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The shape of an rf pulse is distorted due to dispersion encountered in acceleration through traveling-

wave linear accelerator structures. Simulations are made to ascertain the severity of this distortion in

cavities designed to operate at various group velocities. The pulse suffers maximum degradation when

propagated through accelerating cavities with a phase advance per cell in the vicinity of �, where the

group velocity reaches its minimum value. Several cavities are simulated to study the pulse distortion and

compared with experiments performed on a high phase advance structure H60VG3, which has a phase

advance of 5�=6 per cell. A circuit model and a mode matching code are used to perform these

simulations on accelerating structures consisting of multiple cells. Beam loading is taken into account

and the implications on energy dispersion are also analyzed. Means of mitigating for this energy deviation

are discussed.
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I. INTRODUCTION

In accelerating a charged particle beam to ultrarelativ-
istic energies, linear rather than circular accelerators are
needed. In the context of the next generation of linear
colliders [1–6], several thousand of these cavities will be
required. At the SLAC National Accelerator Laboratory,
cavities operating with a 2�=3 phase advance per cell at an
S-band frequency of 2.856 GHz are able to reach a stable
gradient of approximately 20 MV=m enabling the beam to
be accelerated to an energy of approximately 60 GeV [7]
along a linac of length 3 km. There are approximately 960
structures in the linac, each of which is 3.05 m long (10 ft)
and houses 86 cells (including cell 1 and 86, the coupler
cells) [8]. The monopole mode used to accelerate the beam
has a finite group velocity which decreases along the
structure in order to preserve a constant gradient [8]. The
variation of group velocity with frequency corresponds to
the dispersion which the accelerating pulse applied to the
beam will encounter [9,10]. For the SLAC two-mile linac
the dispersion was manageable.

However, in order to achieve higher energies and higher
luminosities at collision, the next generation of normal
conducting (NC) linear colliders, such as that adopted by
the CLIC [5,6] project, is aiming at an ambitious loaded
gradient of 100 MV=m at an X-band accelerating fre-
quency of 11.9942 GHz. The baseline design for the
CLIC project will utilize 142 812 accelerating structures
[11] and each positron and electron linac will be �21 km

long. The center of mass energy at collision is expected to
be 3 TeV for the current design and with a peak luminosity
of 7� 1034 cm�2 [6]. In order to mitigate for the effects of
breakdown issues in these structures, cavities with different
group velocities are being intensively investigated by fo-
cused groups at CERN, KEK, and the SLAC National
Laboratory in particular. Several structure designs are
under intensive investigation and those with a phase ad-
vance per cell of 2�=3 and 5�=6 have been investigated
both experimentally and theoretically to explore the phys-
ics of fundamental breakdown limitations and to ascertain
their suitability of being used routinely within the CLIC
collider. These structures have capitalized on the valuable
experience gained with the wealth of structures built at
SLAC, KEK, and FNAL during the Next Linear Collider/
Global Linear Collider (NLC/GLC) research program [4]
which aimed at a loaded gradient of 55 MV=m at an
accelerating frequency of 11.424 GHz. One recent CLIC
prototype structure consisting of 18 cells is illustrated in
Fig. 1, and is referred to as T18_VG2.6_disk [12]. The
irises in each of the cells are reduced in order to limit the
surface field on the walls of the irises and the group
velocity tapers down from 0:028c to 0:01c at a phase
advance per cell of 2�=3. Additional structures are being
investigated with cell phase advances of 5�=6. The origi-
nal motivation for investigating high phase advance struc-
tures was based on observation of breakdown which was
occurring in the NLC/GLC structure known as RDDS1, in
which significant damage to the cells was observed on the
high group velocity (0:12c) end of the structure but mini-
mal damage on the low group velocity (0:03c) end.
Choosing a phase advance per cell closer to� is one means
of reducing the group velocity. The CLIC project maintains
high phase advance structures as an option for the baseline
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design as a final decision for specific structure has not been
decided upon. An example of such a high phase advance
structure, consisting of 55 cells and 60 cm in length, is
illustrated in Fig. 2. The group velocity in this structure
varies from 0:05c to 0:008c. The distortion in an rf pulse
propagated through these structures is expected to be more
severe as the phase advance per cell is increased as the
group velocity is reduced and as the relative frequency
bandwidth is reduced. The ratio of the maximum surface
electric field to that of the accelerating field has been
maintained at approximately 2 throughout this structure.

In this paper the dispersion characteristics of these linac
structures are investigated. The group velocity in linacs
depends on frequency and thus each frequency component
will travel at a different speed through the structure. This
will inevitably give rise to distortion in the shape of an rf
pulse propagated through the structure. An rf electromag-
netic pulse is used to accelerate a bunch train of charged
particles. The motivation of this work is to understand the
distortion expected to occur in the shape of the rf pulse and
the corresponding energy dispersion which will occur
along the accelerated bunch train. Shaping the rf pulse
which is delivered to the accelerator by suitably phasing
the klystrons is investigated as a means of compensating
for this energy dispersion.

This paper is organized such that the steady state beam
loading expected in NLC/GLC structures is described in
the next section from energy balance considerations. The
second section entails both a circuit description and a mode
matching code analysis. The third section provides detailed
simulations of pulse propagation through a series of accel-
erating structures and is compared with experimental re-
sults. The fourth section entails an analysis of the distortion
in the energy over the train of accelerated bunches. The
final section provides some conclusions on the dispersive
effects in these traveling-wave structures.

II. STEADY STATE BEAM LOADING

The rf accelerating field loses energy to both the charged
particle beam and to the walls of the accelerating cavity,
and for a normal conducting cavity the latter is a significant
fraction of the total energy loss. The power flow per unit
length in terms of the cavity Q is given as

dP

dz
¼ � !P

vgQ
; (1)

where the energy per unit length U0 flows with group
velocity vg and P ¼ U0vg. In a linear collider, in order

to optimize efficiency, a train of bunches is accelerated.
The energy lost by a charged particle bunch is character-
ized by a loss factor [13] which denotes the energy lost per
unit charge q squared. The corresponding loss factor per
unit length is given by

k0 ¼
�
!R0

4Q

�
¼ � 1

2

vg

Ic

dE

dz
; (2)

where Ic is the beam current, E the electric field in the
cavity, and R0 denotes the shunt impedance per unit length
[13]. The latter provides a measure of the efficiency of
coupling the rf power to the beam:

R0 ¼ E2

� dP
dz

: (3)

This enables the power to be obtained as

P ¼ vgE
2

ð!R0
Q Þ : (4)

Differentiating with respect to z gives the incremental
power flow:

dP ¼ 2vgEdE

ð!R0
Q Þ ¼ �

ffiffiffiffiffiffiffiffiffiffi
!R0

vgQ

s
IcP

1=2dz; (5)

where Eqs. (2) and (4) have been used. Thus, gathering
both loss terms presented in Eqs. (1) and (5) we obtain

dP

dz
þ !

vgQ
Pþ

ffiffiffiffiffiffiffiffiffiffi
!R0

vgQ

s
Ic

ffiffiffiffi
P

p ¼ 0: (6)FIG. 2. (Color) High phase advance accelerating structure,
H60VG4SL17A/B [28].

FIG. 1. (Color) Accelerating structure T18_VG2.6_disk [12]
with fundamental power couplers attached.
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This first order differential equation may be solved to
obtain the power flow once R, vg, Q, and Ic have been

specified. In the structures being designed for the next
generation of linear colliders all of these quantities, apart
from the beam current, are a function of distance z along
the accelerating axis. However, for constant coefficients
Eq. (6) is readily solved:

PappðzÞ ¼
�
IcQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0=Qvg

!

s
ð1� e�½!=ð2QvgÞ�zÞ

þ ffiffiffiffiffiffi
P0

p
e�½!=ð2QvgÞ�z

�
2
: (7)

For the sake of completeness we note that the differential
equation describing the electric field is readily obtained
from a substitution of Eq. (4) into Eq. (5):

d

dz

�
E2vg

R0=Q

�
þ E2!

ðR0=QÞQþ EIc! ¼ 0: (8)

For the case of constant coefficients this is also readily
solved:

EðzÞ ¼ IcR
0ð1� e�½!=ð2QvgÞ�zÞ þ E0e

�½!=ð2QvgÞ�z: (9)

However, for the structures considered for a linear collider,
Eq. (8) must be solved numerically. The beam-loaded field
for parameters corresponding to the accelerating structure
H60VGVG3 [13] are illustrated in Fig. 3 together with that
of the approximate solution given by Eq. (9) with R0, Vg,Q

evaluated within the center of the structure. The total
beam-loaded field integrated over the length of the struc-
ture gives the total beam-loading potential which in this
case is 33.9 MV or 56:3 MV=m in terms of the average
beam-loaded field. Taking the approximate value from
Eq. (9) and integrating over the length of the structure

gives comparable values: 33.3 MV and 55:4 MV=m, re-
spectively. Thus, the approximate form of the field with all
parameters evaluated within the center of the structure
provides a very good approximation to the total beam-
loaded potential experienced by the beam.

III. PULSE DISTORTION DUE TO DISPERSION

In order to model the transient effects due to dispersion
in linear accelerator structures, we consider the propaga-
tion of an rf pulse through a multicell structure using two
methods: a circuit model and a mode matching code,
SMART2D [14]. Both approaches entail obtaining the fields

in individual cells in the frequency domain and this con-
stitutes the transfer function of the structure. Taking the
Fourier transform of the transfer function and convolving
with the input pulse allows the progress of a pulse to be
monitored as it passes through each cell. In this section no
account is taken for the beam loading, as the focus is on
distortion in pulse shape due to dispersive effects resulting
from the dependence of group velocity on frequency. The
forthcoming Sec. IV addresses the issue of beam loading.
The mode matching method is based on a modal expan-

sion of the electromagnetic field and entails matching the
fields at transverse cross sections between transitions in
waveguide [15]. Both methods give similar results on the
shape of the pulse after propagating through the linacs.
Matching into the periodic structures is affected by mod-
ifying the end cells. The geometry of the interior (non-end)
cells, which compose the entire linac, are not modified in
this process, but the degree to which the design phase
advance per cell has been achieved is recorded in both
methods.
First, we describe the circuit model employed to model

an N-cell chain and this is given by a series of resonant
circuits inductively coupled as illustrated in Fig. 4. Three
typical cells are indicated together with the end cells. The
capacitance, inductance, and resistance vary along the
chain corresponding to modifying the cell geometry. The
mutual inductance, coupling for example cell n� 1 and

cell n, is given by �n�1=2ðLn�1=2LnÞ1=2. This model is

similar to that developed in [16]. The current in the nth
cell In corresponds to the accelerating field evaluated in the
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FIG. 3. (Color) Components of accelerating field in
H60VG4SL17A/B. Ea denotes the accelerating field without
beam loading, Et the total beam-loaded field, and Eb the differ-
ence between the total field and the accelerating field. Also
shown is Eapp, an approximation to the total field experienced

by the beam.
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FIG. 4. Circuit model of the fundamental mode of a traveling-
wave linear accelerator cavity.
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center of the accelerating cell. Excluding the resistors and
cell coupling, the resonant frequency of the nth inductor-

capacitor chain is given by !0
n=2� ¼ ð2LnCnÞ1=2. Adding

the resistance corresponding to wall losses, and adding
nearest neighbor coupling, will modify these cell frequen-

cies and give rise to coupled mode frequencies. In order to
obtain these mode frequencies, we form the Kirchhoff
current loops in the frequency domain for the coupled
chain and after some algebraic manipulation we obtain
the following matrix equation:

1� !2
1

!2 �1=2
2!0

1
K2

2!0
2K1

� � � � � �
� � � � � � � � � � � �

� � ��n�1=2
!0

nKn�1

2!0
n�1Kn

1� !2
n

!2 �nþ1=2
!0

nKnþ1

2!0
nþ1Kn

� � �
� � � � � � �n�1=2

2!0
nKN�1

2!0
N�1

KN
1� !2

N

!2

0
BBBBB@

1
CCCCCA

I1
I2

� � �
In

� � �
IN

0
BBBBBBBB@

1
CCCCCCCCA
¼

J1
!2

1

!2

� � �
� � �
� � �
� � �

0
BBBBBB@

1
CCCCCCA
; (10)

where for the nth cell !n ¼ !0
nð1� i !0

n

Qn!
Þ�1=2, Qn ¼

!nCnRn, and the characteristic loss factor [13] is given
by Kn ¼ !nRn

4Qn
. The matrix multiplying the current vector is

a square matrix of dimension N � N. Setting the current
drive J1 ¼ 0 and solving the resulting matrix equation
gives N eigenfrequencies !=2� of the accelerator and
this approach was followed in [16]. For example, for a
structure consisting of an infinite number of identical cells,
�n�1=2 ¼ �nþ1=2 ¼ � and the Floquet condition for the nth
cell of an infinitely periodic structure is In ¼ I0e

�in�. The
eigenfrequencies for this infinitely periodic structure are
readily determined as ! ¼ !�=2ð1þ � cos�Þ�1=2, where
� is the phase advance per cell. Thus, the circuit model is
parametrized by !�=2 the frequency at a phase advance of
�=2 and the bandwidth �Also, we note that in this case the
matrix in Eq. (10) is independent of the loss factor K, as is
expected when beam-loading issues are excluded from the
model. The loss factor is in fact used in the model to
account for adiabatic changes in cell geometry.

However, in general the cell parameters are not identical
but for most situations of interest to the NLC and CLIC
they vary in an adiabatic manner. The method proceeds by
evaluating a set of fiducial cells with the parameters of
these cells determined from the infinite periodic structure
conditions. Intermediate cells are then determined by
spline interpolation. In this manner multicell cavities are
rapidly and accurately characterized. The driven response
of the circuit to a current J1 applied to the first cell is then
obtained by solving the matrix given in Eq. (10).

For the NLC we focused on 55-cell cavities and we use
this number of cells in all simulations described in this
work. In order to track the progress of an rf accelerating
pulse through the multicell cavity, we take the convolution
of the time response of the circuit with a specified rf pulse
shape and this corresponds to the inverse Fourier transform
of the product of the frequency response of the circuit with
the Fourier transform of the applied rf signal. Prior to
performing this analysis of pulse propagation, we ensure
the input and output cells of the circuit are properly
matched such that an acceptable transmission occurs
within the band of the accelerating frequency and the field

within the cavity is flat to maximize the efficiency of
acceleration.
There are two main approaches we have adopted to

achieve this tuning of the cavity. The first method, which
we will refer to as the direct method, entails an evaluation
of the reflection coefficient S11 at the input drive port and
varies the input cell frequency and coupling factor such
that jS11j is minimized at the accelerating frequency and
several frequencies nearby. The second method is based on
the analysis of Kroll et al. [16] and requires three current
(representative of the electric field in [17]) points spaced
by P one cell period. In this work we focus our effort on the
latter method. The current within the circuit is constructed

from a forward traveling wave IðzÞe�ic ðzÞ and a reflected

wave IðzÞRei�ðzÞ and, hence, the total current at any loca-
tion z within the cavity is given by

Ic ¼ IðzÞ½e�ic ðzÞ þ Reic ðzÞ�: (11)

From the analysis of [16] we obtain

cos� ¼ Icðzþ PÞ þ Icðz� PÞ
2IcðzÞ ;

Re2ic ¼ 2 sin�� iIcðzþ PÞ þ iIcðz� PÞ
2 sin�þ iIcðzþ PÞ � iIcðz� PÞ ;

(12)

where c is a real valued phase, periodic, except for a cell to
cell phase advance �:

c ðz� PÞ ¼ c ðzÞ �� (13)

and R is a reflection coefficient. Both R and c vary along
the structure. We apply this method to several structures
and minimize the reflection coefficient within the structure
in each case. Once the Kroll method has been applied, we
verify its accuracy by applying the direct method.
This technique is applied to a 55 cell structure composed

of identical cells each with a phase per cell of 2�=3 and a
monopole mode group velocity of 0:03c. We refer to this
60 cm long structure as CZ120VG3. After iteratively tun-
ing the input and output cells by the Kroll method, the
resulting mean interior reflection coefficient is �95 dB
and mean phase advance per cell is 120.01�. Applying
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the direct method gives the reflection coefficient as viewed
from the input port and this is illustrated in Fig. 5. The
vertical dashed line indicates the location of the accelerat-

ing frequency. The horizontal dashed line indicates the
reflection at 0.05 and this corresponds to an approximately
1% bandwidth.
Using the circuit model, we then launch a pulse through

this accelerating structure for a pulse with parameters
similar to the CLIC pulse flattop length (the present design
has 312 bunches spaced from each other by 0.5 ns). This
pulse has a flattop of 156 ns and a finite rise time of 10 ns.
The progress of the pulse through the accelerating structure
is monitored by taking the convolution of the time response
of the circuit with the pulse shape. The results of this
simulation are displayed in Fig. 6. It is clear that even for
the structure with a 2�=3 phase advance per cell minimal
pulse distortion occurs. We confirmed these simulations
with the code SMART2D which includes higher order mono-
pole bands but we obtained extremely similar results.
Additional simulations made with shorter pulse widths
down to 100 ns also indicate minimal distortion in the
shape of the pulse.
We proceeded with other simulations of pulse propaga-

tion through a structure known as H60VG3 which consists
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FIG. 5. (Color) Absolute value of reflection coefficient after
tuning input and output cells for CZ120VG3 viewed from input
port.
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FIG. 6. (Color) Propagation of a rectangular pulse through a 55 cell structure CZ120VG3. The pulse is shown at various cells down the
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of 55 cells with a nonconstant impedance. The phase
advance per cell in this structure is 5�=6 and the average
group velocity of the fundamental mode is 0:03c. This
structure is designed to suppress the beam-excited higher
order modes (HOMs) by detuning the frequencies of these
modes [18] and this leads to a structure in which the irises
taper down along the accelerator. Although in practice
detuning the cell frequencies is not sufficient and in addi-
tion, manifold damping is incorporated in the HOM wake-
field suppression [18]. The potential for excitation of
nearby monopole modes is minimized by ensuring the
dimensional tolerances are strictly adhered to in machining
and, subsequently, diffusion bonding of the cells. Indeed,
the geometry of this structure was carefully designed and
fabricated to achieve dimensional tolerances accurate to a
few �m. It is impractical to model the propagation of the
rf pulse through the system by taking into account
each individual feature in the geometry using finite ele-
ment or finite difference electromagnetic codes [19–21]

as it does not readily lend itself to modifying the cell
geometries.
In order to achieve a rapid simulation of the essential

dispersion characteristics of the structure, we modeled it by
approximating the cells with abrupt transitions using
SMART2D. We varied the cell iris and cavity radius in order

to match the 0 and � phase advance points for every cell
subjected to infinite periodicity conditions. We then veri-
fied the accuracy of this technique with the well-
established code KN7C [22]. The Brillouin diagram for a
representative sample of cells from the structure is illus-
trated in Fig. 7(a) and the corresponding group velocity at
the designed phase advance in Fig. 8(b). As the structure is
designed to operate at a phase advance per cell of 150�
then the curves of all cells must pass through this point at
the operating accelerating frequency and this is indicated
by the dashed lines. We performed a similar matching
procedure as was done with CZ120VG3 using the Kroll
method and obtained a mean interior reflection coefficient
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of�66 dB. We also evaluated the resulting reflection from
the input port. This reflection coefficient is displayed in
Fig. 8(a) and this bears comparison to an experimental
measurement on the structure made after tuning the struc-
ture, illustrated alongside in Fig. 8(b). Ohmic losses, cor-
responding to dissipation in the walls of the cavity, are not
included in the simulation and this may account for the
reason that almost all the signal is reflected for frequencies
larger than 11.5 GHz, whereas in the experiment the re-
flection coefficient is below unity in this region. Indeed, the
overall envelope of the signal observed in the experiment is
a little smaller than that obtained in the simulation. The
progress of the propagation of a rectangular pulse with a
400 ns flattop and a 10 ns rise and fall time through the
cavity is illustrated Fig. 9. Here it is clear that the disper-
sion is large enough to give rise to appreciable distortion in
the shape of the pulse. The resulting ripple in the field is
expected to cause an energy spread in the energy gained by
the train of accelerated bunches in a linear collider and this
will be discussed in the next section. We also propagated a

pulse through the structure in the Next Linear Collider Test
Accelerator (NLCTA [23]) facility as part of tests on the
high-gradient operation of these cavities. A typical experi-
mental pulse shape, initially rectangular with a bandwidth
of 240 ns and with a rise and fall time of 10 ns, is illustrated
Fig. 10 together with the results of a circuit model simu-
lation in Fig. 10. The essential features of the ripple ob-
served in the pulse are quite well represented with the
circuit model employed. These results, indicating signifi-
cant pulse distortion in the high phase advance structures,
are confirmed by considering the dispersion parameter D
and are discussed in the Appendix.
In the next section we simulate a specific pulse shape

propagating through an accelerating structure with the
effect of beam loading also taken into account. The latter
effect occurs due to the bunches in the train removing
energy from the accelerating electric field and hence load-
ing down the overall field. This total gradient will corre-
spond to the energy gradient experienced by the
accelerated train of bunches.
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FIG. 9. (Color) Propagation of a rectangular pulse through a 60 cm structure H60VG3. The pulse is shown at various cells down the
structure.
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IV. ENERGY DISPERSION AND BEAM LOADING

In order to simulate the total energy gained by a train of
charged particles, we used the code SMART2D to model
both the characteristic impedance [13] of the accelerating
structure and the transmission function of the structure.
The latter was also simulated in the previous section with
the circuit model and the result of these independent
methods compare well. Here we again study the structure
H60VG3 and we will analyze the effect of accelerating a
train of 192 bunches spaced from their neighbors by 1.4 ns.
This structure and associated beam parameters correspond
to that contemplated for use in the NLC [4]. We model
H60VG3 with the code SMART2D. This code is able to
calculate both the transmission and impedance properties
of sharp transitions in the waveguide. For example, a single
accelerating cell is modeled as a transition from wide to
narrow to wide waveguide (WNW); the narrow region
corresponds to the iris. The 0 and � phase advance fre-
quencies are matched to that of seven representative cells
obtained from OMEGA2D simulations by varying the radius
of the WN transitions. Intermediate cells are then obtained
by spline interpolation. In this manner the complete accel-
erating structure is built up from WNW transitions and is
illustrated in Fig. 11. The accelerating structure was then
matched at each end to ensure optimal transmission in the
vicinity of the accelerating frequency and to properly
model the scattering matrix properties of the overall struc-
ture as fabricated. The matching was achieved by calculat-
ing S11 the reflection coefficient of the overall structure at
five frequency points in the vicinity of the accelerating
frequency. S11 was minimized by varying the iris and
cavity radius of the end cells until an adequate match
was obtained. A similar procedure was followed [24] to
study the dipole characteristics of the structure in order to

understand the momentum kick the beam experiences due
to higher band transverse wakefields.
The impedance Z and the transmission functionG of the

structure were then calculated with SMART2D and is illus-
trated in Fig. 12. Provided the structure has been designed
correctly, both functions should be at a peak value at the
accelerating frequency and this is indeed the case. The
integral of the impedance Z over all frequencies enables
the loss factor to be obtained and this evaluates to
1:764 V=pC. This compares well with 1:762 V=pC which
is the average value of all those used in the previous section
and was obtained from OMEGA2D [20] simulations. The
inverse Fourier transform of the impedance enables the
single-bunch wake function to be obtained, and summing
this over the complete multibunch train gives the loaded
gradient experienced by the accelerated beam.
We propagate a pulse through the H60VG3 structure

which has an initial rise and fall time of 10 ns and is
provided with a linear ramp (to compensate for the droop
encountered in beam loading) of 100 ns in a gradient
difference of 30 MV=m. Various components of this pulse
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FIG. 11. (Color) Geometrical configuration of a series of WNW
transitions used to model H60VG3.
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are indicated in Fig. 13. The total pulse incorporates both
the propagation of the pulse through the structure including
dispersive effects and the influence of beam loading. The
average accelerating field gradient along the pulse is
�50:4 MV=m and the average electric field contributed
from beam loading is�� 10:8 MV=m. Dispersive effects
modify the degree of flatness of the total pulse shape. In
order to investigate this, the region indicated by the vertical
dashed lines, corresponding to the location of the bunch
train, is amplified and displayed in Fig. 14 by the solid
curve 0. The energy deviation over the bunch train is
displayed and it reaches a peak value of approximately
0.75%, with an rms value deviation along the train of
0.22%. In order to compensate for this energy deviation
along the train, we add a component of the derivative of the
energy deviation along the train to the original input rf
pulse shape and minimize the resulting energy deviation
along the train by making an optimal choice for the loca-
tion of this added component to the input pulse. We wrote
code which performs this optimization. The result of this

optimization is illustrated in Fig. 14 by the dashed curve 1
and for this case the maximal deviation in the energy is
reduced to 0.13% with a rms deviation along the train of
0.08%. We continue with this process to take the new
optimized pulse shape and add further components of the
energy deviation in order to minimize the overall energy
deviation along the train. Indeed, only one additional it-
eration is necessary in order to reduce the maximum
energy deviation along the train to no more than 0.05%.
The corresponding input pulse shape required for this
energy compensation scheme is illustrated in Fig. 15 to-
gether with the resulting output pulse shape.
Finally, it is worth noting that the energy compensation

scheme suggested here is not unique and other methods can
be expected to give similar results on reducing the overall
energy spread. For example, it may be possible to make a
small perturbation to the input pulse shape over the ramp of
the initial pulse shape to achieve similar compensation.

V. CONCLUSIONS

The circuit model developed herein provides a good
description of pulse propagation in multicell accelerating
structures suitable for linear collider applications. Pulse
propagation through the rather standard SLAC-style accel-
erating structures which have a 2�=3 phase advance per
cell shows minimal dispersion for a monopole mode group
velocity as low as 0:03c. However, the higher phase ad-
vance structures such as H60VG3, operating with a 5�=6
phase advance per cell, reveal a significant distortion in the
pulse shape due to dispersion.
Further evidence on expected pulse distortion is pro-

vided by the dispersion parameter D, a measure of the
severity of dispersion. This parameter is defined as the
derivative of the reciprocal of group velocity with respect
to wavelength [25–27]. This parameter provides a measure
of the anticipated broadening or compression in the shape
of a pulse propagating through the structure. As shown in
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the Appendix, close to � phase advance per cell D is
maximized and the distortion in the pulse shape is exacer-
bated. These conclusions on the expected pulse distortion,
based on D, have been confirmed by our simulations on
pulse propagation through high phase advance structures.

The total pulse, including beam loading, has been simu-
lated and a finite energy spread occurs due to dispersion for
H60VG3, the structure originally designed for the NLC.
Means to compensate for this energy dispersion have been
suggested, such as shaping the input pulse by suitably
modifying the phase of the klystron rf sources. Finally
we note that these structures, although originally destined
for use in the NLC linacs, are receiving renewed interest as
their ability to sustain high gradients makes them suitable,
with some modification, for operation of multi-TeV linacs
in the CLIC lepton collider design.
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APPENDIX: DISPERSION PARAMETER

The time delay through an accelerating section is pro-
portional to the reciprocal of the group velocity. In order to
study the dependence on wavelength it is natural to define
D, a dispersive parameter, in terms of the derivative of the
reciprocal of the group velocity with respect to wavelength
[25–27]:

D ¼ d

d�
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vg

�
¼ 1

v2
g

!2

2�c

dvg

d!
¼ !2

2�cP

d2!

d�2

�
d�

d!

�
3
:

(A1)

This parameter, in units of DP, is displayed in Fig. 16 for

the structure H60VG3 (for the corresponding cells in
Fig. 6) and for CZ120VG3 (indicated by the black dashed
curve). At the phase advance 120 degrees, CZ120VG3
indicates a weak dispersive parameter of ��1:4 ns=mm.
However, in H60VG3 at the design phase advance of
150 degrees, the group velocity varies from 0:01c to
0:03c and in this case the dispersive parameter is relatively
large, ranging from ��5:4 to �44:6 ns=mm. This indi-
cates that the dispersive effects are�30 times larger in the
high phase advance structure, H60VG3 compared to the
conventional structure, CZ120VG3. These results confirm
the strong dependence on group velocity seen in the simu-
lations of pulse propagation through these structures.
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