

ptotal

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF þ�eff

Eþ @!

s
(31)

and the x component of the momentum is

px ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEþ @!Þ

p
sin� cos�: (32)

The expression for the variance of the transverse momen-
tum then becomes

�2
px

¼ 2

mc2

REF

EFþ��@! dE
R
1
cos�max

dðcos�ÞR2�
0 d�ðEþ @!Þsin2�cos2�REF

EFþ��@! dE
R
1
cos�max

dðcos�ÞR2�
0 d�

: (33)

Or rewriting with the three integrations explicitly separated and using the expression for the maximum cosine angle
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derived above, we obtain

�2
px

¼ 2

mc2

REF

EFþ�eff�@!ðEþ @!ÞdEREF

EFþ�eff�@! dE

R
1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEFþ�eff Þ=ðEþ@!Þ
p sin2�dðcos�ÞR

1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEFþ�eff Þ=ðEþ@!Þ

p dðcos�Þ
R
2�
0 cos2�d�R

2�
0 d�

: (34)

The angular integrations can be done separately and are given byR
2�
0 cos2�d�R

2�
0 d�

¼ 1

2
;

Z
sin2�dðcos�Þ ¼ cos�� 1

3
cos3�: (35)

Substituting these integrals into Eq. (34) results in the following expression for the variance of the transverse momentum:

�2
px

¼ 1

mc2

REF

EFþ�eff�@!½23 � ðEFþ�eff

Eþ@! Þ1=2 þ 1
3 ðEFþ�eff

Eþ@! Þ3=2�ðEþ @!ÞdEREF

EFþ�eff�@!½1� ðEFþ�eff

Eþ@! Þ1=2�dE : (36)

This equation can be analytically integrated and the rms of
the dimensionless transverse momentum for photoemis-
sion is found to be

�px
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!��eff

3mc2

s
; (37)

and therefore the normalized emittance is

"n ¼ �x�px
¼ �x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!��eff

3mc2

s
: (38)

Figure 6 plots the photoelectric emittance for copper as a
function of photon energy for applied electric fields of 0,
50, and 100 MV=m using the parameters given in Table I.
The emittance approaches 0 as the photon energy ap-
proaches the effective work function and the reduced
beam brightness, which we define as the QE=�2

px
, also

monotonically approaches 0 as the photon energy ap-
proaches the effective work function since the QE varies
faster than the square of the transverse momentum spread.
The simplifying assumptions used to arrive at this ana-

lytic result have a small effect on the transverse momentum
spread. We have numerically integrated the energy variable
in Eq. (28) using the parameters in Table I to determine the
effect of temperature, angular dependence of the electron-
scattering function, and the energy dependence of the
mean-free path on the transverse momentum. Including

the E�3=2 energy dependence of the mean-free path results
in a 0.8% decrease in the transverse momentum spread and
including the scattering function angular dependence de-
creases the rms transverse momentum another 0.2%. As the
difference between the photon energy and effective work
function increases the error in the approximation will
increase.
The transverse momentum is more sensitive to tempera-

ture than the QE at room temperature. At 300 K the thermal
emittance increases by 0.2% compared to 0 K. At 2000 K
both the QE and rms transverse momentum are increased
by approximately 10%.

IV. THE RELATION BETWEEN EMITTANCE AND
QUANTUM EFFICIENCY

With these equations for the emittance and QE it is
interesting to investigate the connection between them. In
Fig. 7 the quantum efficiency and normalized emittance
per rms beam size are plotted as functions of the effective
work function. Both the QE and emittance decrease with
increasing effective work function suggesting the disap-
pointing result that to reduce the emittance one has to
accept a lower QE. This type of analysis illustrates the
value of a unified theory of photoemission where consis-
tency demands that the same effective work function be
used to compute both the QE and thermal emittance. For
example, a QE of 5	 10�5 has an effective work function
of 4.56 eV which gives a theoretical cathode emittance
with a slope of 0:46 microns=mm (rms). However, recent

FIG. 6. (Color) The normalized emittance per rms beam size for
Cu as a function of photon energy for the typical operating
electric fields of metal cathodes in rf guns due to the Schottky
reduction of the barrier as described in the text. The work
function is assumed to be 4.31 eV.
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Linac Coherent Light Source (LCLS) measurements on a
copper cathode with this QE give an emittance slope
approximately twice this theoretical value with similar
experimental results previously reported by Brookhaven
National Laboratory (BNL) [15], Sumitomo [16], and
Stanford Linear Accelerator Center (SLAC) [4,17]. In
general, the experimental thermal emittance as measured
in an rf photocathode gun is a factor of 2 larger than the
theoretical thermal emittance.

The quantum efficiency can be thought of as the per-
centage of electrons inside the metal with sufficient longi-
tudinal momentum to overcome the effective work
function. It is interesting to note that any changes to the
transverse momentum of the electrons inside the metal
would have no effect on the QE. Thus, the QE is a measure
of the longitudinal momentum distribution.

The thermal emittance is by definition a measure of the
transverse momentum of the electrons that are emitted. At
first glance it may not appear that the QE and thermal
emittance are linked since they depend on orthogonal
components of momentum. Although the longitudinal mo-
mentum does not have a direct influence on the thermal
emittance, it does determine which electrons are emitted
and thus which electrons’ transverse momentum contribute
to the emittance. One of the reasons metals have a rela-
tively low thermal emittance is that the electrons with
significant transverse momentum are not emitted.
Because of the work function, only electrons moving
nearly normal to the surface are emitted. This is why the
width of the transverse momentum distribution decreases
as the effective work function increases. Thus, electrons
with low transverse momentum are selectively emitted.

It is clearly desirable to maximize the QE and minimize
the thermal emittance but due to their interdependence this
is difficult. However, if one could shift electrons from the

Fermi energy towards the minimum possible emission
energy (see Fig. 2), the thermal emittance would be re-
duced since the emitted electrons have less available trans-
verse momentum. In this work, we have assumed a
constant density of states near the Fermi energy.
Distributions with densities that increase as the energy
decreases below the Fermi energy can increase the QE
and simultaneously decrease the thermal emittance. It is
interesting to note that increasing the cathode temperature
shifts electrons from just below the Fermi energy to just
above the Fermi energy resulting in higher thermal
emittance.
The only way to alter the QE with no effect on the

thermal emittance is via variation of the reflectivity, optical
absorption depth, or the electron mean-free path since to
first order the scattering probability cancels in the expres-
sion for the transverse momentum. Thus, in principle, one
could select a cathode material with the optimal complex
optical index of refraction to minimize both the reflectivity
and the optical absorption depth. However, the maximum
increase in the QE for Cu with this method is limited to
approximately a factor of 5 since the reflectivity is ap-
proximately 30% and the reduction due to scattering is
roughly a factor of 3. One must be careful not to choose an
optical wavelength to achieve the desirable optical parame-
ters which cause a larger decrease in QE or an unaccept-
able increase in the thermal emittance due to the change in
photon energy or mean-free path.

V. COMPARISON WITH OTHER EMITTANCE
CALCULATIONS

As mentioned earlier, the calculation of the thermal
emittance for Cs2Te cathodes was performed by
Floettmann in which the three-step model was introduced
with an average for the electron energy distribution. Later
calculations, including the one presented here, all follow
the same basic assumption of the three-step model with a
Fermi-Dirac function at zero temperature with various
refinements, e.g., the Schottky potential has been included.
Here we review the published expressions for the photo-
emission emittance, and describe their differences and
similarities with each other and the results of this paper.
The thermal emittance derivation by Floettmann for

Cs2Te semiconductor cathodes is given as [11,18]

"th ¼ �x

ffiffiffiffiffiffiffiffiffiffiffi
2EK

3mc2

s
: (39)

Floettmann has assumed a delta function energy distribu-
tion, which is valid for CsTe, to derive this expression.
Defining EK as the average energy for emission from
metals gives

EK ¼ @!��eff

2
(40)

FIG. 7. (Color) The quantum efficiency and the normalized
emittance per rms beam size plotted as functions of the effective
work function, �eff , for a photon energy of 4.90 eV (�laser ¼
253 nm).
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which makes our relation for the photoelectric emittance
identical to that of Floettmann’s.

Clendenin and Mullhollan [19] followed a similar ap-
proach but included the Schottky potential to the material
work function which is significant for metals. Their model
has two important differences with our model. They used a
delta function energy distribution at the Fermi energy and
they assumed the Fermi energy was at 0 eV. The delta
function energy distribution makes the emittance increase
and the Fermi energy at zero causes the emittance to
decrease. The net result is the two assumptions nearly
cancel so the numerical result they obtain for Cu is very
similar to our result although the equation is significantly
different.

While mathematically generalized to cover thermionic,
field emission, and photoemission, the same basic deriva-
tion is given in a recent book by Jensen [20]. In it he uses
quantum mechanical distribution function approach but

applies essentially the same physical approximations as
described above. However, he obtains a different result,
namely,

"n;rms ¼ �x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EFð@!��effÞ
3mc2ð@!þ EFÞ

s
: (41)

With parameters from Table I, this expression gives ap-
proximately 25% lower emittance than Eq. (38). Careful
reading of his analysis shows the discrepancy originates
with his using the initial electron energy before absorbing
the photon to compute the transverse momentum. Or spe-
cifically, in the numerator of Eq. (36), the factor EdE is
used instead of ðEþ @!ÞdE. This statement is clarified by
comparing our expression for the transverse momentum
variance, Eq. (36), with Jensen’s written in terms of this
paper’s variables,

�KJ2
px

¼ 1

mc2

REF

EFþ�eff�@!½23 � ðEFþ�eff

Eþ@! Þ1=2 þ 1
3 ðEFþ�eff

Eþ@! Þ3=2�EdEREF

EFþ�eff�@!½1� ðEFþ�eff

Eþ@! Þ1=2�dE : (42)

This expression and Eq. (36) use the same maximum angle

of escape, cos�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EFþ�eff

Eþ@!

q
Þ, confirming that E indeed rep-

resents the electron energy before photon absorption in
both cases. Thus Eq. (42) displays an inconsistency be-
tween the energy E used for the maximum escape angle
and that used to compute the momentum.

VI. DISCUSSION AND SUMMARY

This paper derives expressions for the quantum effi-
ciency and thermal emittance of photoemission from metal
cathodes. This was done assuming the electron energy
distribution is given by the Fermi-Dirac function at zero
temperature. The emission process follows the three-step
model which was used consistently to obtain the QE and
emittance expressions. The second step of drifting to the
surface includes electron-electron scattering which is nu-
merically estimated to be less than a percent effect on the
emittance.

There are many phenomena which were not discussed in
this paper. For example, the model used here assumes
emission from the volume of the cathode and ignores any
polarization effects [21] except those contained in the
Fresnel relations for the reflectivity and optical attenuation
length. In addition the effects of surface roughness are
ignored. The phenomenon related to emission from a tilted
surface and the associated transverse energy gain from the
transverse component of the applied field is not included.
Nor was field enhancement due to isolated surface protru-
sions considered. These and other effects will increase the
thermal emittance. Useful work has been published on
these topics of surface roughness [22,23]; however, at

this time it is not known whether one or some combination
of these effects is important. However, given that the
observed emittance is generally larger than that given by
these formulas necessitates the application of some or all of
the effects just described and will be addressed in a future
publication.
In conclusion, this paper presents expressions for the

quantum efficiency and the thermal emittance for metal
cathodes using a consistent theory of photoemission. The
assumptions and approximations were described with
some detail and the magnitude of these approximations
numerically quantified. Finally we stress the connection
between quantum efficiency and the photoelectric emit-
tance and the need to study them with a consistent analysis.
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