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We describe the radiation properties of an x-ray free-electron laser (FEL) oscillator, beginning with its

start-up from noise through saturation. We first decompose the initially chaotic undulator radiation into the

growing longitudinal modes of the composite system consisting of the electron beam, the undulator, and

the Bragg mirror resonator cavity. Because the radiation initially comprises several modes whose growth

rates are comparable, we find that only after many oscillator passes is the output pulse dominantly

characterized by the lowest-order Gaussian mode. We verify our analytic results with a novel, reduced

one-dimensional FEL code (derived in the text), and with two-dimensional FEL simulations.

Understanding the full longitudinal structure during the initial amplification will be critical in assessing

the tolerances on the electron beam, undulator, and optical cavity required for robust operation.
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I. INTRODUCTION

The basic principles of the free-electron laser (FEL)
oscillator are well known (see, e.g., [1]), involving the
successive FEL gain of radiation confined in an optical
cavity. Over the past few decades several FEL oscillators
have been designed and built as sources of intense infrared
radiation. Extending the FEL oscillator concept to the
x-ray part of the spectrum was first suggested by Colella
and Luccio [2] over 25 years ago. Their design proposed
using curved silicon mirrors that Bragg reflect x rays over a
narrow bandwidth near 1 keV and called for a high-
brightness electron beam; however, the understanding of
the electron beam requirements appropriate for gain at
x-ray energies was not sufficiently well understood at the
time, and the proposal remained largely speculative.

Recently, a concrete set of realizable parameters for a
FEL oscillator has been proposed [3] that has the capability
of producing hard x rays with energies between 5 and
20 keV. The FEL design uses an ultralow-emittance
(� 0:1 mmmrad), low-charge (� 40 pC) electron beam
and a resonator cavity formed using high-reflectivity,
narrow-bandwidth Bragg mirrors made of perfect sapphire
or diamond crystals [4] (for general results on x-ray optics
see, e.g., [5] and references cited therein). It was shown in
Ref. [3] that the per-pass FEL gain g� 0:3–0:5 can readily
overcome the cavity losses �� 0:1–0:25. Such a device is
predicted to provide transform-limited, picosecond x-ray
pulses with megawatts of power at repetition rates
�1 MHz, thereby serving as a complementary source to
those based on self-amplified spontaneous emission, such
as Linac Coherent Light Source (LCLS) [6].

We consider in this paper three different photon ener-
gies: 5-, 12-, and 20-keV, each of which has a central
radiation frequency !0 and mirror bandwidth �! that
match the theoretical values for the appropriate Bragg
reflection in a perfect diamond crystal. One of the two
mirrors is chosen to be thin enough to couple out 4% of the
cavity radiation, while total cavity losses � ¼ 0:15 is
assumed for each scenario. (Note that the absorptive losses
for two perfect diamond crystals is calculated to be & 2%,
leaving an additional �10% loss for the grazing incidence
focusing mirrors.) Furthermore, for this study we have
fixed the peak beam current Ipeak, mean energy �0mec

2

(with me, �0, c being the electron mass, mean Lorentz
factor, and the speed of light, respectively), and relative
energy spread ��=�0 to be 10 A, 7 GeV, and 0.02%,
respectively. The rest of the parameters have been chosen
such that the per-pass FEL gain g� 0:3–0:45, and are
listed in Table I. For the electron beam, the transverse

TABLE I. Possible undulator and beam parameters for three
different radiation wavelengths produced by a 7-GeV beam with
Ipeak ¼ 10 A and ��=�0 ¼ 0:02%. The saturated power Psat

given by our 1D code and the 2D code GINGER were determined
assuming mirror losses � ¼ 15%.

Parameter 5 keV 12 keV 20 keV

�u (cm) 2.24 1.76 1.50

Nu 1000 3000 3000

K 2.50 1.51 1.05

z� (m) 5.0 9.0 10.0

�x (mmmrad) 0.2 0.2 0.1

g 0.42 0.34 0.28

�!=!0 7:9� 10�6 8:4� 10�7 1:2� 10�7

Psat (1D) 159 MW 30 MW 6.2 MW

Psat (2D) 121 MW 28 MW 10 MW
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emittance �x ¼ 0:1–0:2 mmmrad, while the focusing
parameter, defined via the beam size at focus �x via z� �
�2

x=�x, is chosen to maximize g. Note that the number
of undulator periods Nu � 103, the undulator wavelength
�u � 2 cm, while the undulator parameter K � eB=kumec
(B is the peak undulator magnetic field, ku � 2�=�u, and e
is the unit electric charge) is chosen to satisfy the FEL
resonance condition � � 2�c=!0 ¼ �uð1þ K2=2Þ=2�2

0

at an undulator gap of 5 mm for a neodymium-iron-boron
permanent magnet [7].

Table I also lists the intercavity saturated power Psat as
predicted by our reduced, one-dimensional (1D) model
(described more fully in Sec. II), and that given by the
two-dimensional (2D) code GINGER [8]. Note that Psat (1D)
is within 30% of the 2D predictions after �8 decades of
exponential growth. By coupling 4% of this power out of
the cavity via the thin mirror, the FEL source is predicted to
provide 0.4, 1.1, and 4.8 MWof peak power at 20, 12, and
5 keV, respectively, corresponding to �108–109 photons
per pulse.

This paper elaborates on the physics of the x-ray FEL
oscillator from its initial start-up from particle shot noise
through the nonlinear saturation in terms of the super-
modes [9,10] (i.e., the growing eigenmodes) of the system.
Throughout the paper we compare our analytic results with
those obtained using a reduced, one-dimensional FEL code
that we derive in Sec. II. The model equations for this code
include the lowest-order effects of energy spread, trans-
verse beam emittance, and radiation diffraction, and has
demonstrated reasonable agreement with the results of
both the two-dimensional code GINGER [8] and the three-
dimensional code GENESIS [11]. Having described our
numerical code, we then proceed in Sec. III to derive and
analytically solve the supermode equation governing the
radiation profile before nonlinear saturation of gain. These
solutions specify how the effective single-pass FEL gain
depends upon the duration of the electron beam, the spec-
tral bandwidth of the Bragg mirrors, and the pass-to-pass
timing of the electron bunches. We then show how these
modes are initially seeded by the chaotic undulator radia-
tion, resulting in the competition between various longitu-
dinal modes. We conclude with some results obtained for
possible 5-, 12-, and 20-keV radiation sources based on an
FEL oscillator driven by a 7-GeV high-brightness electron
beam.

II. A REDUCED, ONE-DIMENSIONAL SET OF FEL
EQUATIONS

In this section we reduce the three-dimensional FEL
equations to a 1D set by integrating the transverse electron
orbits over their unperturbed trajectories and by assuming
that the transverse radiation profile is a Gaussian mode
whose Rayleigh range zR is dictated by the cavity geome-
try. To begin, we consider the single-particle equations of
motion for the jth electron assuming that there is no

external electron beam focusing and ignoring the natural
undulator focusing (see, e.g., [12] and references cited
therein):

d

dz
�j ¼ 2ku	j � k20

2
p 2

j (1)

d

dz
	j ¼ eK½JJ�

2�2
0mec

2
ðEei�j þ E�e�i�jÞ (2)

d

dz
xj ¼ p j (3)

d

dz
p j ¼ 0: (4)

In Eqs. (1)–(4) the electron coordinates include the pon-
deromotive phase in the wave �j � ðk0 þ kuÞz� ck0t

(with k0 � !0=c being the resonant radiation wave vec-
tor), the dimensionless energy spread 	j � ð�j � �0Þ=�0,

the transverse position xj, and the dimensionless transverse

momentum p j. The electrons couple to the complex elec-

tric field E via Eq. (2), where ½JJ� is the standard Bessel
function factor

½JJ� � J0

�
K2

4þ 2K2

�
� J1

�
K2

4þ 2K2

�
:

We will find it convenient to introduce the single-particle
electron distribution function on phase space
fð�; x; 	;p; zÞ, normalized such that integrating f over
all space is unity. From the conservation equation df=dz ¼
0 and the equations of motion (1)–(4), we find that the
distribution function obeys the following collisionless
Boltzmann equation:�
@

@z
þ

�
2ku	� 1

2
k20p

2

�
@

@�
þ p � @

@x

þ eK½JJ�
2�2

0mec
2
ðEei� þ c:c:Þ @

@	

�
f ¼ 0: (5)

Meanwhile, the radiation amplitude E obeys the paraxial
wave equation driven by the averaged FEL current�

@

@z
þ ku

@

@�
þ 1

2ik0
r2

?

�
Eð�; x; zÞ

¼ � eK½JJ�
4�0�0

Ne

2�

Z
d�d	dpe�i�fð�; x; 	;p; zÞ; (6)

where Ne is the total number of electrons in the bunch and
�0 is the permittivity of free space. The FEL set of equa-
tions (5) and (6) is our starting point for deriving a reduced,
quasi-one-dimensional description of the small-gain FEL
oscillator. To obtain the reduction, we assume that the
solution of Eq. (5) may be factorized into longitudinal
and transverse components as
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fð�; x; 	;p; zÞ ¼
~fð�; 	; zÞ
4�2�2

x�
2
p

exp

�
�ðx� zpÞ2

2�2
x

� p 2

2�2
p

�
;

(7)

and eliminate the transverse degrees of freedom by inte-
grating the resulting Boltzmann equation over x and p.
While the momentum integral is trivial, the spatial integral
evaluates the overlap of the transverse electric field profile
with that of the distribution function. To obtain a closed-
form expression, we expand E using the vacuum (i.e.,
source-free) transverse modes of the paraxial equation,
appropriate for small single-pass gain. For simplicity we
suppress any azimuthal dependence, expanding E in terms
of the Gauss-Laguerre functions as

Eð�; x; zÞ ¼ X
q

Eqð�; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z2R

q Lqð2x2=w2Þ

� exp

�
� x2

w2

�
1� iz

zR

�
� ic q

�
; (8)

where Eqð�; zÞ are the transverse mode coefficients, LqðxÞ
is the Laguerre polynomial of order q, the radiation waistw
is defined via w2 � w2

0ð1þ z2=z2RÞ for the focal spot w0

and the Rayleigh range zR � k0w
2
0=2, and c q �

ð2qþ 1Þ arctanðz=zRÞ is the Gouy phase. We complete
the dimensional reduction by assuming that the pondero-
motive force acting on the electrons is dominated by the
lowest-order Gaussian mode whose mode coefficient is E0.
Thus, we approximate the electric field amplitude E in the
Boltzmann equation (5) by

Eð�; x; zÞ ¼ E0ð�; zÞ
1þ iz=zR

exp

�
� x2

w2
0ð1þ iz=zRÞ

�
; (9)

where we have used

e�ic 0 ¼ e�i arctanðz=zRÞ ¼ 1� iz=zRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z2R

q
to simplify the expression. Using the approximate radiation
field (9) and the factorized distribution (7), we integrate
over the transverse phase-space dimensions x and p in the
collisionless Boltzmann equation (5) to obtain�
@

@z
þ

�
2ku	� 1

2
k20�

2
p

�
@

@�

þ eK½JJ�
2�2

0mec
2

�
w2

0


ðzÞE0ðz; �Þei� þ c:c:

�
@

@	

�
~f ¼ 0;

(10)

where we have defined the complex reduction parameter


ðzÞ � 2�2
xð1þ z2=z2�Þ þ w2

0ð1þ iz=zRÞ; (11)

and recall that the electron beam focusing parameter is
related to the beam emittance "x and minimal waist �x by

z� � �2
x="x. We can now read off the reduced particle

equations of motion from the integrated collisionless
Boltzmann equation (10); the equations for the jth electron
are

d

dz
�j ¼ 2ku	j � 1

2
k0�

2
p (12)

d

dz
	j ¼ eK½JJ�

2�2
0mec

2

�
w2

0


ðzÞE0ðz; �Þei�j þ c:c:

�
: (13)

To obtain the governing equation for the Gaussian
mode coefficient E0, we insert the radiation decomposition
(8) and the electron distribution function (7) in the
paraxial equation (6) and use the orthogonality of
the Gauss-Laguerre modes. Multiplying both sides by

e�ð1þiz=zRÞx2=2w2
and integrating over the transverse dimen-

sion x yields�
@

@z
þ ku

@

@�

�
E0 ¼ � eK½JJ�

2��0�0

N�


ðzÞ�� he�i�ji�; (14)

where he�i�ji� denotes the average of the ponderomotive
phase over the N� electrons in �:

he�i�ji� � 1

N�

X
ej in�

e�i�j : (15)

The coupled FEL equations (12)–(14) include the lowest-
order effects of electron beam emittance and radiation
diffraction, and furthermore conserve the sum of the par-
ticle and field energies:

d

dz

Z
d�ðN�h�0mec

2	i� þ ��w2
0�0jE0j2Þ ¼ 0: (16)

The electron beam initially populates the phase � randomly
due to shot noise. To obtain the appropriate mean and
variance of these initial fluctuations with a limited number
of macroparticles, we weight the random departures in �
according to the noise algorithm of Penman and McNeil
[13]. While the spontaneous radiation in the lowest-order
transverse mode is reasonably well represented by our code
(along with the subsequent longitudinal dynamics), ne-
glecting other transverse modes leads to a significant
underestimation of the total power in the spontaneous
radiation (see, e.g., the discussion in [14]).
Finally, we note that, although the electron beam focus-

ing parameter z� is independent of the radiation range zR
(the former being set by the beam parameters while the
latter is given by the cavity length and mirror curvature),
the single-pass FEL gain is typically maximized when the
radiation diffraction matches the beam spreading such that
z� � zR � Nu�u=2� [15].

III. LINEAR SUPERMODE THEORY

In this section we derive the growing modes of the x-ray
FEL oscillator, i.e., the cavity supermodes. Supermode
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analysis of FELs was introduced in Ref. [9]; our work
follows the simplified approach developed by Elleaume
[10] as applied to the x-ray FEL oscillator in [3]. For the
case of x rays of wavelength �, the coherence time �c of
the undulator radiation is much less than the inverse band-
width of the Bragg mirror 1=�!, so that slippage can be
safely ignored; note that typically �=c�c � 1=Nu * 10�3,
while �!�=c� 10�5–10�6. The radiation evolution dur-
ing any pass then consists of FEL gain in the undulator
followed by reflection from the narrow band Bragg mir-
rors, after which the process repeats on the next pass with a
fresh electron bunch. At the beginning of the next pass the
radiation pulse may be displaced in time with respect to the
next electron bunch due to, for example, accelerating field
timing jitter or a mismatched cavity length. We model this
relative displacement by the cavity detuning length c‘. We
take the peak linear FEL gain to be jgj< 1, the longitudi-
nal electron beam profile to be a Gaussian with width �e,
and the mirror reflection transfer function to be given by
Rð!Þ. In this case the evolution of the electric field ampli-
tude E over one pass can be depicted by the following three
steps:

gain: Eð�Þ !
�
1þ g

2
e��2=2�2

e

�
Eð�Þ; (17)

mirror: Eð�Þ ! 1

2�

Z
d!e�i!� ~Rð!Þ ~Eð!Þ; (18)

displacement: Eð�Þ ! Eð�þ ‘Þ; (19)

where, for the average beam velocity �v, the comoving
bunch coordinate � � t� z= �v, while ~Eð!Þ is the Fourier
transform of Eð�Þ. Note that we have removed the carrier
frequency of the radiation from the electric field amplitude,
so that ! is the frequency deviation from !0, and the
Fourier transform ~Eð!Þ is centered near zero.

To simplify the problem further, we make several ap-
proximations. First, we assume that the linear gain g is
small with <ðgÞ> 0 and <ðgÞ 	 j=ðgÞj (except where
noted, we interpret our results using the approximation
=ðgÞ ¼ 0), and expand the Gaussian beam profile about
its maximum. Next, we model the narrow bandpass system
of Bragg mirrors by a Gaussian filtering in frequency space
with rms power bandpass given by �!. Assuming a small
cavity loss of � due to absorption and transmission, the

mirror transfer function ~Rð!Þ � ð1� �=2Þe�!2=4�2
! , with

! representing the frequency difference from resonance.
Typically, the x-ray Bragg mirrors have a bandpass �! that
is much larger than the transform-limited bandwidth of the
electron beam �1=�e, in which case ~Rð!Þ is well de-
scribed by its Taylor expansion to order !2. In this ap-
proximation, the frequency filtering of the mirrors maps to
a second-order derivative in the time domain. Finally, we
assume that the detuning ‘ is sufficiently small to make a
Taylor expansion here as well. Under these assumptions,

Eqs. (17)–(19) are simplified to

gain: Eð�Þ !
�
1þ g

2
� g�2

4�2
e

�
Eð�Þ; (20)

mirror: Eð�Þ !
�
1� �

2
þ 1

4�2
!

@2

@�2

�
Eð�Þ; (21)

displacement: Eð�Þ !
�
1þ ‘

@

@�

�
Eð�Þ: (22)

We now use Eqs. (20)–(22) to relate the longitudinal
radiation field starting pass number nþ 1 to that at the
beginning of pass n. Assuming that the per-pass change is
small, so that Enþ1 � En � @E=@n, we find that the
lowest-order evolution is described by the following partial
differential equation:

@E

@n
¼ 1

4�2
!

@2E

@�2
þ ‘

@E

@�
� �

2
Eþ g

2

�
1� �2

2�2
e

�
E

þ Sð�; nÞ; (23)

where we have included the spontaneous undulator radia-
tion of each pass with the stochastic source term Sð�; nÞ.
We determine the homogeneous solution of Eq. (23) by

setting S ¼ 0 and using the separation of variables tech-

nique. Defining Eð�; nÞ ¼ A1ðnÞA2ð�Þe�2�2
!‘�, we sepa-

rate the n and � dependencies, obtaining

A 1ðnÞ ¼ exp½12ðg� �� 2�2
!‘

2Þ � ��; (24)

�A2ð�Þ ¼ � 1

4�2
w

@2

@�2
A2ð�Þ þ g

4�2
e

�2A2ð�Þ; (25)

where � is the constant of separation. Thus, we see thatA2

satisfies an eigenvalue equation whose solutions are the
well-known Gauss-Hermite functions [note that the form
of Eq. (25) is identical to that of the time-independent
Schrödinger equation describing a simple harmonic oscil-
lator]. The corresponding eigenvalue,

� ¼
�
mþ 1

2

� ffiffiffi
g

p
2�e�!

; (26)

can be seen from (24) as reducing the effective per-pass
gain. In the context of the FEL, this indicates that the gain
approaches the infinite beam limit if the electron beam is
significantly longer than the time given by the inverse
bandwidth of the Bragg mirror (�e�! ! 1). For shorter
electron bunches, only the fraction of the current whose
spectral content lies within the mirror bandpass effectively
contributes to the gain. Solving the eigenvalue equa-
tion (25) leads to a set fEmg of growing linear FEL modes,
the so-called supermodes:
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Emð�; nÞ ¼ en�m=2e�2�2
!‘� exp

�
�

ffiffiffi
g

p
�!

2�e

�2
�

�Hm

�
g1=4

ffiffiffiffiffiffiffi
�!

�e

s
�

�
; (27)

where �m � ½ðg� �Þ � 2�2
!‘

2 � ffiffiffi
g

p ð2mþ 1Þ=2�e�!�
is the per-pass power gain, and HmðxÞ is the Hermite
polynomial of order m. From this, we deduce that in order
to avoid significant gain reduction we must first demand
the electron bunch-radiation timing errors to be much less
than the inverse crystal bandwidth, typically ‘ & 0:1=�!.
Additionally, higher-order modes have less gain, with
�m < 0 for �e�! < ðmþ 1=2Þ ffiffiffi

g
p

=ðg� �Þ; for the pa-

rameters of interest typically 2ðg� �Þ & g, so we require
�e * 1=ð�!

ffiffiffi
g

p Þ to ensure that at least them ¼ 0mode has

sufficient per-pass gain for lasing.
We illustrate the dynamics of the FEL oscillator in

Fig. 1, in which we plot the pass-to-pass supermode evo-
lution as obtained from the 1D numerical FEL code de-
scribed in Sec. II. The FEL parameters are those
corresponding to the 12-keV source listed in Table I, where
the beam width �e ¼ 1 ps, the cavity detuning ‘ is set to
zero, and the electron focusing parameter z� and the

Rayleigh range of the radiation zR are chosen to maximize
the FEL gain: zR ¼ z�. The power content in mode m was

extracted from the simulation by decomposing the real and
imaginary parts of the longitudinal radiation profile into
the Gauss-Hermite mode functions. The extracted expo-
nential growth rates for the three lowest-order modes plot-
ted in Fig. 1 differ by less than 10% from the theoretical
power growth rate �m if we make the minor replacement
g ! gð1� �Þ; this correction ensures that the long pulse

limit growth rate �m ! ½ð1þ gÞð1� �Þ � 1� is recovered
in the limit �e ! 1.
The power content plotted in Fig. 1 clearly demonstrates

the decrease in growth rate as the mode order m increases.
Additionally, we can identify three distinct regions of
mode evolution, roughly delineated in Fig. 1 as regions
(a), (b), and (c). Region (a) is dominated by the sponta-
neous undulator radiation that provides an initially chaotic
seeding for the various modes. After the fluctuations have
grown to a sufficient level, the exponential growth charac-
teristic of linear gain can be seen in region (b). During this
phase of evolution, the mode of order number m exponen-
tiates with the growth rate of �m, with �m a decreasing
function of m. Finally, when the radiation amplitude is
sufficient to nonlinearly decrease the gain, we arrive at
the saturation region (c). While the m ¼ 0 and m ¼ 1
modes level smoothly, we also see additional growth of
the m ¼ 2 mode. Inspection of the longitudinal profile of
the saturated radiation indicates that this corresponds to a
broadening of the cavity pulse as the optical pulse width
becomes closer to that of the electron beam �e.
The rest of this section further elaborates on the super-

mode properties. In the next subsection, we discuss how
timing mismatches between the electron beam and the
radiation (characterized by the detuning length c‘) affects
the growth and shape of the x-ray pulse. We then detail the
physics of supermode seeding by the initially chaotic un-
dulator radiation in the subsequent subsection. Finally, we
conclude this section with some simulation results for the
three sets of parameters listed in Table I obtained using our
1D code, and compare the 12-keV evolution to that pre-
dicted by the two-dimensional FEL code GINGER.

A. Timing errors and cavity detuning

As indicated by (27), a displacement in time between the
electron beam and the radiation gives rise to a skewing of
the longitudinal x-ray profile along with a reduction in the
single-pass linear gain. In simple physical terms, the mirror
broadens the radiation in time, thereby increasing the
temporal overlap with the next electron bunch and mitigat-
ing any reduction in gain. To be more precise, we note that
the supermodes satisfy

Emð�; nÞ ¼ e�m=2Emð�; n� 1Þ; (28)

namely, their longitudinal profile is invariant from pass-to-

pass modulo the scale factor e�m=2; indeed, this is how the
supermodes were first defined in [9]. For the invariant
mode profile Em, we recall that the single-pass gain �m

is maximized when its overlap between the electron beam
and the Bragg mirror is maximized, namely, when it is
centered with respect to the electron beam in � and has an
rms width proportional to the geometric mean of the elec-
tron beam width and the Bragg mirror correlation length

[specifically, the supermode width equals
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e=ð�!

ffiffiffi
g

p Þ
q

].
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FIG. 1. (Color) Example of supermode growth for the lowest
three order modes, using 12-keV parameters of Table I with
�e ¼ 1 ps. The evolution of the modes can be roughly divided
into three regions: region (a) gives the initial chaotic seeding
from the spontaneous undulator radiation; region (b) depicts the
linear growth of the supermodes, with the Gaussian m ¼ 0 mode
having the largest growth; and region (c) is characterized by
nonlinear saturation of the gain, where the growth of higher-
order symmetric modes (e.g., m ¼ 2) reflects pulse broadening
after saturation.
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While the detuning time ‘ tends to displace the radiation
with respect to its previous pass, the narrow-bandwidth
Bragg mirrors correlate the electric field over a time
�1=�!. If this correlation time is much greater than the
time lag induced by the cavity detuning, i.e., if �!‘ 
 1,
then the radiation profile is not significantly modified and
the gain remains nearly unchanged. This is borne out by
our supermode analysis, for which a displacement gives
rise to a reduction in linear gain by 2�2

!‘
2 and a displace-

ment in � of the supermode that scales as ð�!‘Þ�e.
We show how timing mismatches affect the 12-keV FEL

oscillator performance in Fig. 2 (FEL parameters are listed
in Table I). The first graph demonstrates the nearly qua-
dratic decrease in gain with detuning ‘, where the crosses
are obtained from the 1D simulation, and the line is given
by supermode theory. The second graph plots the longitu-
dinal pulse profile for four different values of the detuning
‘. Figure 2 indicates that performance is not significantly
affected if timing errors are kept below �10 fs (corre-
sponding to a cavity detuning length of �1:5 
m).

Because the Bragg mirror bandwidth tends to increase as
the photon energy decreases, these timing and cavity
length tolerances tend to become more stringent at longer
wavelengths. For the parameters listed in Table I, the
timing between the electron beam and the radiation should
be kept within �50 fs (� 12 
m) for the 20-keV FEL,
while ‘ < 1 fs (� 0:15 
m) for the 5-keV FEL (note how
this also depends on the linear gain g). This rather stringent
tolerance for the longer-wavelength FEL could be miti-
gated by increasing the linear gain g; for example, one
might use additional bunch compression to increase the
beam current.

In general, the FEL interaction leads to a complex
amplitude gain, so that g has real and imaginary compo-
nents. In this case, the cavity detuning time ‘ additionally

causes a shift in the central frequency of the amplified
supermode. To calculate the magnitude of this effect, we
consider here only them ¼ 0 supermode. To determine the
central frequency of the spectrum jE0ð!Þj2, we Fourier
transform the m ¼ 0 mode of (27) and multiply by
~E0ð!Þ�, assuming g is now complex. After some simple
manipulations, we find

j ~E0ð!Þj2 / exp

�
��e<ð ffiffiffi

g
p Þ

�!g

�
!� 2iðg� g�Þ�2

!‘

gþ 2gþ g�

�
2
�
;

from which we see that the central frequency is unchanged
if either g is purely real or the detuning time ‘ ¼ 0. For
general gain and detuning, the x-ray frequency is peaked
near !0 þ !, with

! ¼ 2iðg� g�Þ
gþ 2gþ g�

�2
!‘: (29)

To give an idea of the magnitude of this effect, we note that
for the 12-keV parameters of Table I we have =ðgÞ �
<ðgÞ=4, so that for a diamond crystal near 1 Å we have,
in practical units

j!j ½meV� � 0:1� ðc‘Þ ½
m�: (30)

Finally, we comment that after saturation, ! may be
larger than that implied by (29) or (30) because the curva-
ture near peak reflectivity of real Bragg crystals is larger
than the rms width �!.

B. Initial seeding from noise

In this section we investigate the seeding of the linear
supermodes by the spontaneous undulator radiation
Sðn; �Þ, and calculate the statistical distribution of the
modes during the initial phase of evolution [i.e., in region
(a) of Fig. 1]. Previously, the FEL oscillator start-up from
noise has been analyzed in some detail by [16,17], while
less complicated analytic expressions for the initial value
problem were derived in Ref. [18] for an ideal (no energy
spread, constant in time) electron beam in a Fabry–Perot-
type resonator. We describe the pass-to-pass evolution
using the simplified model (23), so that our analysis
more closely resembles that of Ref. [19]. However, we
make explicit use of the supermode (Gauss-Hermite) ei-
genfunctions, and expand the electric field as

Eð�; nÞ ¼ X1
q¼0

EqðnÞ
Hqð�=TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qq!

ffiffiffiffi
�

pp e�
2=2T2

; (31)

where T2 ffiffiffi
g

p � �e=�! defines the supermode width.

Inserting (31) into the differential equation (23), multi-
plying by the orthogonal Gauss-Hermite mode

e��2=2T2
Hmð�=TÞ and integrating over � yields the follow-

ing Langevin equation for the mode coefficient Em:

FIG. 2. (Color) Effect of timing mismatches between the elec-
tron beam and the radiation, i.e., detuning, for the 12-keV
example from Table I, with �e ¼ 1 ps. The first graphs the
single-pass gain measured from the 1D simulation (crosses)
and from the supermode theory (lines). The second plots the
longitudinal pulse profile after saturation for four different
values of the detuning ‘. We see only modest pulse distortion
and power reduction for ‘ & 10 fs, corresponding to a cavity
length detuning of 1:7 
m.
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@Em

@n
¼ �m

2
Em þ

Z
d�Sð�; nÞ Hmð�=TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mm!
ffiffiffiffi
�

pp e��2=2T2

� �m

2
Em þ SmðnÞ; (32)

with SmðnÞ a stochastic function of the pass number rep-
resenting the spontaneous radiation that is reflected and
filtered by the Bragg mirrors. Solution of (32) for Emð0Þ ¼
0 is straightforward:

E mðnÞ ¼ en�m=2
Z n

0
dtSmðtÞe��mt=2: (33)

Thus, the power in each mode initially grows according to
its overlap with the spontaneous radiation given by Sm. To
obtain the ensemble averaged power from Eq. (33), we
assume that the spontaneous radiation is statistically inde-
pendent of the pass number and uncorrelated from pass to
pass (i.e., stationary and -correlated in n). For any func-
tion f, this implies that

Z
dtfðtÞhSmðnÞS�

mðnþ tÞi ¼
Z

dtfðtÞhSmð0ÞS�
mðtÞi

¼ fð0ÞhSmð0ÞS�
mð0Þi; (34)

where h�i denotes the ensemble average over many instan-
ces of the oscillator start-up from noise. Using the statistics
(34), the pass evolution of the ensemble averaged power
contained in each mode follows naturally from (33), and is
given by

hjEmðnÞj2i ¼ hjSmð0Þj2iðen�m � 1Þ=�m: (35)

Thus, the ensemble averaged power in mode m grows
exponentially with growth rate �m and initial seeding
power given by the average overlap of the supermode
with the reflected spontaneous radiation. Furthermore,
(35) and (33) indicate that the exponential gain becomes
the principal contribution after n� 1=�m passes; for typi-
cal values the exponential stage [region (b) of Fig. 1]
begins after 1=�0 � 5–50 passes. During the initial phase
[Fig. 1, region (a)], on the other hand, the uncorrelated
source term dominates and the complex supermode coef-
ficients undergo a random walk in amplitude with a ‘‘step
size’’ proportional to its overlap with Sð�Þ. Thus, in the
initial seeding stage the power in each mode / jEmj2 tends
to increase linearly with pass number, with the growth for
each modem proportional to the undulator radiation power
contained in that mode, as indicated by (35) for n < 1=�m.
Furthermore, the incoherent power in each mode will
fluctuate significantly about this average linear increase
depending on the precise phasing of each single-pass con-
tribution. The power in each supermode increases in this
noisy, nearly linear fashion until the power in the coher-
ently amplified component is larger than the spontaneous
signal jSj2 (or, in the case that �m < 0, until the sponta-
neous power in the mode balances the single-pass loss).

As discussed above, the power in each mode initially
grows according to its overlap with the Bragg-reflected
spontaneous radiation Sð�; nÞ. Thus, to determine the
FEL seeding power of the mth mode we must calculate
what fraction of the single-pass power jSj2 is contained in
the mode m. We model the envelope of the chaotic sponta-
neous radiation as a random collection of Gaussian spikes,
each of whose width is the undulator coherence time �c �
Nu�=c:

S ð�; nÞ ¼ X
j

E0 exp

�
�ð�� �jÞ2

4�2
c

þ i!0�j

�
(36)

) ~Sð!; nÞ ¼ ffiffiffiffiffiffiffi
4�

p
�cE0

X
j

e��2
c!

2þið!þ!0Þ�j : (37)

In Eqs. (36) and (37), j indexes the bunch electrons, the
phase difference !0�j accounts for the individual entrance

times of the electrons in the undulator, and E0 can be
obtained from the well-known theory of undulator radia-
tion. Upon reflection in the cavity, the Bragg crystal effec-
tively filters the radiation in frequency space as given by
(18), where we approximate ~Rð!Þ as a lossy Gaussian filter
with width �! and power loss �. Thus, after reflection and
filtering by the two Bragg mirrors, the Fourier transform of
the spontaneous radiation (37) becomes

~S ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
e�!2=4�2

! ~Sð!; nÞ

� ffiffiffiffiffiffiffi
4�

p
�c

�
1� �

2

�
E0

X
j

e�!2=4�2
!þið!þ!0Þ�j ; (38)

where the second line follows by assuming that the mirror
bandwidth is much less than that of the undulator radiation
(�2

! 
 1=�2
c), and that the loss � is small. The overlap of

the initially chaotic spontaneous undulator radiation with
the supermode eigenfunctions is defined by (32). Because
the Gauss-Hermite basis is diagonal with respect to the
Fourier transform operator, this integral can be expressed
as

S m ¼
Z

d!
~Sð!; nÞ
im

ffiffiffiffiffiffiffi
2�

p Hmð!TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mm!

ffiffiffiffi
�

pp e�!2T2=2: (39)

Inserting the expression (38) for ~Sð!; nÞ and taking the
integral with respect to ! (see, e.g., Gradshteyn and
Ryzhik [20]), the mode coefficients are given by

Sm ¼ E0

2�c

ffiffiffiffi
�

p ð1� �
2Þ

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mm!

ffiffiffiffi
�

pp �m�
�mþ

�X
j

exp

�
� �2j

2�2þ
þ i!0�j

�

�Hm

�
T�j

�þ��

�
; (40)

where, for compactness, we have defined the widths

�2� � T2 � 1

2�2
!

� �effiffiffi
g

p
�!

� 1

2�2
!

:
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We note �e�! > 1=
ffiffiffi
g

p
>

ffiffiffi
g

p
to have FEL gain, so that

�2� > 0 for all parameters of interest.
The coefficients Sm in (40) give the overlap between the

initial filtered undulator radiation and the supermodes of
order m. The initially stochastic radiation seeds each mode
with a power level proportional to jSmj2 given by

jSmj2 ¼ ð1� �ÞjE0j24��2
c

2mm!
ffiffiffiffi
�

p
�2þ

�2m�
�2mþ

�
�X

j

e��2j =�
2
þH2

m

�
T�j

�þ��

�

þ X
j�k

ei!0ð�j��kÞ½� � ��
�
: (41)

The second sum in (41) is significant if there is electron
structure (bunching) at scale lengths on the order of the
radiation wavelength. For undulator radiation, however,
the electron bunching is small, and the contributions
from the rapidly varying phase !0ð�j � �kÞ largely cancel

in comparison with the first sum. We calculate the sponta-
neous power by replacing the sum with an integral over the
particle distribution via

X
j

! Ne

Z
d�j

e��j=2�
2
effiffiffiffiffiffiffi

2�
p

�e

;

and neglect the second contribution, so that the spontane-
ous power in the mode m is given by

jSmj2 ¼ ð1� �ÞNejE0j2 2
ffiffiffi
2

p
�2

c

2mm!�eT

�2mþ1�
�2mþ1þ

�
Z

dx exp

�
�ð2�2

e þ �2þÞ�2�
2�2

eT
2

x2
�
H2

mðxÞ: (42)

The integral in (42) can be evaluated analytically in terms
of Gauss’s hypergeometric function. We reserve this cal-
culation for the Appendix, finding it instructive to approxi-
mate the integral in the following manner. As discussed
previously, FEL gain requires �e > T > 1=�!, and we
typically have �2

e 	 �2þ � T2 � �2� > 1=�2
!. In this

limit the argument of the exponential in (42) becomes
�x2 and the integral equals 2mm!, so that the power in
mode m scales as ð��=�þÞ2mþ1. This implies that the
filtered undulator radiation provides significant seeding
for modes of order m & �e�!=

ffiffiffi
g

p
. Note that while this

condition scales in the same manner with respect to the
electron beam and mirror width as does the condition for
mode m to have positive FEL gain, the latter requirement
m & ðg� �Þ�e�!=

ffiffiffi
g

p
is more stringent.

To streamline our presentation, we leave the evaluation
of (42) for arbitrary m to the Appendix and instead explic-
itly consider the relative initial seeding of the two lowest-
order averaged-mode coefficients jS0j2 and jS1j2. These

are of particular interest because they have the largest
linear gain and typically have the largest initial seeding.
By evaluating (42) [or alternatively (A1) in the Appendix]
for m ¼ 0 and m ¼ 1 we find

jS0j2
jS1j2

¼ 4�2��2
e þ �2þ�2� � �2

e=�
2
!

4�2
e�

2þ þ 2�2þ�2þ

� 1� 1þ g

4
ffiffiffi
g

p
�e�!

þOð1=�2
e�

2
!Þ; (43)

indicating that the spontaneous radiation from a single pass
tends to seed the two lowest-order supermodes about
equally. On the next pass, the spontaneous radiation S
will have a similar expansion in terms of the mode coef-
ficients but will differ by an uncorrelated change in the
overall phase; in the model (36), this would correspond to
E0 having a random phase from pass to pass. As mentioned
earlier, after n passes in the initial stage dominated by the
spontaneous contribution (i.e., for n & 1=�0 before linear
gain takes over), we have

hjS0ðnÞj2i � hjS1ðnÞj2i � nhjS0j2i: (44)

Although the ensemble-averged spontaneous power in-
creases linearly with pass number, the fluctuations in
mode power between different instances of the oscillator
start-up are close to 100% before the signal is dominated
by gain. Therefore, while on average the lowest-order
modes are equally seeded by the undulator radiation S,
on occasion the m ¼ 1 is preferentially seeded so that the
pulse is no longer largely Gaussian in the linear gain
regime [i.e., region (b) of Fig. 1]. We show an example
of this phenomenon in Fig. 3. The first graph demonstrates
that the initial fluctuating phase [region (a)] can sometimes
dominantly seed the first-order mode. The linear growth
phase is then initially dominated by the antisymmetric
m ¼ 1 mode through region (b1). As the amplification
continues, however, the radiation approaches a Gaussian
due to the higher growth rate of the m ¼ 0 mode, which
then becomes the dominant component throughout region
(b2).
We also show two examples of complex electric field

amplitudes in the linear gain region in Fig. 3. After 40
passes we see that both the real (red solid lines) and
imaginary (blue dotted lines) parts of E are largely de-
scribed by the m ¼ 1 supermode; after 80 passes the pulse
has more overlap with the m ¼ 0 mode, although there is
still a significant antisymmetric component from the mode
with m ¼ 1. As evolution continues, the pulse becomes
more symmetric, until it is nearly Gaussian at saturation.

C. Examples for a 7-GeV beam

In this section we present supermode evolution results
relevant to a low-emittance, 7-GeV electron beam whose
current is 10 A and whose electron beam and undulator
parameters are listed in Table I. For this study we have
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taken Bragg mirror bandwidths that approximate those of
perfect diamond mirrors, for which the peak reflectivity
can be made�99%. We assume a total per-pass cavity loss
� ¼ 0:15; this could arise, for example, from a few-
percent energy absorption of the perfect crystal mirrors, a
4% decrease due to outcoupling of the radiation from the
cavity, and an additional 5% loss per pass for each of two
focusing elements.

Additionally, we include in Table I the saturated power
Psat for a 1-ps electron beam as predicted by the 1D model
introduced in Sec. II, and compare that to the saturated
power predicted by the 2D code GINGER. We find that our
1D code agreed with GINGER in terms of the saturated
power to within 10%–30%, with the outcoupled radiation
predicted to be of order 0.5–10 MW. Furthermore, we
observe that after �100 passes the pulse broadens in
time due to the nonlinear saturation mechanism, while

the bandwidth decreases such that the rms time-frequency
product ���! is nearly constant. After many passes we
find that the radiation temporal duration is of order��e=2,
the radiation bandwidth is much narrower than the mirror
bandwidth �!, and the pulse is nearly Fourier limited:
���! � 1:5.
We summarize the supermode evolution for all three

photon energies in Fig. 4, in which we plot the measured
and theoretical per-pass gain for the lowest two order
modes as a function of the electron bunch length �e. To
determine the mode growth rates, after each pass we de-
compose the real and imaginary parts of Eð�Þ into the
Gauss-Hermite basis given by (27). Plotting the absolute
square of these mode coefficients as a function of pass
number yields plots similar to Figs. 1 and 3, fromwhich the
growth rate can be determined by a least squares fit.

FIG. 4. (Color) Supermode gain rates for the 5-keV (a), 12-keV (b), and 20-keV (c) radiation cases detailed in Table I, using a per-pass
cavity loss � ¼ 0:15. Simulation points were determined by decomposing the longitudinal radiation onto the Gauss-Hermite modes
and are plotted for the lowest two order modes when they could be determined (and are nonzero). Theory is given by the lines, where
the power growth rate �m � ½ðg� �Þ � �2

!‘
2=2� ffiffiffi

g
p ð2mþ 1Þ=�e�!�, and we have replaced g ! ð1� �Þg so that �m reduces to

the infinite pulse per-pass gain of ½ð1þ gÞð1� �Þ � 1�.
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FIG. 3. (Color) Example where the initial random seeding is largest in the m ¼ 1 mode, using the same parameters (but different
seeding) as in Fig. 1. The first plot shows initial seeding of the first-order mode in region (a), after which the linear growth phase is
dominated by the m ¼ 1 mode through region (b1). Because of its larger growth rate, the component of the m ¼ 0 mode eventually
becomes dominant in region (b2). We show examples of the real (red solid line) and imaginary (blue dotted line) parts of the scaled
electric field after 40 passes and after 80 passes. While there is still a significant antisymmetric part after 80 passes, it becomes a
diminishing component, and at saturation the pulse is nearly Gaussian.
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Figure 4 contains measured growth rates for the
Gaussian (m ¼ 0) mode and the lowest-order antisymmet-
ric (m ¼ 1) mode for the 5-keV (a), 12-keV (b), and 20-
keV (c) FEL designs. In each scenario the per-pass gain
decreases as the bunch length decreases, until reaching
zero gain when �e � 1=�!

ffiffiffi
g

p
. Since the gain decreases

more rapidly for the higher-order modes, the cavity pulse
becomes more Gaussian as the electron bunch length de-
creases. Furthermore, because the crystal bandwidth de-
creases as the photon energy increases, this gain reduction
is more significant at the higher photon energies, so much
so that only the m ¼ 0 mode has positive growth for the
20-keV FEL in panel (c).

Finally, we indicate how the one-dimensional super-
mode theory presented here continues to be of use when
one considers pulses with self-consistently evolving trans-
verse dynamics. In general, such an analysis involves the
full set of transverse modes supported by the cavity which
for g < 1 can be approximated by the vacuum Gauss-
Laguerre optical modes (see, e.g., Siegman [21] for a full
discussion). Because the single-pass gain g is maximized
when the radiation profile matches that of the electron
beam (see the gain formula in [15] and discussion in
[22]), the FEL preferentially selects the lowest-order,
Gaussian transverse mode. By projecting the transverse
radiation profile at each longitudinal position onto this
cavity mode, one can effectively reduce the radiation to a
1D field suited for our supermode analysis.

We have carried out this transverse projection prescrip-
tion to study the longitudinal supermode evolution with the
2D simulation code GINGER. After the initial stage, which
is dominated by the chaotic undulator radiation (� 5–20
passes), we have found that nearly 99% of the radiation
power is contained in the lowest-order transverse mode of
the cavity. Having projected the field onto what is now one
longitudinal dimension, we can perform the same super-

mode decomposition. An example of the resulting super-
mode growth is plotted in Fig. 5, for the same parameters as
Fig. 1, namely, the 12-keV FEL detailed in Table I with
�e ¼ 1 ps. We see that the two figures look quite similar,
with both indicating a decrease in growth rate as the mode
order m increases, and significant content in the m ¼ 2
mode after saturation indicating pulse broadening. The
main difference is in the initial chaotic stage: the 1D
code indicates large mode fluctuations due to the chaotic
undulator radiation for �20 passes, while the 2D GINGER

simulations seem to exit this initial stage much earlier,
after only 5 passes or so. Nevertheless, the subsequent
dynamics are quite similar and can even show evidence
of dominantly seeding the m ¼ 1 mode, as previously
discussed. Furthermore, the general conclusions regarding
the dependence of the single-pass gain on both the electron
beam length and on the timing between the radiation and
the subsequent electron bunch hold.

IV. CONCLUSIONS

We have shown that the linear supermodes of the x-ray
FEL oscillator are the growing Gauss-Hermite modes
whose per-pass growth rate decreases for increasing
mode order and for decreasing electron bunch width.
Seeding of these modes by the chaotic undulator radiation
seeds is random, so that the initial evolution may be
dominated by higher-order longitudinal modes.
Nevertheless, the lowest-order m ¼ 0 Gaussian mode
eventually dominates due to its larger growth rate, so that
the final longitudinal radiation profile is nearly Gaussian at
saturation.
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APPENDIX: INITIAL SEEDING OFARBITRARY
SUPERMODES

In this Appendix we explicitly evaluate and simplify the
integral expression (42) for arbitrarym. The integral can be
found in standard tables [20] expressed asZ

dxe��2x2H2
mðxÞ

¼ 4m

�
ffiffiffi
2

p
�
1� �2

�2

�
m

� �

�
mþ 1

2

�
2F1

�
�m;�m;

1

2
�m;

�2=2

�2 � 1

�
:

To make this formula practical, we use the hypergeometric

FIG. 5. (Color) Example of supermode growth for the lowest
three order modes obtained from a 2D GINGER simulation of the
12-keV FEL in Table I. The transverse field is projected onto the
Gaussian cavity mode, thereby allowing a 1D supermode analy-
sis. Note how the m ¼ 1 mode initial dominates, but the radia-
tion evolves to be nearly Gaussian because of better coupling to
the m ¼ 0 mode.
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function series expansion

2F1

�
�m;�m;

1

2
�m;�

�
� X1

k¼0

ð�mÞkð�mÞk
ð12 �mÞkk!

�k

¼ Xm
k¼0

ðm!Þ2
½ðm� kÞ!�2m

� �ð12 �mÞ
�ð12 �mþ kÞ�

k:

The second line above arises from the definition of the
Pochhammer symbol ðaÞk and its subsequent reduction
when a is a negative integer. Additionally, we use the
gamma function identity

�

�
1

2
� n

�
¼ ð�1Þn ffiffiffiffi

�
p �ð2n� 1Þ!!

2m

��1
;

where we define ð�1Þ!! � 1. Further simplification obtains
by replacing the summation variable kwithm� k; collect-
ing the various pieces, we find that the power of the
spontaneous radiation Sð�Þ contained in the mth mode is
proportional to

jSmj2 ¼ ð1� �ÞNejE0j2 4
ffiffiffiffi
�

p
�2

c

�þð2�2
e þ �2þÞ1=2

�2m�
�2mþ

� Xm
k¼0

m!ð2k� 1Þ!!
ðk!Þ2ðm� kÞ!

�
��2þ�2� � �2

e=�
2
!

2�2�ð2�2
e þ �2þÞ

�
k
:

(A1)

The seeding of the mode coefficients decreases with m
as the supermode width increases, becoming very small
when the mth supermode width approaches (from below)
that of the electron beam, i.e., when m� ffiffiffi

g
p

�e�!.
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