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In a laser-pumped x-ray free-electron laser (FEL) an intense laser field replaces the magnetic wiggler

field of a conventional FEL. Depending on the intensity and quality of both the electron beam and pump

laser, the Thomson backscattered radiation can be coherently amplified. In a conventional FEL the

generation of x rays requires electron beam energies in the multi-GeV range. In a laser-pumped x-ray

FEL, electron beam energies in the multi-MeV range would be sufficient. To generate coherent x rays with

this mechanism a number of physics and technology issues must be addressed. Foremost among these are

the stringent requirements placed on the electron beam quality and brightness as well as on the pump laser.

The seed radiation for the laser-pumped FEL is the laser-induced spontaneous radiation. The evolution of

incoherent radiation into coherent radiation as well as the power gain lengths associated with the coherent

x rays are analyzed and discussed. There is excellent agreement between our analytical results and

GENESIS simulations for the radiated power, gain length, conversion efficiency, linewidth, and saturation

length. These issues, as well as others, necessary to achieve coherent amplified x rays in a laser-pumped

FEL are discussed. While a coherent x-ray source would have a number of attractive features, the

requirements placed on both the electron beam and pump laser are extremely challenging.
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I. INTRODUCTION

The free-electron laser (FEL) can, in principle, generate
coherent, polarized, short pulses of x rays for numerous
applications in research. There are a number of large-scale
electron accelerator facilities throughout the world that
will be used for x-ray generation using a conventional
FEL configuration [1–4]. In a conventional FEL the elec-
tron beam propagates through a static, periodic magnetic
field (wiggler) which results in stimulated emission [5–20].
Generation of x rays at these facilities typically requires
electron beam energies in the multi-GeV range with peak
currents in the multi-kA range, and wiggler lengths of
many tens of meters. An x-ray FEL amplifier can be
operated in the self-amplified regime, eliminating the
need for a coherent input x-ray source [21–26]. In this
case the FEL seed radiation is provided by spontaneous
incoherent emission in the wiggler.

The wiggler field in the FEL can be replaced with an
electromagnetic wave such as an intense laser field.
Early analysis of stimulated emission from relativistic
electrons interacting with an electromagnetic pump was
presented and discussed in [27]. This analysis was limited
to the low-gain, thermal beam regime. In this regime the
power gain lengths are extremely long, making the
concept impractical. The high-gain regime of the electro-
magnetically pumped FEL was first analyzed and dis-
cussed in [28]. In this regime the power gain lengths can
be very short. However, the requirements on the electron
beam quality and the pump laser power are demanding,

particularly for x-ray generation. Since these early
studies there have been a number of papers that have
considered employing electromagnetic pumps in FELs
[29–33].
In this paper we analyze and discuss a laser-pumped

FEL amplifier operating in the x-ray regime. The analysis
considers (i) electron beam thermal effects, (ii) off-axis
propagation, (iii) transverse pump nonuniformity, and
(iv) the transition from incoherent (spontaneous) to coher-
ent x rays. The power gain length and the conversion
efficiency are determined as functions of the electron
beam energy spread. The radiation power as a function of
interaction distance is obtained in both the incoherent and
coherent regimes. The coherent power is emitted into a
solid angle which is typically much greater than the solid
angle associated with diffraction. For electron beams of
sufficiently high quality, with energies of �6 MeV and

peak currents of 500 A, we find that coherent x rays at 20 �A
can be generated with power gain lengths of �300 �m,
saturation lengths of�0:4 cm, and conversion efficiencies
of�0:01%. To achieve these values the fractional electron
beam energy spread must be� 0:01%. The pump laser for
this example has a wavelength of 1 �m and a pulse dura-
tion of 23 psec. To compare our results with simulations we
use the GENESIS FEL code [34] and find good agreement
with our analytical results. We also use our theoretical
model to evaluate GENESIS simulations for the Linac
Coherent Light Source (LCLS) wiggler-based FEL oper-

ating at 15 �A.
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II. HIGH-GAIN REGIME

The laser-pumped FEL is shown schematically in Fig. 1.
The pump laser is taken to be circularly polarized, with
normalized vector potential

aoðr; tÞ ¼ ao½cosðkozþ!otÞêx þ sinðkozþ!otÞêy�
¼ ðao=

ffiffiffi
2

p Þ exp½�iðkozþ!otÞ�ê? þ c:c:; (1)

where ê? ¼ ðêx þ iêyÞ=
ffiffiffi
2

p
is a unit transverse vector,

�o ¼ 2�c=!o is the pump wavelength, ko ¼ !o=c is the
wave number, and ao ¼ qAo=mc2 is the normalized am-
plitude. The pump laser power is Po ¼ ðm2c5=q2Þ�
ð��o=�

2
oÞa2o, where m2c5=q2 ¼ 8:75 GW, �o ¼ �r2o=2

is the cross-sectional area for a Gaussian transverse profile,
and ro is the laser spot size. In the following it is assumed
that the pump amplitude Ao is a constant.

The x-ray radiation is given by the normalized vector
potential

a ðr; tÞ ¼ ½aðr; tÞ= ffiffiffi
2

p � exp½iðkzz�!tÞ�ê? þ c:c:; (2)

where � ¼ 2�c=! is the x-ray wavelength and kz is the
complex axial wave number.

A. Thermal beam dispersion relation

Thermal effects associated with the electron beam play a
critical role in the FEL interaction. The FEL dispersion
relation including thermal effects is [13,15,16]

k2z þ k2?�!2

c2
¼�8f

�

r2b

a2o
�3
o

!

c

!o

c

�
Z 1

1

d�Foð�Þ
½kz þ ko �ð!�!oÞ=vz þ�k2?�2

;

(3)

where k? is the transverse wave number, f is the filling
factor, i.e., ratio of electron beam to radiation beam areas,
� ¼ !2

br
2
b=4c

2 ¼ Nbre=‘b ¼ Ib½A�=17 000 is Budker’s

parameter, !b ¼ ð4�q2nb=mÞ1=2 is the electron beam
plasma frequency, Ib is the beam current, re ¼ q2=mc2 is
the classical electron radius, ‘b is the electron bunch
length, Nb is the number of electrons in a bunch, rb is
the electron beam radius, and Foð�Þ is the electron distri-

bution function. The filling factor is a function of the
interaction distance. In Eq. (3) � ¼ �2

zoa
2
o=ð2�2

o!=cÞ is a
correction term that arises from the transverse electron
motion in the field of the pump laser. The resonant fre-
quency is a function of k?, and for a2o � 1 is given by

!Rðk?Þ ¼ !R0½1� ð�2
zo=!

2
R0Þc2k2?�; (4)

where the resonant frequency for on-axis (k? ¼ 0) propa-
gation is!R0 ¼ 4�2

zo!o ¼ 4�2
o!o=ð1þ a2oÞ. The coherent

radiation is emitted along the z axis inside a narrow cone
with opening angle �k ¼ k?=kz. The range of allowed
k?’s, i.e., emission solid angle, is important in determining
the incoherent and coherent x-ray power and is discussed
in Sec. II E. A fully 3D dispersion relation, taking into
account the finite electron beam radius, indicates that there
is a limit on the range of transverse wave numbers [35]. In
addition, the finite electron beam radius places a limit on
k? such that for the radiation to undergo at least one power
e-fold, k? � ðrb=LgoÞkz.

1. Cold beam

For a cold beam the electron distribution function is
Foð�Þ ¼ �ð�� �oÞ and the dispersion relation is given
by DFELðk; !Þ ¼ 0, where

DFELðk; !Þ ¼
�
kz �!

c

�
1� c2k2?

2!2
R0

��

�
�
kz �!

c

�
1þ ð!�!R0Þ

2�2
zo!R0

��ck2?
!R0

��
2

þ ð�go=
ffiffiffi
3

p Þ3: (5)

For a cold beam, with k? ¼ 0 and ! ¼ !R0, we find

kz ¼ !=cþ�k, where�k ¼ ð1= ffiffiffi
3

p � iÞ�go=2. However,

FIG. 2. (Color) X-ray (� ¼ 20 �A) power gain length Lgo versus
beam current for a cold electron beam with electron beam radius
rb ¼ 70 �m (red) and rb ¼ 100 �m (blue). The curves are
from Eq. (6) with Lgo ¼ 1=�go and the solid circles are from

GENESIS simulations. The other parameters are ao ¼ 0:5, �o ¼
1 �m, and Eb ¼ 5:88 MeV.
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FIG. 1. (Color) Schematic of laser-pumped free-electron laser.
The pump laser and electron beam propagate in opposite direc-
tions along the z axis.
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to lowest order in the transverse wave number k? and
frequency detuning !�!R0 parameters, the wave-

number shift is �k ¼ ½�go=ð2
ffiffiffi
3

p Þ�f1� 2ð"1 � 2"2Þ=3�
i

ffiffiffi
3

p ½1� ð"1 þ "2Þ2=9�g, where "1 ¼ ð!R0=cÞð
ffiffiffi
3

p
=�goÞ�

ðck?=
ffiffiffi
2

p
!R0Þ2 and "2 ¼ ð!R0=cÞð

ffiffiffi
3

p
=�goÞ�

ð!�!R0Þ=ð2�2
zo!R0Þ. The power growth rate as a func-

tion of ! and k? is

�gð!; k?Þ ¼ �gof1� ½!�!Rðk?Þ�2=�!2g; (6)

where the peak growth rate is �go ¼ ð5:07=�oÞ�
½f�a2o=ðr2b�oÞ�1=3, the power gain length is Lgo ¼ 1=�go,

and the linewidth associated with the power growth rate is
�!=!R0 ¼ ð�o=LgoÞ=2�. As an example, the power gain

length for x rays at � ¼ 20 �A is shown in Fig. 2 for a cold
electron beam as a function of beam current. The parame-
ters for this plot are listed in Table I.

2. Thermal beam

For a thermal electron beam with distribution function
Foð�Þ ¼ ð ffiffiffiffi

�
p

��Þ�1 exp½�ð�� �oÞ2=��2�, the dispersion
relation for k? ¼ 0 is

�k ¼ �o

4�

�
�goffiffiffi
3

p
�
3 �o

��

�
Z 1

�1
dx��1=2x expð�x2Þ

�k� 2koð!�!R0Þ=!R0 þ 4koð��=�oÞx ;
(7)

where ��=�o is the fractional energy spread. The disper-
sion relation can be written in the form

	 ¼ �
o½1þ f	þ 	ogZð	þ 	oÞ�; (8)

where 	 ¼ �ð�o=��Þ�k=4ko, 	o ¼ ð�o=��Þ�
ð!�!R0Þ=2!R0, �k ¼ �kr � i�g=2, 
o ¼ 2:4�
10�5ð�o�goÞ3ð�o=��Þ3, Zð	Þ � ��1=2

R1
�1 dx expð�x2Þ=

ðx� 	Þ is the plasma dispersion function, and gain occurs
when the imaginary part of 	 is positive. In the cold beam
limit j	þ 	oj � 1 the dispersion relation reduces to the
usual cubic equation with power growth rate given by
Eq. (6) for k? ¼ 0 and 	o ¼ 0.
The thermal dispersion relation can be analyzed in vari-

ous limits. In the thermal beam limit j	þ 	oj< 1 the
dispersion relation reduces to [15]

	 ¼ �
of1þ i
ffiffiffiffi
�

p ð	þ 	oÞ exp½�ð	þ 	oÞ2�g; (9)

where Zðj	j< 1Þ ¼ i
ffiffiffiffi
�

p
expð�	2Þ. For 1> j	oj � j	j

the imaginary part of 	 is 	i ¼ ��1=2
o	o expð�	2
oÞ,

where 
o � 1. The maximum growth rate occurs at 	o ¼
�1=

ffiffiffi
2

p
and is given by [15,27]

�g=�go ¼ 9:1� 10�4ð�o�goÞ2ð�o=��Þ2: (10)

Note that the thermal growth rate is inversely proportional
to the square of the energy spread. The power growth rate
at resonance (	o ¼ 0) in the thermal beam limit is

�g=�go ¼
5:2� 10�8ð�o�goÞ5ð�o=��Þ5

1þ 1:8� 10�9ð�o�goÞ6ð�o=��Þ6
: (11)

In the extreme thermal limit j	j � 1, the power growth
rate at resonance is given by

�g=�go ¼ 5:2� 10�8ð�o�goÞ5ð�o=��Þ5: (12)

Figure 3 plots the normalized growth rate for x rays at

� ¼ 20 �A as a function of relative electron beam energy
spread and detuning for the parameters listed in Table I.
Figure 3 shows that, as the energy spread of the beam is
increased up to ��=�o � 5� 10�4, the FEL interaction
can be detuned to increase the growth rate relative to the
resonant growth rate. For a given energy spread, the opti-
mal detuning, i.e., maximum growth rate, occurs when the
difference between the beam velocity and the phase veloc-
ity of the wave is equal to the thermal velocity spread of the
beam. For ��=�o > 5� 10�4, the growth rate is vanish-
ingly small regardless of detuning.

B. X- ray conversion efficiency

The saturated coherent power is Pcoh;sat ¼
�Nb�omc2=�b, where � ¼ Pcoh;sat=Pb is the conversion

efficiency and Pb ¼ Nb�omc2=�b ¼ ��omc3=re is the
electron beam power. The conversion efficiency in the
cold beam limit can be obtained by considering the differ-
ence between the electron beam energy before and
after trapping in the ponderomotive potential [17]. The
efficiency at saturation is � ¼ ð2=�oÞð@�o=@
zoÞð
zo �

phÞ, where 
ph is the normalized axial phase velocity of

TABLE I. Parameters for a laser-pumped FEL.

Electron beam parameters

Energy Eb ¼ 5:88 MeV (�o ¼ 12:5)
Current Ib ¼ 500 A
Radius rb ¼ 70 �m
Energy spread limit ��=�o � � ¼ 0:01%

Pump laser parameters

Wavelength �o ¼ 1 �m
Strength ao ¼ 0:5
Spot size ro ¼ 400 �m
Rayleigh length ZR0 ¼ 0:5 m
Pulse duration �L ¼ 2Lsat=c ¼ 23 psec

X-ray parameters

Wavelength � ¼ 20 �A
Spot size (at saturation) rs ¼ 70 �m
Rayleigh length (at saturation) ZR ¼ 7:7 m
Power gain length Lgo ¼ 280 �m
Conversion efficiency � ¼ 0:01%
Saturation length Lsat ¼ 0:35 cm
Saturated power Psat ¼ 300 kW
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the ponderomotive wave. From the dispersion relation the
phase velocity is found to be vph=c ¼ ð!�!oÞ=cðkz þ
koÞ ¼ 
zo � Reð�kÞ=kz þ k2?=ð2k2zÞ. The conversion effi-

ciency at saturation, for k? ¼ 0, is [17]

� ¼ 0:023ð�o=LgoÞ: (13)

The expression in Eq. (13) assumes that all the electrons
contributing to the growth of the radiation become trapped
in the ponderomotive buckets at saturation; i.e., the trap-
ping fraction is 100%. The x-ray conversion efficiency
plotted as a function of beam current is shown in Fig. 4
for a cold electron beam along with results from GENESIS

simulations. The parameters for this plot are listed in
Table I. There is good agreement between theory and
simulations.

C. Validity of classical description

The classical description is valid if the electron momen-
tum recoil is somewhat less than the electron thermal
momentum spread. In the beam frame (indicated by a
prime on the variables) this condition is @k0 � m�v0 and
in the laboratory frame it can be written as [36–38]

2�offiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2o

p �
��

�o

��
�

�c

�
> 1; (14)

where �c ¼ 2�@=mc ¼ 0:024 �A is the Compton wave-
length, ��=�o ¼ �2

oð1þ a2oÞ�1�vz=c is the fractional en-
ergy spread, and �vz is the axial velocity spread. A more
detailed analysis performed in [36,37] shows that the in-
equality in Eq. (14) is more accurately given by
��oð�=�cÞ> 0:4. In the example presented in this paper
��oð�=�cÞ 	 1 and quantum effects reduce the classical
growth rate by �10%, see Fig. 1 in Ref. [37].

D. Electron beam quality requirements

The beam quality requirements for a laser-pumped x-ray
FEL are extremely challenging [31]. For high gain and
efficiency the electrons must remain in phase with the
ponderomotive (trapping) wave. As a result the interaction
is sensitive to an axial electron velocity spread. A spread in
axial electron velocity �vz can result in phase mixing
which would reduce the gain and efficiency. The electron
beam can be considered cold, i.e., monoenergetic, provided
�vzLgo=c � �, which can be written in terms of the

fractional energy spread ��=� � �o=4Lgo 	 10�. The

energy spread on the beam consists of several contribu-
tions. These contributions include: (i) intrinsic energy
spread, (ii) transverse and longitudinal emittance,
(iii) space charge, (iv) pump laser linewidth, and
(v) pump laser field gradients. The overall energy spread is

FIG. 4. (Color) X-ray conversion efficiency versus beam current
for a cold electron beam, with electron beam radius rb ¼ 70 �m
(red) and rb ¼ 100 �m (blue). The curves are from Eq. (13) and
the solid circles are from GENESIS simulations. The parameters
are the same as in Fig. 2.

FIG. 3. (Color) (a) Surface plot of normalized x-ray growth rate
�g=�go from Eq. (8) versus fractional electron beam energy

spread ��=�o and fractional detuning ð!�!R0Þ=!R0 for the
parameters of the laser-pumped FEL of Table I. (b) Line plots of
�g=�go versus ��=�o for various values of detuning for the

same data as shown in Fig. 3(a).
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��

�o

¼
�
��

�o

�
intrinsic

þ
�
��

�o

�
?;emit

þ
�
��

�o

�
z;emit

þ
�
��

�o

�
space
charge

þ
�
��

�o

�
pump

linewidth

þ
�
��

�o

�
pump
grad

; (15)

where ð��=�oÞ?;emit ¼ "2n=2r
2
b � 2� 10�4, ("n ¼

1 mmmrad, rb ¼ 50 �m), ð��=�oÞz;emit ¼
"
n;z=ð�bEbÞ � 2:5� 10�4 ("
n;z ¼ 25 keV-psec, �b ¼
10 psec, and Eb ¼ 10 MeV), ð��=�oÞ space

charge
¼ �=�o,

ð��=�oÞ pump
linewidth

¼ ��=2�o < 10�4. Here, "n is the normal-

ized transverse emittance and "
n;z is the normalized axial

emittance [39]. The energy spread contribution due to
space charge leads to an energy shear which can, in prin-
ciple, be eliminated or substantially reduced by creating
the electron beam with an appropriate radial energy shear.

The electron beam brightness Bn ¼ 2Ib=ð�2"2nÞ is a
measure of beam quality [39]. At the cathode the normal-
ized brightness can be expressed as Bn ¼
Jcmc2=ð2�kBTcÞ, where Jc is the current density at the
cathode and Tc is the cathode temperature. For a photo-
cathode with kBTc ¼ 0:1 eV and Jc ¼ 100 A=cm2, the
brightness is Bn � 108 A=ðcm-radÞ2. The brightness
needed in a laser-pumped x-ray FEL is about an order of
magnitude higher, i.e., � 109 A=ðcm-radÞ2. An axial mag-
netic field may be necessary to guide the electron beam
through the interaction region. The magnetic field required
for a matched, i.e., constant radius, electron beam is

B ½kG� ¼ ð4:7=rb ½cm�Þð�=�oÞ1=2 � 30 kG. For the pa-
rameters considered here the electron beam undergoes
less than a complete gyrorotation in the interaction region
and therefore the effect of the magnetic field on the gain
process is expected to be negligible.

E. Radiation solid angle

The transition from spontaneous to coherent radiation is
critically dependent on the angular distribution of the
waves. Waves with finite k? have a propagation angle �k ¼
k?=kz with respect to the z axis. The peak growth rate is
independent of k? for waves propagating in the near-
forward direction as indicated in Eq. (6). However, as k?
increases the resonant frequency! ¼ !Rðk?Þ decreases as
indicated schematically in Fig. 5. The minimum propaga-
tion angle is �k;min ¼ �D ¼ �=�rs where �D is the diffrac-

tion angle, rs is the radial dimension of the radiation beam,
and k?;min ¼ 2=rs. In general, however, k? can be signifi-

cantly greater than k?;min. From the power gain expression

in Eq. (6), the maximum transverse wave number, for gain
at resonance (! ¼ !R0), is given by

k?;max ¼ �k;maxkz 	 3ffiffiffiffi
�

p
�
�

Lgo

�
1=2

kz: (16)

The ratio of the maximum to minimum transverse wave

numbers is k?;max=k?;min 	 3ðZR=LgoÞ1=2, where ZR ¼

�r2s=� is the Rayleigh range associated with the x rays.
For a laser-pumped FEL, ZR � Lgo, while for an optically

guided FEL amplifier, ZR 	 Lgo. Other processes, such as

the electron transverse wiggle and betatron oscillations,
can also limit the range of transverse wave numbers.
The solid angle associated with the radiation beam is

��k ¼ ��2k;max, where �k;max ¼ k?;max=kz. The spontane-

ous (incoherent) radiation [40–42] is directed into a for-
ward cone with angle �incoh 	 1=�zo which is typically
much greater than �k;max. In the start-up regime the propa-

gation angle �k;max determines the portion of the sponta-

neous power that is within the gain spectrum and amplified
as shown schematically in Fig. 5.

F. Effects of a finite spot-size laser pump

The finite spot size of the pump laser affects the FEL
interaction in a number of ways. Transverse gradients in
the pump laser result in a resonant frequency spread across
the beam and diffraction leads to both amplitude and phase
changes.
Transverse pump laser effects can be significantly re-

duced by the addition of higher-order Laguerre-Gaussian
modes. For a laser pump undergoing diffractive spreading
and which includes the fundamental with amplitude a0 and
the next high-order mode with amplitude a1, the transverse
pump field is given by

ao?ðr; tÞ ¼ ðao=
ffiffiffi
2

p Þf1þ ½1� 2ðr2=r2oÞ�
 exp½2i�gðzÞ�g
� Fðr; z; tÞ exp½�iðkozþ!otÞ�ê? þ c:c:;

where Fðr; z; tÞ ¼ Gðzþ vgtÞ½ro=rLðzÞ� exp½�ikor
2=

2RcðzÞ� exp½i�gðzÞ� exp½�r2=r2LðzÞ�, 
 ¼ a1=a0 is the ratio

of the higher-order mode amplitude to the fundamental,

rLðzÞ ¼ roð1þ z2=Z2
R0Þ1=2 is the spot size, ZR0 ¼ �r2o=�o

is the Rayleigh range associated with the pump laser,

⊥θ

ω

Incoherent Radiation 
Spectrum

zk kk /⊥=

incoherent photons in the overlap
region undergo growth 
leading to coherent radiation  

FEL growth rate 
spectrum, exp[ Γg ω, θk) z]

max,kθ

FIG. 5. (Color) Schematic diagram of the incoherent (sponta-
neous) and coherent (growth rate) spectrum in the ð!; k?=kzÞ
plane showing the region of overlap. The red area corresponds to
the region of incoherent emission of radiation from the electron
beam interacting with the pump laser. The green area indicates
the growth rate spectral region in which the radiation grows
exponentially.
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RcðzÞ ¼ zþ Z2
R0=z is wave front radius of curvature, and

�g ¼ tan�1ðz=ZR0Þ is the Gouy phase. In addition, there is

a small axial pump laser field component of order �o=ro
times the transverse component. The function Gðzþ vgtÞ
defines the envelope of the pump laser and vg is the group

velocity. The group velocity is a function of the mode
number m and is given by vg 	 c½1� ð1þ 2mÞ=
ðkoZR0Þ� near the axis, for jzj � ZR0. The envelope of
the fundamental mode and the higher-order modes separate
by much less than a wavelength �o if the interaction length
is short compared to the Rayleigh length, jzj � ð�=mÞZR0

where m ¼ 1; 2; 3; . . . . Hence, we can use the group ve-
locity of the fundamental mode to describe the envelope
dynamics.

Taking the interaction length to be small compared to the
Rayleigh length, jzj � ZR0, and ao and a1 to be real
we find that to order r2, ao? � ao? ¼ a2oð1þ 
Þ½1þ 
�
2ð1þ 3
Þr2=r2o� and the radial variation can be eliminated
to order r2 by setting 
 ¼ �1=3. Hence, transverse gra-
dients in the pump laser can be reduced by appropriately
including additional modes. Figure 6(a) plots the trans-
verse intensity profile for a two-mode pump laser with
mode amplitude ratio 
 ¼ �1=3 and for a fundamental
Gaussian mode with identical power (dashed curve). The
addition of a higher-order mode flattens the intensity pro-
file near the axis and reduces the resulting resonant fre-
quency spread.

We numerically solve the fully relativistic, 3D equations
of motion to obtain particle trajectories in the pump field,
including the axial component, and calculate the resulting
resonant frequency spread. Figure 6(b) plots the fractional
resonant frequency spread versus propagation distance for
an electron beam with �o ¼ 12:5, rb ¼ 70 �m, and beam
emittance "n ¼ 1 mmmrad. The fractional resonant fre-
quency spread is calculated as hð!R �!R0Þ=!R0i ¼
h½a20ð0Þ � a20ðrÞ�=½1þ a20ðrÞ�i, where r is the radial posi-

tion of a particle and h i denotes an average over particles.
The longitudinal profile is taken to have the form Gð	Þ ¼
ð1=2Þftanh½103koð	� zoÞ� þ 1g. The factor 103 in this ex-
pression is arbitrarily chosen to represent the sharp rise at
the front of the pump laser pulse. For a fundamental
Gaussian pump, the resonant frequency spread is �1%,
which is much greater than the x-ray FEL efficiency.
However, the addition of a single higher-order mode re-
duces the frequency spread by more than 2 orders of
magnitude to �8� 10�3%. For the parameters of
Table I, the Rayleigh range (� 50 cm) is much greater
than the interaction length (� 0:35 cm). The on-axis vec-

tor potential of the pump laser, given by a0ðzÞ ¼
a0ð0Þ=ð1þ z2=Z2

R0Þ1=2, decreases by�10�5 due to diffrac-

tion, and the electron beam radius, given by rbðzÞ ¼
rbð0Þf1þ "2nz

2=½�2
0r

4
bð0Þ�g1=2, increases by <1% due to

emittance over the interaction length. Both of these factors
do not appreciably affect the resonant frequency spread as
shown by Fig. 6(b). In principle, the resonant frequency

spread can be further reduced by the inclusion of additional
higher-order modes. In the analysis and simulations that
follow, we assume that the transverse gradients in the pump
field can be neglected.

III. TRANSITION FROM INCOHERENT TO
COHERENT RADIATION

The discrete nature of the electron beam interacting with
the pump laser field leads to the generation of spontaneous
(incoherent) radiation that can be subsequently amplified
[21–26]. During amplification, however, there is an in-
crease in the coherence of the radiation.
The wave equation governing the x-ray generation

is ðr2 � c�2@2=@t2ÞEðr; tÞ ¼ 4�c�2gðzÞ@Jðr; tÞ=@tþ
4�gðzÞr
ðr; tÞ, where the field and current density are

FIG. 6. Transverse gradients in the pump laser can be signifi-
cantly reduced by the addition of higher-order Laguerre-
Gaussian modes. (a) Intensity versus transverse position for a
pump lasers with 
 ¼ 0 (fundamental Gaussian) and 
 ¼ �1=3
(two modes) with equal power, where 
 ¼ a1=a0 is the ratio of
mode amplitudes. The fundamental mode is characterized by
a0 ¼ 0:5, r0 ¼ 400 �m, �0 ¼ 1 �m, and ZR ¼ 50 cm.
(b) Resonant frequency spread versus propagation distance for
an electron beam with �0 ¼ 12:5, rb ¼ 70 �m, and beam
emittance "n ¼ 1 mmmrad interaction with a pump laser with

 ¼ 0 and 
 ¼ �1=3. The inclusion of a higher-order mode
reduces the resonant fractional frequency spread by more than 2
orders of magnitude, to �8� 10�3%.
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Eðr; tÞ; Jðr; tÞ ¼ ½Eðr; tÞ; Jðr; tÞ�ê? þ c:c:, 
ðr; tÞ is the
charge density, and gðzÞ ¼ 1 for 0 � z � �z defines the
interaction region and is zero otherwise. The driving cur-

rent density consists of a coherent and an incoherent (dis-
crete) component

J ðx; y; z; tÞ ¼ q
XNb

i¼1

~viðtÞ�½x� ~xiðtÞ��½y� ~yiðtÞ��½z� ~ziðtÞ� ¼ Jcohðr; tÞ þ q
XN
i¼1

~vðoÞi ðro; vo; tÞ�½r� ~rðoÞi ðtÞ�; (17)

where ~rðoÞðtÞ, ~vðoÞi ðtÞ are the unperturbed electron trajectories given by ~vðoÞ ¼ ð�cao=�o; vzoÞ, Jcohðr; tÞ is the coherent
current density which is responsible for the FEL interaction, and the summation term in Eq. (17) is responsible for
spontaneous emission. Substituting the current density, Eq. (17), into the wave equation and Fourier transforming the
spatial and temporal variables we obtain

Dðk; !ÞÊðkx; ky; kz; !Þ ¼ 1

8�2

�
4�q

c

�
aoffiffiffi
2

p i

�o

�z exp½iKðkz;!Þ �z=2�
�
sin½Kðkz; !Þ�z=2�
Kðkz;!Þ �z=2

�XNb

i¼1

expði�o;iÞ; (18)

where Kðkz; !Þ ¼ ð!�!oÞ=vzo � ðkz þ koÞ, �o;i ¼ �kxxo;i � kyyo;i þ ð!�!oÞto;i, and the charge density has been
neglected [23]. In obtaining Eq. (18) harmonics are neglected since we assumed k?j�xj � 1, where j�xj ¼ ao=ð2�okoÞ is
the magnitude of the electron transverse wiggle motion in the pump laser.

The function Dðk; !Þ is given by

Dðk; !Þ ¼ � DFELðk; !Þ
fkz � ð!=cÞ½1þ ð!�!R0Þ=ð2�2

zo!R0Þ�g2
¼ �½kz � k1ðk?; !Þ�½kz � k2ðk?; !Þ�½kz � k3ðk?; !Þ�

½kz þ ko � ð!�!oÞ=vzo�2
; (19)

where the roots of the dispersion relation are denoted by k1, k2, k3, and k1 denotes the growing root. Solving Eq. (18) for the
field associated with the growing root, i.e., integrating around the pole at kz ¼ k1ðk?; !Þ, we obtain

Êðk?; z; !Þ ¼ 1

2ð�Þ1=2
q

c

ao
�o

�z expðiK1 �z=2Þ
�
sinðK1 �z=2Þ
K1 �z=2

�
Gðk1; k?; !Þ exp½ik1ðk?; !Þz�XNb

i¼1

expði�o;iÞ; (20)

where K1 ¼ Kðk1; !Þ ¼ ð!�!oÞ=vz � ðk1 þ koÞ ¼ ½!�!R0ð1� �2
zoc

2k2?=!
2
R0Þ�=ð2c�2

zoÞ and Gðk1; k?; !Þ ¼ f½k1 þ
ko � ð!�!oÞ=vzo�2g=½k1 � k2ðk?; !Þ�½k1 � k3ðk?; !Þ�.

The intensity is given by Iðr; z; tÞ ¼ ðc=2�ÞhEðr; z; tÞE
ðr; z; tÞi where h i denotes an average over electrons. If the

electrons are initially randomly distributed, we use the fact that hPNb

i¼1 expði�o;iÞPNb

j¼1 expð�i�o;jÞi ¼ Nb and obtain

hÊðr; z; !ÞÊ
ðr; z; !Þi ¼ 1

4�

q2

c2
a2o
�2
o

Nb

��������
Z 1

0
k?dk?z exp

�
i
K1z

2

��
sinðK1z=2Þ
K1z=2

�
Gðk1; k?; !ÞJoðk?rÞ exp½ik1ðk?; !Þz�

��������
2

;

(21)

where we have set �z ¼ z. The spectral power, defined by

dP̂

d!
¼

Z
d�k

�
d2P̂

d!d�k

�

¼ c

�b

Z 1

0
rdrhÊðr; z; !ÞÊ
ðr; z; !Þi; (22)

is given by

d2P̂

d!d�k

¼ 8��2
omc2

�
z

�o

�
2
�

ao
1þ a2o

�
2j expðiK1z=2Þj2

�
��������sinðK1z=2Þ

K1z=2

��������
2jGðk1;k?; !Þj2

� j exp½ik1ðk?; !Þz�j2; ; (23)

where k?dk? ¼ ðk2z=2�Þd�k, d�k is the differential solid

angle associated with the wave vector, and the relationR1
0 rdrJoðk?rÞJoðk0?rÞ ¼ �ðk? � k0?Þ=k? was used.

A. Incoherent radiation

The spectral brightness in the absence of the FEL inter-
action is the spontaneous (incoherent) spectral brightness
and is obtained from Eq. (23) by setting k1 ¼ ð!=cÞ�
ð1� c2k2?=2!

2
RÞ, together with j expðiK1z=2Þj2 ¼

jGðk1;k?; !Þj2 ¼ j exp½ik1ðk?; !Þz�j2 ¼ 1. The incoherent
spectral brightness is�
d2P̂incoh

d!d�k

�
¼ 8��2

omc2
�
z

�o

�
2
�

ao
1þ a2o

�
2
��������sinðK1z=2Þ

K1z=2

��������
2

:

(24)

The incoherent power radiated by the electron bunch per
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unit solid angle is

dPincoh

d�k

¼
Z 1

0
d!

�
d2P̂incoh

d!d�k

�

¼ 4��2
o

�mc3

�

z

�o

�
ao

1þ a2o

�
2
: (25)

The incoherent power within the solid angle ��incoh is

PincohðzÞ ¼ 16��3
o

a2o
ð1þ a2oÞ3

re
�o

z

�o

��incohPb; (26)

where ��incoh � �=�2
zo is the solid angle associated with

the incoherent radiation and Pb ¼ ��omc3=re is the elec-
tron beam power.

B. Coherent radiation

A small portion of the spontaneous radiation spectrum
overlaps the gain spectrum and is amplified as depicted in
Fig. 5. The coherently amplified portion of the spectrum is
determined by the relative linewidths of the spontaneous
and gain spectra, as well as the range of amplified trans-
verse wave numbers k? given by Eq. (16). The fractional
linewidths associated with the coherent and incoherent
(spontaneous) power spectrum are, respectively,

�!cohðzÞ=!R0 ¼ ð1=2�Þð�o=LgoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lgo=z

q
; (27a)

and

�!incohðzÞ=!R0 ¼ ð1=2Þð�o=zÞ: (27b)

The ratio of the linewidths is �!coh=�!incoh ¼ ð1=�Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
z=Lgo

q
which implies that for interaction distances less

than �10Lgo, the coherent power spectrum is narrower

than the spontaneous spectrum. For z > Lgo, we find that

j expðiK1z=2Þj2j sinðK1z=2Þ=ðK1z=2Þj2 	 ð2Lgo=zÞ2, and

the coherent power spectral brightness in Eq. (23) is

d2P̂coh

d!d�k

¼ ð32=9Þ��2
omc2

�
z

�o

�
2
�

ao
1þ a2o

�
2
�
Lgo

z

�
2

� exp½�gð!; k?Þz�; (28)

where we used jGðk1;k?; !Þj2 ¼ 1=9, i.e., 1=9 of the inco-

herent power is available for gain.
Using the power growth rate spectrum in Eq. (6),

Eq. (28) can be integrated over frequency to give

dPcoh

d�k

¼ 6:3��2
omc2

�
z

�o

�
2
�

ao
1þ a2o

�
2
�
Lgo

z

�
2
�
�!

ffiffiffiffiffiffiffiffi
Lgo

z

s �

� expð�gozÞ; (29)

where �!=!R0 ¼ ð�o=LgoÞ=2�.
The coherent radiation beam is confined to a narrow

forward cone with solid angle ��k ¼ ��2k;max, where

�k;max is given by Eq. (16). The incoherent radiation, on

the other hand, is confined to a cone angle �incoh 	
1=�zo > �k;max.

The integration over solid angle in Eq. (29) can be
approximated by evaluating the integrand at k? ¼ 0 and
multiplying by the solid angle ��k. The coherent power is
given by

PcohðzÞ ¼ 25�3
o

a2o
ð1þ a2oÞ3

�
Lgo

�o

��
re
�o

�

�
�
Lgo

z

�
1=2

��kPb expðz=LgoÞ: (30)

The coherent power in Eq. (30) will be compared with
GENESIS simulations in the x-ray regime.

To compare the expression for the coherent power in
Eq. (30) with those obtained for a conventional wiggler-
based FEL, we consider the case where the interaction
distance is much greater than a Rayleigh length, but shorter
than the saturation length, Lsat > z � ZR. In this case the
propagation angle is equal to the diffraction angle, i.e.,
�k ¼ �D, and the coherent power from Eq. (30) becomes

Pcohðz � ZRÞ ¼ 0:01��omc2
�

z

Lgo

�
2
�
r2b=r

2
s

f

�
�!cohðzÞ

� expðz=LgoÞ; (31)

where �!cohðzÞ=!R0 ¼ ð�!=!R0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lgo=z

q
¼

6:9�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lgo=z

q
, � ¼ 0:023ð�o=LgoÞ is the conversion effi-

ciency, and f is the filling factor. The coherent power in
this limit, given by Eq. (31), is similar in form to that given
in [21,23,24]. The ratio of the coherent power to the
incoherent power for the same solid angle and for z >

Lgo is�
Pcoh

Pincoh

�
��k

¼ 1:6

�
Lgo

z

�
2 �!cohðzÞ
�!incohðzÞ expðz=LgÞ

¼ 1

2

�
Lgo

z

�
3=2

expðz=LgoÞ: (32)

C. Saturation length and linewidth

The saturation length for the coherent radiation can be
obtained by setting Pcoh in Eq. (30) equal to the conversion
efficiency times the electron beam power, �Pb, where � is
given by Eq. (13). The number of power gain lengths at
saturation, Nsat ¼ Lsat=Lgo, is given by

N�1=2
sat expðNsatÞ ¼ 9:2� 10�4

�
�o

Lgo

�
2
�
�o

re

� ð1þ a2oÞ3
a2o

� 1

�3
o��k

: (33)

The fractional linewidth associated with the coherent
radiation, for k? � 0, at saturation is
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�!coh

!R0

¼ N�1=2
sat

�!

!R0

¼ N�1=2
sat

2�

�o

Lgo

: (34)

There is an additional contribution to the linewidth due
to the finite transverse wave number, k?, spectrumwhich is
given by �2

zo�
2
k, as indicated in Eq. (4).

IV. COMPARISON OF THEORY WITH
SIMULATIONS

In this section we compare the analytical result for the
coherent power, Eq. (30), with the simulation results from
GENESIS [34]. GENESIS simulates the conventional wiggler-

based FEL amplifier, including start-up. In using GENESIS

to simulate the laser-pumped FEL, the wiggler period in
GENESIS is set equal to twice the pump laser wavelength

�w ¼ �o=2 ¼ 0:5 �m, and the wiggler transverse gra-
dients are removed. Besides GENESIS there are other FEL
simulation codes that can be used to simulate the FEL start-
up physics [43]. Before discussing an example of an x-ray
laser-pumped FEL it is useful to consider the application of
the theory to a conventional FEL operating in the x-ray
regime. For this comparison we use the Linac Coherent
Light Source (LCLS) FEL at SLAC [1].

A. Wiggler-based x-ray FEL

The parameters of the LCLS FEL operating at 15 �A are
given in Table II. In the GENESIS simulations, we use a
circularly polarized wiggler and a cold electron beam to
make a comparison with theory. The wiggler strength

parameter is therefore smaller by a factor of
ffiffiffi
2

p
than the

actual value used in the original LCLS design [1]. Figure 7

TABLE II. Parameters for LCLS FEL. Note that the actual
LCLS wiggler is linearly polarized with aw ¼ 3:7.

Electron beam parameters

Energy Eb ¼ 4:52 GeV
(�o ¼ 8:9� 103)

Current Ib ¼ 3:4 kA
Radius rb ¼ 110 �m
Energy spread limit ��=�o � � ¼ 0:08%

Wiggler (circular) parameters

Period �w ¼ 3 cm
Strength aw ¼ 2:62

X-ray parameters

Wavelength � ¼ 15 �A
Spot size (at saturation) rs ¼ 140 �m
Rayleigh length (at saturation) ZR ¼ 42 m
Power gain length Lgo ¼ 2 m
Conversion efficiency � ¼ 0:08%
Saturation length Lsat ¼ 28 m
Saturated power Psat ¼ 12:5 GW

FIG. 7. (Color) Power versus interaction length for the LCLS
FEL (cold beam) with parameters listed in Table II. Curves
denote coherent power (solid black), incoherent power (dashed),
total theoretical power (red), and the result of a GENESIS simu-
lation (blue). The theoretical efficiency is � ¼ 0:046ð�w=LgoÞ ¼
0:07%. The efficiency observed in the GENESIS simulation is
0.08%.

FIG. 8. (a) GENESIS simulation result showing transverse pro-
file of intensity (solid curve) at z ¼ 28 m (saturation) for the
LCLS FEL. The dashed curve denotes electron beam profile.
(b) Distribution of power over normalized transverse wave
number (propagation angle), for the intensity profile shown in
(a). The propagation angle is normalized to the diffraction angle
�D and �k;max denotes the maximum propagation gain angle used

in calculating the theoretical coherent power in Fig. 7.
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plots the power as a function of propagation distance
within the wiggler. The blue curve is the result of a
GENESIS simulation. The dashed curve and solid black

curves represent the theoretically calculated incoherent
and coherent power, respectively. The theoretical incoher-
ent and coherent power are functions of the maximum solid
angle as indicated by Eqs. (26) and (30). In calculating the
theoretical incoherent power, we assume a maximum solid
angle of ��incoh ¼ �=ð3�zoÞ2. To calculate the coherent
power, we use a maximum angle �k;max consistent with the

spectrum of transverse wave numbers generated by the
simulation [see Fig. 8(b)]. This angle, to a good approxi-
mation, is given by �k;max 	 rb=Lg. The red curve in Fig. 7

represents the total theoretical power at a given interaction
length. There is excellent agreement between theory and
simulation in both the incoherent (z < 7 m) and coherent
(z > 7 m) regimes.

Figure 8(a) plots the radiation intensity profile at satu-
ration and shows that it is highly localized to the region of
the electron beam. Figure 8(b) shows the distribution of
power over transverse wave number, i.e., dP=dk?. Most of
the power is contained within the angle �k;max, which in this

case is �20 times larger than the diffraction angle.

B. Laser-pumped x-ray FEL

The parameters used in the laser-pumped FEL are listed
in Table I. For these parameters lethargy effects (electron
beam slippage) are negligible. Figure 9 shows the evolu-

tion of the x-ray power as a function of interaction length.
The theoretically calculated incoherent and coherent
powers are shown separately. In this parameter regime,
the transverse resolution of the simulation is not sufficient
to resolve the maximum propagation angle. Hence, in
calculating the theoretical incoherent and coherent power
for comparison with the simulations, the maximum angle is
taken to be �sim ¼ �=ð2�xÞ, i.e., the maximum angular
resolution of the simulation, where�x is the transverse grid
size. The transition from incoherent to coherent radiation
occurs after �2–3 power gain lengths. The power gain
length is Lgo ¼ 280 �m while the saturation length is

Lsat � 13Lgo � 0:35 cm. The conversion efficiency is � ¼
0:01% which corresponds to a saturated coherent x-ray
power of Pcoh ¼ 300 kW. The theoretical conversion effi-
ciency, in Eq. (13), gives a value of 0.01% in excellent
agreement with the GENESIS simulations.
Figure 10(a) plots the transverse x-ray intensity profile at

saturation and shows that the radiation is highly localized

FIG. 9. (Color) Power versus interaction length for a laser-
pumped FEL (cold beam) with parameters listed in Table I.
Curves denote coherent power (solid black), incoherent power
(dashed), total theoretical power (red), and the result of a
GENESIS simulation (blue). The theoretical efficiency is � ¼
0:023ð�o=LgoÞ ¼ 0:008%. The efficiency observed in the

GENESIS simulation is 0.01%. In calculating the incoherent and

coherent power from Eqs. (26) and (30), we used the maximum
angle resolved by the simulation, i.e., �sim 	 �=ð2�xÞ ¼ 5�
10�4 rad, where �x ¼ 1:6 �m is the transverse grid size. In this
parameter regime, �sim � �k;max, where �k;max is the maximum

propagation angle of the coherent radiation given by Eq. (16).

FIG. 10. (a) GENESIS simulation result showing transverse pro-
file of intensity (solid curve) at z ¼ 0:35 cm (saturation) for the
laser-pumped FEL. The dashed curve denotes electron beam
profile. (b) Distribution of power over normalized transverse
wave number (propagation angle), for the intensity profile shown
in (a). The propagation angle is normalized to the diffraction
angle �D. The maximum angle resolved by the simulation is
�k;max ¼ 70�D. The maximum theoretical propagation angle is

�k;max 	 500�D.
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to the electron beam and contains a large number of higher
order transverse modes. Figure 10(b) plots the distribution
of power over transverse wave number and shows there is
significant power over the entire wave-number range re-
solved by the simulation.

In this example the required relative electron beam
energy spread is � 0:01%. Higher electron beam energy
spreads would substantially reduce the lasing efficiency
and limit the growth of coherent x-ray power. This example
indicates the stringent requirements placed on both the
electron beam and pump laser.

V. CONCLUSIONS

We have analyzed a high-gain, laser-pumped, x-ray FEL
amplifier. The analysis includes (i) electron beam thermal
effects, (ii) off-axis propagation, and (iii) the transition
from incoherent to coherent x rays. The power gain length,
saturation length, linewidth, and conversion efficiency
have been calculated for the laser-pumped FEL. We find
there is good agreement between our theoretical results and
GENESIS simulations. For electron beams of sufficiently

high quality, with energies of �6 MeV and currents of

500 A, we find that coherent x rays at 20 �A can be gen-
erated with power gain lengths of �300 �m, saturation
lengths of �0:4 cm, and conversion efficiencies of 0.01%.
To achieve these values the fractional electron beam energy
spread must be <0:01%. The inclusion of higher-order
modes in the pump laser can reduce the resonant frequency
spread due to transverse gradients to <0:01%. However,
restricting the longitudinal variation of pump laser to ac-
ceptable levels will be difficult. While a coherent x-ray
source would have a number of attractive features, the
requirements placed on both the electron beam and pump
laser are challenging.
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