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In this paper, we give a complete analytical solution for wakefields generated by an azimuthally

symmetric ring beam propagating in a coaxial two-channel dielectric structure. This wakefield can be used

to accelerate a witness beam in the central channel. The ratio of the peak accelerating field in the center

channel to the decelerating field in the ring channel (defined as transformer ratio R) is also derived. We

find that, by appropriate choice of parameters, R can be much greater than 2, the limiting value for

collinear wakefield accelerators.
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I. INTRODUCTION

In a wakefield accelerator, the fields generated by a
leading, high-charge drive bunch (either a single drive
bunch or a train of drive bunches) are used to accelerate
a trailing, low-charge witness bunch. An important pa-
rameter that influences the performance of a wakefield
accelerator is the transformer ratio R � ðmaximum energy
gain of the witness bunchÞ=ðmaximum energy loss of the
drive bunch) [1]. Therefore, to accelerate the witness beam
to high energy it is desirable to make R as large as possible.
There are two major classes of wakefield accelerator ge-
ometries, collinear and two beam. For a collinear wakefield
accelerator, R is less than 2 under very general conditions:
linear media; a relativistic, longitudinally symmetric drive
bunch; and identical paths through the system of both drive
and witness beams [2,3]. Some of the methods that can be
employed to obtain R> 2 include: a triangular longitudi-
nal drive bunch profile [4]; a train of Gaussian drive
bunches of progressively increasing charge (ramped bunch
train) [5–7]; use of a proton drive beam so that the particles
can change positions within the bunch during deceleration
[8]; and nonlinear plasma dynamics [9]. Another way to
achieve R> 2 is by designing separate drive and witness
beam lines with different shunt impedances [10,11]. One
possible approach (Fig. 1) is to use a multichannel struc-
ture with a ring drive beam propagating through a coaxial
outer vacuum channel and a witness beam through a cen-
tral channel. This technique has been proposed by Weiland
for metallic structures [12] and by Hirshfield for dielectric
structures [13].

In this paper, we present both analytic and numerical
simulation results for the wakefield excited by a ring of
charge in a two-channel circular dielectric loaded accel-
erator (DLA) structure. We begin by solving for the
Green’s function of the TM modes of the structure and
then analyze the first two monopole modes of the wakefield
in detail. Numerical simulations using MAFIA [14] and CST

MICROWAVE STUDIO [15] are used to verify the analytical

results.

II. THE GREEN’S FUNCTION SOLUTION OF A
RING OF CHARGE

The coaxial, two-channel DLA structure of Fig. 1 has an
inner vacuum region (r < a) for the witness beam and an
outer vacuum region (r1< r < r2) for the drive beam. The
drive beam used to excite the DLA is azimuthally (’)
symmetric; an important requirement to avoid exciting
dipole modes which can cause beam instabilities. In this
paper, we will concentrate on the monopole wakefield
excitation due to a uniform ring of electrons.
For a uniform, annular electron beammoving at speed v,

the corresponding wave equations for the longitudinal field
components can be obtained from
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FIG. 1. (Color) Cross section of the coaxial two-channel DLA
structure investigated in this paper.
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Since we are only considering the monopole field ex-
cited by the drive beam, which is a TM wave with Bz ¼ 0,
we only need to solve for Ez. We can now rewrite Eq. (1) as�
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By taking the Fourier transform of Eq. (2) with respect to
z� vt, we obtain
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After applying integration by parts to the integral on the
right-hand side, we then have
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where r2
r ¼ @2

@r2
þ 1

r
@
@r . We next solve for the general and

particular solutions of Eq. (3b).
The particular solution of Eq. (3b) can be found by

taking the Hankel transform of both sides of Eq. (3b) and
denoting the Hankel transform of ~Ez as ~EH

z . We then have
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Next, by taking the inverse Hankel transform of Eq. (4), we
arrive at the particular solution of Eq. (3b) as
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Equation (5) can be integrated to give the particular solu-
tion
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For the general solution of Eq. (3b) we have

~E gen
z;i ðrÞ ¼ AiI0ðkr;irÞ þ BiK0ðkr;irÞ; (7)

where i ¼ 0 and 2 refer to the vacuum channel regions. For
the dielectric loaded regions 1 and 3, Eq. (3b) becomes
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If we choose the material properties such that 1�
v2
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�r"r < 0, then the general solution will be a linear

superposition of Bessel functions,
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Adding the particular solution to the general solution of
Eq. (3b) in the drive channel (region 2), we obtain the
complete solution of Eq. (3b) in the drive channel as
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þ j!q
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Equations (7), (9), and (10) together give the Fourier
transform of the Green’s function of the ring beam wake-
field excitation in coaxial two-channel DLA structures.
The next step is to determine the coefficients Ai and Bi

by imposing the boundary conditions.

III. SOLUTION FOR THE COEFFICIENTS AND
DERIVATION OF THE DISPERSION RELATION

Since Ez must be finite at r ¼ 0, then B0 ¼ 0 from
Eq. (7). Using the boundary conditions that Ez is continu-
ous at r ¼ a, r1, and r2 and Ez is zero on r ¼ b, we have
the following set of equations:
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A3J0ðkr;3bÞ þ B3Y0ðkr;3bÞ ¼ 0: (11a)

Using the boundary conditions of B� at r ¼ a, r1, and r2, we have the following equations:

WANMING LIU AND WEI GAI Phys. Rev. ST Accel. Beams 12, 051301 (2009)

051301-2



�j!"0
kr;0

A0I1ðkr;0aÞ ¼ �j!"1
kr;1

½A1J1ðkr;1aÞ þ B1Y1ðkr;1aÞ�
�j!"1
kr;1

½A1J1ðkr;1r1Þ þ B1Y1ðkr;1r1Þ� ¼ � j!"2
kr;2

�
A2I1ðkr;2r1Þ þ B2K1ðkr;2r1Þ

þ j!q

"0v�
2
I1ðkr;2r1ÞK0ðkr;2r0Þ

�

�j!"2
kr;2

�
A2I1ðkr;2r2Þ þ B2K1ðkr;2r2Þ þ j!q

"0v�
2
I0ðkr;2r0ÞK1ðkr;2r2Þ

�
¼� j!"3

kr;3
½A3J1ðkr;2r2Þ þ B3Y1ðkr;3r2Þ�:

(11b)

The solution will be determined by solving Eqs. (11a) and (11b) together. The combination of Eqs. (11a) and (11b) can be
reduced to the following two equations with two unknowns, A2 and B2:
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Finally, we can solve for the two unknowns A2 and B2,

A2 ¼ C1F22 � C2F12

F11F22 � F21F12

B2 ¼ C1F21 � C2F11

F11F22 � F21F12

:

(13)

IV. SPECIAL CASE v ! c

If we consider the special case when the speed of beam
approaches c, then we have kr;2 ! 0. Using small argu-

ment approximations of Bessel functions, one can rewrite
the above (12b)–(12h) as
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In the special case that v approaches c, F12 and F22

approach infinity and we rewrite Eq. (13) as

A2 ¼ C1 � C2F12=F22

F11 � F21F12=F22

B2 ¼ C1F21=F22 � C2F11=F22

F11 � F21F12=F22

:

(14h)

Since C1, F21, C2, and F11 have bounded values, B2 will
tend to 0 when v is approaching c. The field ratio between
the witness channel and the drive channel is then deter-
mined as

A0

A2

¼ 1

FðaÞJ0ðkr;1r1Þ þGðaÞY0ðkr;1r1Þ : (15)

Given the definition of the transformer ratio R as the ratio
of the acceleration field experienced by the witness beam
to the deceleration field experienced by the drive beam [5],
one has

R ¼ 2
A0

A2

(16)

for the ideal case.
Finally, in order to obtain the time and space dependent

Green’s function in the drive channel, one needs to take the
inverse Fourier transform of Eq. (10) which yields
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X
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where !i is the ith pole in the complex plane of ! and is
determined by

F11 � F21F12=F22 ¼ 0: (18)

Equation (18) also determines the dispersion relations of
the modes.

V. COMPARISON OF NUMERICAL SIMULATIONS
AND ANALYTIC RESULTS

Using the above equations, we solve for the first two
monopole modes excited by a ring drive beam inside a two-
channel DLA structure with a ¼ 2 mm, r1 ¼ 4:2 mm,
r2 ¼ 13:215 mm, b ¼ 14 mm, and "r ¼ 4:76. The elec-
tromagnetic parameters of the first two modes are summa-
rized in Table I. As shown in the table, the excitation of the
TM02 mode is 6 times stronger than the TM01 mode in the
drive channel and about 4 times stronger than in the wit-
ness channel. Thus, the transformer ratio is dominated by
the TM02 mode and is about 4.5.
As shown in Fig. 2, the first two poles are located at

15.561 and 24.95 GHz, corresponding to the TM01 and
TM02 modes. Since the wakefield excited by the beam has
to be synchronized to the beam, the phase velocity has to be
matched to the beam velocity which in the case of an
electron accelerator is approximately equal to the speed
of light. This gives us an easy way to verify the analytic

TABLE I. Electromagnetic parameters of the TM01 and TM02

modes excited by an annular beam.

TM01 TM02

Frequency (GHz) 15.563 24.95

vg 0.817 c 0.69 c

Transformer ratio 8.1517 4.5761

A2 7:342� 1012 4:5717� 1013
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results with numerical simulations using the commercial
software package CST MICROWAVE STUDIO [12]. The dis-
persion curves calculated with MICROWAVE STUDIO agree
well with the analytical results as is shown in Fig. 3 (Fig. 4)
for the TM01 (TM02) mode.

As a further check, MAFIA [13] was used to calculate the
wakefield integral excited by a 2 mm Gaussian bunch
driving a one meter long, coaxial, two-channel DLA
(Fig. 5). Using the MAFIA simulation results, we can com-
pare the wavelength, group velocity, and transformer ratio
to the analytic results above: (i) wavelength: by measuring
the wavelengths in Fig. 5, the frequencies are estimated to
be about 15 and 25 GHz; (ii) group velocities: using a first
order approximation, the relation between group velocity
and the slope of envelop is

ð1� vg � dlÞn=2 ¼ �E; (19)

where dl is a small increment in distance, and �E is the
relative change of the field amplitude after n steps. From
Fig. 5, the group velocity of the TM01 mode is estimated as
0.82 c and for the TM01 mode as �0:44 c, in good agree-
ment with the analytic predictions. (iii) The transformer
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ratio can also be determined from this plot as 2:6=0:6� 4:3
which is in good agreement with the analytical prediction
of 4.5.

VI. SUMMARY

We derived analytical formulas for calculating the wake-
field in a coaxial, two-channel DLA structure excited by a
ring beam. We checked these formulas against numerical
simulations and they are found to be in good agreement
with each other. The formulas presented in this paper can
be used to design and analyze a coaxial two-channel DLA
structure with a transformer ratio greater than 2.
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