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The head-tail modes are described for the space charge tune shift significantly exceeding the

synchrotron tune. A general equation for the modes is derived. The spatial shapes of the modes, their

frequencies, and coherent growth rates are explored. The Landau damping rates are also found. The

suppression of the transverse mode coupling instability by the space charge is explained.
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I. INTRODUCTION

The head-tail instability of bunched beams was observed
and theoretically described many years ago [1–3]. Since
then, this explanation has been accepted and included in
textbooks [4,5], but still there is an important gap in the
theory of head-tail interaction. This relates to the influence
of space charge on the coherent modes: their shapes,
growth rates, and Landau damping. A significant theoreti-
cal paper on that issue was published by Blaskiewicz ten
years ago [6]. In particular, a compact analytical descrip-
tion of the coherent modes was found there for a square
well model, air-bag distribution, and a short-range wake
function, without any assumption for the relative values of
the space charge tune shift, the synchrotron tune, and the
coherent tune shift. Later, the air-bag limitation was re-
moved for the zero-wake case in the square well [7].
References [6,7] shed the first light on the problem, re-
minding us of all the questions that were yet to be an-
swered, because of the very specific restrictions of that
model. Here, an attempt to provide answers to those ques-
tions is presented.

Compared to the work reported in Refs. [6,7], this
attempt is both broader and narrower. It is broader since
there are no assumptions about the shape of the potential
well, the bunch distribution function, and the wake func-
tion. The solution for a parabolic potential well and 3D
Gaussian bunch is given in detail, but the method is uni-
versal. Since this paper deals with arbitrary distribution
functions, the Landau damping is not generally zero; it is
calculated in this paper.

From another aspect, though, my approach is narrower
than that of Ref. [6], since a certain condition between the
important parameters is assumed below. Namely, it is
assumed that the space charge tune shift in the bunch 3D
centerQmax is large compared to both the synchrotron tune
Qs and the wake-driven coherent tune shift Qw: Qmax �
Qs;Qw.

The structure of this paper is as follows. In the next
section, a single-particle equation of motion is written in
the rigid-beam approximation and the validity of this ap-
proximation is discussed. Then the coherent modes are

found from this equation for the square potential well
with an arbitrary beam distribution function. The vanishing
Landau damping for the square well is pointed out.
After that, the problem for the coherent modes in the

presence of strong space charge is reduced to a second-
order ordinary differential equation with zero boundary
conditions for the eigenfunction derivative; this is done
for an arbitrary beam distribution function and potential
well. The eigenmodes and eigenfrequencies are found for
the no-wake case, when only the space charge and the
synchrotron motion are taken into account. At this step,
the mode shapes �ykð�Þ and frequencies �k are found and the
wake-driven coherent growth rates are calculated as per-
turbations. When the mode structure is described both in
general and in detail for the Gaussian bunch, the Landau
damping rates �k are found in the next two sections: first,
without and, second, with transverse nonlinearity.
In the last section of this paper, the limit of weak head

tail is removed, and the transverse mode coupling insta-
bility (TMCI) at strong space charge is discussed. It is
shown that in this case, the TMCI threshold typically
exceeds its nave estimate based on the mode separation
by a factor of 10–100.

II. RIGID-BEAM EQUATIONS

In order to keep the same notation as in Ref. [6], let � be
the time in radians, � a distance along the bunch in radians
as well, Xið�Þ a betatron offset of ith particle, and �Xð�; �Þ
an offset of the beam center at the given time � and position
�. Since all the tune shifts are small compared with the bare
betatron tune Qb, the latter can be excluded from the
considerations by using slow variables xið�Þ:

Xið�Þ ¼ expð�iQb�Þxið�Þ:
After that, a single-particle equation of motion can be
written as

_xið�Þ ¼ iQ½�ið�Þ�fxið�Þ � �x½�; �ið�Þ�g � i&við�Þxið�Þ
� i�Ŵ �x : (1)

Here a dot over a variable xi stands for the time derivative,
_xi ¼ dxi=d�; the effective chromaticity � ¼ ��=� with

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 044202 (2009)

1098-4402=09=12(4)=044202(13) 044202-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.12.044202


� ¼ dQb=dð�p=pÞ as the conventional chromaticity and
� ¼ ��2

t � ��2 as the slippage factor; Qð�Þ is the space
charge tune shift as a function of the position inside the
bunch; við�Þ ¼ _�ið�Þ is the velocity within the bunch, and

�Ŵ �x is the wake force expressed in terms of the wake

linear operator Ŵ to be specified below.
Note that Eq. (1) already assumes a rigid-beam approxi-

mation. This approximation is based on the idea that the
transverse coherent motion of the beam can be treated as
displacements of beam longitudinal slices, so the force on a
given particle is just proportional to its offset from the local
beam centroid. For a coasting beam, the validity of the
rigid-beam model is discussed in Ref. [8]. To be justified,
the rigid-beam model requires a sufficient separation be-
tween the coherent frequency and the incoherent spectrum:
the separation has to be significantly larger than the width
of the bare incoherent spectrum. As a result almost all the
particles respond almost identically to the collective field.

The chromaticity term can be excluded from Eq. (1)
with a substitution xið�Þ ¼ yið�Þ exp½�i��ið�Þ�, leading to

_y ið�Þ ¼ iQ½�ið�Þ�fyið�Þ � �y½�; �ið�Þ�g � i�Ŵ �y (2)

with

� ¼ r0R

4	
2�Qb

;

Ŵ �y ¼
Z 1

�
Wð�� sÞ exp½i�ð�� sÞ��ðsÞ �yðsÞds:

(3)

Here r0 is the classical radius of the beam particles; R ¼
C=ð2	Þ is the average ring radius; 
 and � are the relativ-
istic factors, �ðsÞ is the bunch linear density normalized on
the number of particles in the bunch,

R
�ðsÞds ¼ Nb, and

the wake function WðsÞ is defined according to Ref [4]
(slightly different from the definition of Ref. [6]).

We begin by solving Eq. (2) for the no-wake case. Next
the wake is taken into account as a perturbation of the
space charge eigenmodes. These unperturbed eigenmodes
are to be found from the no-wake reduction of Eq. (2):

_y ið�Þ ¼ iQ½�ið�Þ�fyið�Þ � �y½�; �ið�Þ�g: (4)

Solutions of this equation give the space charge eigen-
modes: their spatial shapes and frequencies. The modes
do not depend on the chromaticities, except for the com-
mon head-tail phase factor expð�i��Þ. The chromaticity
enters into the problem through the wake term, Eq. (3),
affecting the coherent growth rates. As it will be seen
below, the chromaticity normally makes the coherent
growth rates negative for the modes, which number k is
smaller than the head-tail phase, k & ��, with� as the rms
bunch length.

III. SQUARE POTENTIALWELL

Before going to a general case, it would be instructive to
solve the easier problem of the square well potential.

Similar to Ref. [7], this problem is solved for a general
distribution over the synchrotron frequencies, and for the
no-wake case. When the wake field is small enough,Qw �
minðQ2

s=Qmax; QsÞ, the solution is extended to the weak
head-tail case. In this section only, the ratio between the
space charge tune shift and the synchrotron tune can be
arbitrary.
For the no-wake case, a single-particle equation (4) has a

constant coefficient Qð�Þ ¼ Q, and can be easily solved:

yið�Þ ¼ �iQ
Z �

�1
�y½�0; �ið�0Þ� exp½iQð�� �0Þ�d�0: (5)

To find the eigenmodes, the boundary conditions for the
beam centroid have to be taken into account. Since every
particle is reflected instantaneously from the walls of the
potential well, its offset derivative cannot immediately
change after the reflection. This, in turn, leads to a con-
clusion that a space derivative of the beam centroid is zero
at the bunch boundaries � ¼ 0 and � ¼ l:

@

@�
�yð�; �Þ

���������¼0
¼ @

@�
�yð�; �Þ

���������¼l
¼ 0: (6)

Thus, the centroid offset can be Fourier expanded as

�yð�; �Þ ¼ expð�i�k�Þ
X1
m¼0

Cm cosð	m�=lÞ; (7)

with Cm as yet unknown coefficients, and �k as the eigen-
frequencies to be found. For the right-hand side of single-
particle Eq. (5), it gives

�y½�0; �ið�0Þ� ¼ expð�i�k�
0Þ

� X1
m¼0

Cm cos

�
	m

�ið�Þ � við�� �0Þ
l

�
:

(8)

Substituting Eq. (8) into Eq. (5) and after taking the
integral, we obtain the result

yið�Þ ¼ expð�i�k�Þ
X1
m¼0

Cm cos

�
	m

�ið�Þ
l

�

� QðQþ �kÞ
ðQþ �kÞ2 �m2Q2

si

; (9)

with Qsi ¼ 	vi=l as the synchrotron frequency of the ith
particle. Averaging Eq. (9) over all the particles at the
given location yields the shape of the eigenmodes as

�ykð�; �Þ ¼ expð�i�k�Þ �ykð�Þ;
�ykð�Þ ¼

ffiffiffiffiffiffiffi
2=l

p
cosð	k�=lÞ:

(10)

These eigenmodes constitute a full orthonormal basis:Z l

0
�ykð�Þ �ymð�Þd� ¼ km: (11)

The coherent shifts �k have to be found from the following
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dispersion equation:

1 ¼
Z QðQþ �kÞfðQsÞdQs

ðQþ �k þ i0Þ2 � k2Q2
s

; k ¼ 0; 1; 2 . . . :

(12)

Here, the Landau rule �k ! �k þ i0 was taken into ac-
count, and the distribution function over the synchrotron
frequencies is assumed to be normalized:

Z
fðQsÞdQs ¼ 1:

The dispersion equation (12) for the square well model and
arbitrary longitudinal distribution was obtained by
Blaskiewicz [7]. The simplest case for the dispersion equa-
tion (12) is the air-bag distribution, fully considered in
Ref. [6]. Taking fðQsÞ ¼ ðQs � �QsÞ, the result of
Ref. [6] is reproduced:

�k ¼ �Q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

4
þ k2 �Q2

s

s
: (13)

Note that the positive and negative frequencies are signifi-
cantly different. If the synchrotron tune is so small that
k �Qs � Q=2, the negative eigenfrequencies almost coin-
cide with the singe-particle tune shift, while the positive
ones are much smaller than that. The negative solution
�k � �Q is almost equal to the single-particle tunes, so
this mode is easily Landau damped, and thus is excluded
from the further analysis. The other solution yields in this
case

�k ¼ k2 �Q2
s=Q: (14)

Note that, instead of zero space charge spectrum Qk ¼
k �Qs, the mode frequency here is quadratic with its mode
number.

When there is some synchrotron frequency spread, it is
possible for some particles to be resonant with the mode,
providing the Landau damping. For them, the denominator
in the dispersion equation goes to zero, so their synchrotron
tunes are

kQs ¼ �ðQþ �kÞ � �Q: (15)

For typical practical cases, where the synchrotron tune is
order(s) of magnitude smaller, than the maximal space
charge tune shift, this condition selects very distant tails,
so we conclude that as a practical matter there is no Landau
damping here.

We have not, up to this point, taken into account the
nonlinear betatron tune shift. This tune shift QðJ1; J2Þ,
being a function of the two transverse actions J1, J2,
modifies the dispersion relation similarly to the coasting
beam case, resulting in

1 ¼ �
Z @f

@J1

J1QðQþ �kÞdQsdJ1dJ2
½Q� QðJ1; J2Þ þ �k þ i0�2 � ðkQsÞ2

;

(16)

with the normalized distribution functionR
fðQs; J1; J2ÞdQsdJ1dJ2 ¼ 1 assuming that we are study-

ing oscillations along the 1st degree of freedom. The
dispersion relation (16) is valid for any dependence of
the space charge tune shift on the transverse actions Q !
QðJ1; J2Þ. When the space charge tune shift is much larger
than the synchrotron tune and the nonlinear tune shift, the
solution of the dispersion equation (16) follows:

�k ¼ k2

R fQ2
sdQsdJ1dJ2
Q2ðJ1;J2ÞR fdQsdJ1dJ2
QðJ1;J2Þ

þ 2

R fQðJ1;J2ÞdQsdJ1dJ2
QðJ1;J2ÞR fdQsdJ1dJ2
QðJ1;J2Þ

:

Since this solution does not assume any special relation
between the space charge tune shift and the synchrotron
tune, it is worthwhile to look at the case of relatively low
space charge, Qs � Q=2. As it is clear from Eq. (13), the
collective modes are separated from the incoherent spec-
trum by one-half of the space charge tune shift. Without
transverse nonlinearity, the Landau damping is provided by
the synchrotron tune spread. The integrand of the disper-
sion equation (12) has its poles at kQs ¼ Qþ �k. With the
eigenvalue (13), it yields that the Landau damping is
provided by particles whose synchrotron tune Qs deviates
from the average synchrotron tune �Qs by Qs � �Qs ¼
Q=ð2kÞ. For k ¼ 0, there is no Landau damping without
transverse nonlinearity, since �0 ¼ 0 is an exact solution of
the dispersion equation (12), similar to the coasting beam
case. Note that for this low space charge case, the rigid-
beam approximation is valid for both signs in Eq. (13), as
soon as all the resonant particles are located only in tails of
the distribution.
It is worth noting that the square well model greatly

underestimates the Landau damping. The reason is that in
the case of the square well, there is no spatial variation of
the space charge tune shift. However, for realistic buckets
and bunch shapes, the space charge tune shift smoothly
drops to zero at the longitudinal tails, making possible the
wave-to-particle energy transfer there. This appears to be a
leading mechanism of Landau damping for bunched
beams, missing in the square well case, and being consid-
ered in detail in two sections below.
To finish our analysis of the square well model, there is

one more thing to do. After the set of the eigenmodes is
found for the zero-wake case, the wake can be taken into
account by means of perturbation theory, assuming it is
small enough. This step is relatively simple. Indeed, the
wake term in Eq. (2) causes its own tune shift Qw, leading
to additional factor expð�iQw�Þ for the single-particle
offset on the left-hand side of Eq. (2). This immediately

turns this equation into Qwyi ¼ Ŵ �y . After averaging, this
gives the wake tune shift as a diagonal element of the wake
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operator:

Qw ¼ ð �y; Ŵ �yÞ
� �

Z 1

�1

Z 1

�
Wð�� sÞ exp½i�ð�� sÞ�

� �ðsÞ �ykðsÞ �ykð�Þdsd�: (17)

Here, the normalization (11) of the orthogonal modes �ykð�Þ
[Eq. (10)] was taken into account.

If the vacuum chamber is not round, the detuning, or
quadrupole wake Dð�Þ modifies the coherent tune shifts
[9]. Assuming a force from a leading particle (subscript 1)
on a trailing particle (subscript 2) as/ Wð�Þx1 þDð�Þx2, it
yields for the detuning coherent shift

Qd ¼ �
Z 1

�1

Z 1

�
Dð�� sÞ�ðsÞ �y2kð�Þdsd�: (18)

Instead of the wake tune shift (17), the detuning one in (18)
is purely real; it does not affect the beam stability. This
conclusion though is limited by theweak head-tail approxi-
mation, where the wake is so small that it can be taken as
perturbation, leading to (17) and (18). It was shown in
Ref. [9] that it is not valid for the transverse mode coupling
instability (TMCI), where the detuning wake normally
increases the intensity threshold.

Note that the derivation of Eqs. (17) and (18) does not
use any specific features of the square well model; thus,
these results are valid for any potential well and bunch
profile, when a corresponding orthonormal basis of the
eigenmodes is used.

Growth rates as functions of the head-tail phase �l are
presented in Fig. 1 for the square well model with a
constant wake function, Wð�Þ ¼ W0 ¼ const. The rates

are given in units of �NbW0 with Nb ¼ �l as a number
of particles in the bunch.

IV. GENERAL SPACE CHARGE MODES

In this section, an ordinary differential equation for the
eigenmodes is derived for a general potential well and 3D
bunch distribution function, assuming strong space charge,

Q � 2k �Qs: (19)

The fact that the bunch modes are described by single-
argument functions, dependent on the position along the
bunch only, is due to a strong coherence, introduced by the
space charge. Indeed, the classical no-space-charge head-
tail modes are generally described by their dependence
both on the synchrotron phase and the synchrotron action,
so the synchrobetatron modes are characterized by what
are called azimuthal and radial numbers. All the radial
modes are degenerate, having the same coherent tune,
determined by the azimuthal number. With the strong
space charge, all the individual degrees of freedom are
detuned from the coherent motion by approximately the
same number, namely, the local space charge tune shift. As
a result, locally all the particles are moving almost identi-
cally; their position in the synchrotron phase space does
not play a role, as soon as they are at the given longitudinal
position. That is why the space charge modes are described
by single-argument functions dependent on the position
along the bunch only.
The single-particle equation (4) can be solved in gen-

eral:

yið�Þ ¼ �i
Z �

�1
Q½�ið�0Þ� �y½�0; �ið�0Þ�

� exp½i�ð�Þ � i�ð�0Þ�d�0;
�ð�Þ �

Z �

0
Q½�ið�0Þ�d�0: (20)

SinceQð�Þ> 0,�ð�Þ is monotonic and so integration over
� in Eq. (20) can be replaced by integration over �:

yið�Þ ¼ �i
Z �

�1
�yð�0Þ expði�� i�0Þd�0: (21)

Note that, due to (19), the phase� runs fast compared with
relatively slow dependence �yð�Þ, so the later can be ex-
panded in a Taylor series,

�yð�0Þ � �yð�Þ � ð���0Þ d �y
d�

þ ð���0Þ2
2

d2 �y

d�2
:

After that the integral is easily evaluated:

yið�Þ ¼ �yð�Þ � i
d �y

d�
� d2 �y

d�2
: (22)

To come back to original variables, one can use that

FIG. 1. (Color) Weak head-tail growth rates for the square
potential well of the lowest mode (mode 0, red), mode 1
(blue), mode 2 (green), mode 3 (magenta), and mode 8 (cyan)
as functions of the head-tail phase �l for a constant wake
function. The rates are in units of �NbW0.
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d

d�
¼ v

Qð�Þ
@

@�
þ 1

Qð�Þ
@

@�
¼ 1

Qð�Þ
�
v

@

@�
� i�

�
: (23)

Applied to Eq. (22), this gives

yi ¼ �y� i

Qð�Þ
�
v

@

@�
� i�

�
�y�

�
1

Qð�Þ
�
v

@

@�
� i�

��
2
�y:

(24)

At this point, we can average over velocities v at the given
position �. Doing this, the eigenvalue �k can be neglected
in the second-order term of Eq. (24), supposing j�j �
jv@=@�j, as it is true for the square well bucket and is
confirmed below for the general case. After that, the equa-
tion for eigenmodes follows as a second-order ordinary
self-adjoint differential equation:

� �yþ uð�Þ d

d�

�
uð�Þ
Qð�Þ

d �y

d�

�
¼ 0;

u2ð�Þ �
R1
�1 v2fðv; �ÞdvR1
�1 fðv; �Þdv ;

(25)

where fðv; �Þ is a normalized steady-state longitudinal
distribution function, fðv; �Þ ¼ f½Hðv; �Þ�, with Hðv; �Þ
as the longitudinal Hamiltonian.

It has to be noted that the derivation of Eq. (25) from
Eq. (24) implicitly assumed that the space charge tune shift
depends only on the longitudinal position, and does not
depend on the individual transverse amplitude. It is pos-
sible, however, to remove this limitation, and to see that
Eq. (25) is actually valid for any transverse distribution,
after certain redefinition of the space charge tune shift
Qð�Þ. Indeed, the single-particle Eq. (24) does not make
any assumption about the individual space charge tune
shift dependence Qð�Þ, which can be considered as depen-
dent on the transverse actions J1i, J2i as well: Qð�Þ !
Qið�Þ ¼ QðJ1i; J2i; �Þ. The averaging of Eq. (24) just has
to take into account this dependence of the space charge
tune shift on the transverse actions. As an example, for a
Gaussian round beam, i.e., a beam with identical emittan-
ces and beta functions, the transverse dependence of the
space charge tune shift can be calculated as [5,8]:

QðJ1; J2; �Þ ¼ Qmaxð�Þ
Z 1

0

½I0ðJ1z2 Þ � I1ðJ1z2 Þ�I0ðJ2z2 Þ
expðzðJ1 þ J2Þ=2Þ dz

� Qmaxð�ÞgðJ1; J2Þ (26a)

Here J1, J2 are two dimensionless transverse actions, con-
ventionally related to the offsets as x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J1"1
1

p
cosðc Þ

with "1 and 
1 as the rms emittance and beta function, so
that the transverse distribution function is

f?ðJ1; J2Þ ¼ expð�J1 � J2Þ: (26b)

The transverse averaging of Eq. (24) requires calculation
of two transverse moments q�1, q�2 of the tune shift
QðJ1; J2; �Þ generally defined by

hQp
i ð�Þi? ¼

Z 1

0

Z 1

0
dJ1dJ2f?ðJ1; J2ÞQpðJ1; J2; �Þ

� qppQ
p
maxð�Þ

qp ¼
�Z 1

0

Z 1

0
dJ1dJ2f?ðJ1; J2ÞgpðJ1; J2Þ

�
1=p

:

(27)

After that, Eq. (25) follows for any transverse distribution
with a substitution

Qð�Þ ! Qeffð�Þ � ðq2�2=q�1ÞQmaxð�Þ:
For the round Gaussian distribution, Eqs. (26a) and (26b),
q�1 ¼ 0:58, q�2 ¼ 0:55, q�3 ¼ 0:52, yielding
q2�2=q�1 ¼ 0:52.
Thus, Eq. (25) for eigenvalues � and eigenfunctions �y is

valid for arbitrary beam transverse distribution, shape of
the longitudinal potential well, and arbitrary longitudinal
distribution fðHÞ. Even if the longitudinal and transverse
distributions are not factorized, Eq. (25) is still valid after
proper modifications of the functions uð�Þ and Qð�Þ.
For any real eigenvalue �, Eq. (25) has two independent

solutions, an even one and an odd one. In general, these
solutions tend to nonzero constants at the tails,
lim½ �yð�Þ��!1 ¼ �yð1Þ, while their derivatives �y0ð�Þ tend
to zero,

�y 0ð�Þ ffi Qeffð�Þ
Qeffð0Þ 
 ða� b�Þ; (28)

with constants a and b ¼ � �yð1Þ being determined by the
eigenvalue �. Without boundary conditions, the spectrum
of Eq. (25) is continuous, while any boundary condition
would select a sequence of discrete eigenvalues. Does any
boundary condition have to be required? Note that the
strong space charge and rigid-beam approximations fail
at the bunch tails. Namely, these assumptions are violated
at that longitudinal offset, where the function �yð�Þ cannot
be considered as a slow function of the space charge phase
� [see Eqs. (20)–(24)]. This happens at � ¼ ��, where�������� d

d�
�y0ð��Þ

��������ffi j �y0ð��Þj:

Using the asymptotical behavior of �y0ð�Þ [Eq. (28)] and the
definition of the space charge phase � [Eq. (20)], this
yields an equation for that model-break point �� at the
bunch tail:

Qð��Þ ¼ uð��ÞjQ0ð��Þj=Qð��Þ: (29)

Here we assumed that at the tail �y00= �y0 ffi Q0=Q. At this
model-breaking point, the rigid-slice approximation fails.
The individual particles, being essentially in coherent mo-
tion before that, go incoherently after that. As a result, the
coherent motion longitudinally goes down much faster
than it would go according to Eq. (28), were the model
valid there. Note that it is not the coherent amplitude �yð�Þ
but its longitudinal derivative �y0ð�Þ, which goes down at
� � ��. Indeed, the constant part of the amplitude �yð1Þ
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does not decohere. A reason for that is the same as for the
0th mode, � ¼ 0, �yð�Þ ¼ const, which is an exact solution
of the original equation of motion (1). Thus, we are coming
to a conclusion, that at the model-breaking point �� the
derivative of the eigenfunction goes to zero due to the fast
decoherence. Thus, we are coming to the boundary condi-
tion:

�y 0ð���Þ ¼ 0: (30)

This boundary condition is identical to what would be
required if there were a vertical potential barrier at the
model-breaking point. This additional meaning of the
boundary condition (30) appears to be reasonable by itself.
Indeed, setting that barrier at the model-breaking point
makes the model applicable everywhere. At the same
time, since the barrier is in that far tail, it almost does
not change the collective dynamics of the bunch. The idea
of model breaking implies that the right-hand side of Eq.
(29) is defined up to a numerical factor1. However, since
at the far tails the left-hand side of Eq. (29) is an extremely
fast function of its argument, the model-breaking point ��
is defined with rather good accuracy at strong space charge.
For instance, for Gaussian bunch with Qmaxð0Þ=Qs ¼ 10,
reduction of the right-hand side of Eq. (29) by a factor of 2
makes only a 20% difference for ��.

Equations (25) and (30) reduce the general problem of
eigenmodes to a well-knownmathematical boundary-value
problem, similar to the single-dimensional Schrödinger
equation (see e.g. [10]). This problem is normal, so it has
a full orthonormal basis of the eigenfunctions at the inter-
val ð���; ��Þ: Z ��

���
�ykð�Þ �ymð�Þ d�

uð�Þ ¼ km:

As a consequence,

X1
m¼0

�ymð�Þ �ymðsÞ ¼ uð�Þðs� �Þ:

At the bunch core, the kth eigenfunction �ykðtÞ behaves like
 sinðk�=�Þ or  cosðk�=�Þ, and the eigenvalues are esti-
mated to be

�k ffi k2 �Q2
s=Qeffð0Þ � �Qs; (31)

which are similar to the values in the square well case.
With that orthogonality condition, the formulas for the

coherent tune shift and the coherent detuning, Eqs. (17)
and (18), have to be generally modified by a substitution
d� ! d�=uð�Þ:

Qw ¼ �
Z 1

�1

Z 1

�
Wð�� sÞ exp½i�ð�� sÞ�

� �ðsÞ �ykðsÞ �ykð�Þu�1ð�Þdsd�;
Qd ¼ �

Z 1

�1

Z 1

�
Dð�� sÞ�ðsÞ �y2kð�Þu�1ð�Þdsd�:

(32)

From here, it follows that a sum of all growth rates is zero:

X1
k¼0

ImQw ¼ 0: (33)

This statement sometimes is referred to as the growth rates
sum theorem. Note also that the detuning wake does not
introduce any growth rate, and every growth rate is pro-
portional to the head-tail phase when this phase is small,
similar to the conventional no-space-charge case.
For a short wake,Wð�Þ ¼ �G0ð�Þ, the growth rate can

be expressed as

ImQw ¼ ��k�G; �k �
Z 1

�1
�ðsÞ �y2kð�Þu�1ð�Þd�;

in agreement with the special result for a square well found
in Ref. [6]. The same sign of the rates for all the modes may
seem to contradict to the theorem (33). The contradiction is
resolved when short wavelength modes are taken into
account. Namely, the wake function cannot be approxi-
mated by the Dirac function for so short waves whose
length is smaller than a scale of the wake function. These
short waves introduce the required opposite sign contribu-
tion to the sum of the rates, making it zero.
Let us consider now an alternative case of a slowly

decaying wake, that is we assume that Wð�Þ � �W0 ¼
const. At small head-tail phases, the lowest mode has the
same sign as the short-wake rate (34),

ImQw0 ffi 0:4�Nb��W0; �� � 1;

where � is the rms bunch length and Nb is a number of
particles in the bunch. The growth rates of the higher
modes are of opposite sign, making the rate sum equal to
zero, Eq. (33). As a function of chromaticity, the growth
rates reach their maxima at �� ffi 0:7ðk� 1Þ, k � 2, where
maxðImQwÞ ffi 0:1�NbW0. After its maximum, the high-
order mode changes its sign at �� ffi 0:7k, k � 2 to the
same sign as the lowest mode, tending after that to

ImQw ffi �NbW0=ð4��Þ: (34)

All the numerical factors were estimated using the data of
Fig. 3, showing the coherent rates for the Gaussian bunch
and constant wake function (see the next section), which
are also not too far from the square well results of Fig. 1.

V. MODES FOR GAUSSIAN BUNCH

The Gaussian distribution in phase space,

fðv; �Þ ¼ Nb

2	�u
expð�v2=2u2 � �2=2�2Þ; (35)

deserves a detailed consideration as a good example of
solving the general problem, and due to its special practical
importance. Indeed, this distribution function describes a
thermal equilibrium of a bunch whose length is much
shorter than the rf wavelength. Below, natural units for
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this problem are used. The distance � is measured in units
of the bunch length �, and the eigenvalue �—in units of
u2=½�2Qeffð0Þ� ¼ Q2

s=Qeffð0Þ.
In these units, the boundary-value problem of Eqs. (25)

and (30) is written as

�k �yþ d

d�

�
e�

2=2 d �y

d�

�
¼ 0; �y0ð���Þ ¼ 0;

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðq=��Þ

q
; q � Qeffð0Þ=Qs:

(36)

This equation is easily solved numerically. A list of the first
ten eigenvalues �k found for �� ¼ 1:5, 2.0, and 2.5 (corre-
sponding to q ¼ 5, 15, and 60) is presented in the Table I.

All these eigenvalues are limited as

k2 � k=2 � �k � k2 þ k=2; k ¼ 0; 1; 2 . . . : (37)

These numbers are only logarithmically sensitive to the
space charge parameter q � 2k. The first four eigenfunc-
tions, normalized to the unit ‘‘energy,’’

1ffiffiffiffiffiffiffi
2	

p
Z 1

�1
�y2kð�Þe��2=2d� ¼ 1; (38)

are shown in Fig. 2.
With the modes of the Gaussian bunch found, the co-

herent growth rates can be calculated according to Eq. (32),
see Fig. 3. These growth rates of the Gaussian bunch look

rather similar to the rates for the square well presented in
Fig. 1.

VI. INTRINSIC LANDAU DAMPING

A goal for this section is to discuss a mechanism of
Landau damping of the head-tail modes and calculate its
rates at strong space charge. Both longitudinal rf and
transverse lattice focusing are assumed linear here; that is
why the discussed mechanism is called intrinsic, meaning
that damping happens due to the space charge itself.
Landau damping due to the lattice nonlinearity is calcu-
lated in the next section. The damping rates are found
approximately, the accuracy is limited by a numerical
factor 1. The calculations are carried out for a
Gaussian bunch, but the same method can be applied for
any 3D distribution.
Landau damping is a mechanism of dissipation of co-

herent motion due to transfer of the energy into incoherent
motion. The coherent energy is effectively transferred only
to resonant particles—the particles whose individual fre-
quencies are in resonance with the coherent motion. For
these particles to exist, the incoherent spectrum must not
be line, but continuous. How can these conditions be
satisfied for a bunched beam with strong space charge? It
may seem, at first glance, that when the space charge tune
shift highly exceeds the synchrotron tune, the incoherent
frequencies are so distant from the coherent line that the
resonant particles do not exist at all, making the Landau
damping impossible. This conclusion is not correct be-
cause it does not take into account the fact that the space
charge tune shift is not constant along the bunch: being
maximal at the bunch center, and dropping to zero at the
tails. Thus, the Landau energy transfer is impossible at the
bunch center, but it gets effective at the bunch tails, where
the local incoherent space charge tune shift becomes small

TABLE I. First ten eigenvalues �k of the Gaussian bunch
[Eq. (36)] for �� ¼ 1:5, 2.0, 2.5. Empty spaces show that the
approach of this paper requires q � 2k [see Eq. (19)].

��nk 0 1 2 3 4 5 6 7 8 9

1.5 0 1.2

2.0 0 0.78 4.0 9.2 17

2.5 0 0.55 3.2 7.7 14 22 32 45 60 75

FIG. 2. (Color) The first five eigenfunctions for the Gaussian
beam at �� ¼ 2:5 (or q ¼ 60) as functions of the dimensionless
distance along the bunch �, Eq. (36). The eigenfunctions are
identified by their mode numbers.

FIG. 3. (Color) Coherent growth rates for the Gaussian bunch
with the constant wake as functions of the head-tail phase ��,
for the lowest mode 0 (red), mode 1 (blue), mode 2 (green),
mode 3 (magenta), and mode 4 (cyan). The rates are in units of
�NbW0, similar to the square well case of Fig. 1.
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enough. Namely, for any given particle it happens at that
distance, where a drop of the coherent amplitude is already
so fast, that this drop is not adiabatic, and so energy of the
coherent motion is transferred to the incoherent motion of
this particle. Thus, for a given location �, this energy
transfer occurs for those particles whose velocities vi and
individual space charge tune shifts Qið�Þ relate as

Qið�Þ ffi vi=�� ¼ jviQ
0ð�Þj=Qð�Þ ¼ vi�: (39)

This equation is similar to Eq. (29), except that applied to
the individual tail particle at the given location �, not to the
core of them, as Eq. (29). The individual local space charge
tune shift in Eq. (39) is a function of the two transverse
actions:

Qið�Þ � QðJ1; J2; �Þ: (40)

Using that the particle’s longitudinal offset and velocity
relate to its longitudinal action

Jk ¼ �2

2
þ v2

2
; (41)

Eqs. (39)–(41) define at the given longitudinal position � a
2D Landau surface in the space of three actions J1, J2, Jk:

Jk ¼ �2

2
þQ2ð�; J1; J2Þ

2�2
; (42)

After passing its ‘‘Landau point’’ (39), the particle gets the
variable part of the coherent amplitude

~yð�Þ ffi �y0ð�ÞQð�Þ=jQ0ð�Þj (43a)

as its incoherent amplitude. For the Gaussian distribution

~yð�Þ ¼ �y0ð�Þ=�: (43b)

Before proceeding with the estimate, the mentioned
requirement for the continuous incoherent spectrum should
be considered. Can this condition be satisfied without
longitudinal or transverse nonlinearity of the rf and the
lattice? Contrary to the no-space-charge case, it can, be-
cause the betatron phase advance per the synchrotron
period depends on the three actions. For the Gaussian
bunch, the space charge phase advance for a particle with

the longitudinal amplitude �0 ¼
ffiffiffiffiffiffiffiffi
2Jk

p
per the synchrotron

period Ts ¼ 2	=Qs is calculated as

�sð�0Þ � 4
Z Ts=4

0
Q½�0 sinðQs�Þ�d�

¼ �sð0Þ exp
�
� �20

4

�
I0

�
�20
4

�


ffiffiffiffi
2

	

s
�sð0Þ
�0

:

This shows that the individual spectrum of particles at is
indeed continuous. Since

�sð0Þ=ð2	Þ ¼ Qð0Þ=Qs � 1;

there are many lines of the resonant particles, numbered by
integer n, for which

�sð�0Þ � 2	n:

AfterM times of passing its Landau point, the particle gets
its individual amplitude excited by

�yiðMÞ ¼ ~y
XM�1

m¼0

eimc ¼ ~yeiMc =2 sinðMc =2Þ
sinðc =2Þ :

Thus, the entire Landau energy transfer for the bunch after
M � 1 turns can be expressed as

�EðMÞ ¼ 4
Z

dJfðJÞ~y2 sin
2ðMc =2Þ

sin2ðc =2Þ ;

where J is a 3D vector of the three actions, ~y ¼ ~yð�Þ is
defined by Eqs. (43a) and (43b), Jk ¼ Jkð�; J1; J2Þ is given
by Eq. (42), so the 3D integral over actions has to be
understood asZ

dJð
 
 
Þ ¼
Z 1

0
dJ1

Z 1

0
dJ2

Z 1

0
d�

@Jk
@�

ð
 
 
Þ;

leading and trailing bunch tails are taken into account. The
contributions from particle entering and leaving the tails
are assumed equal in magnitude but with random relative
phase. The power of the Landau energy transfer is calcu-
lated as

� _E ¼ d�EðMÞ
TsdM

¼ 4Qs

Z
dJfðJÞ~y2Pðc Þ;

Pðc Þ � X
n

ðc � 2	nÞ:

Here, it is used that at M � 1, sinðM�Þ=� ¼ 	ð�Þ.
Since the space charge phase advance � is a big number,
the sum over many resonance lines n can be approximated
as an integral over these resonances, leading to

� _E ¼ 2Qs

	

Z
dJfðJÞ~y2: (44)

This energy dissipation is directly related to the Landau
damping rate�k by� _E ¼ 2�kEk, with the energy number
Ek given by

Ek ¼
�Z 1

�1
Qð�Þd�

��1 Z 1

�1
�y2kð�ÞQð�Þd�:

This leads to a general formula for the Landau damping
rate, valid for any kind of bunch 3D distribution:

�k ¼ Qs

	

R1
�1 Qð�Þd�R1

�1 �y2kð�ÞQð�Þd�
Z

dJfðJÞ~y2k: (45a)

For the longitudinal Gaussian distribution, assuming the
eigenfunctions normalized by the unit energy, as they were
calculated in the previous section, it yields

�k ¼ Qs

	�2�

Z
dJfðJÞy02k : (45b)

Here the term 1=�2 was taken out from the integral and
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substituted by its decoherence (model-breaking) value
1=�2�. According to Eqs. (28) and (30),

y0 ffi b 
 ð�� ��ÞQeffð�Þ
Qeffð0Þ ¼ b 
 ð�� ��Þ expð��2=2Þ;

(46)

where the asymptotic parameter b can be calculated for
every eigenmode, b ¼ bk. For the modes of the Gaussian
bunch, described in the previous section, numerically
found squares of these parameters are presented in
Table II. The Landau damping rate is proportional to that
parameter, �k / b2k; thus, it may be concluded that the

damping rate is extremely sensitive to the mode number.
Since the number of the lowest potentially unstable mode
is about the chromatic head-tail phase (see Fig. 3), an
increase of the chromaticity has to be a powerful tool for
the beam stabilization.

The longitudinal integration in Eq. (45b) can be taken by
the saddle-point method. After that, the remaining trans-
verse integral leads to the form-factor q�3

�3 � q2�2=q�1 ¼
0:5, see Eq. (27). In the result, the Landau damping rate is
found as

�k ¼ 1:5b2kQs=q
3; q ¼ Qeffð0Þ

Qs

: (47)

Note that the synchrotron tune and the space charge tune
shift enter in high powers in Eq. (47).

In this section, Landau damping was calculated assum-
ing there is no nonlinearity in the lattice and the longitu-
dinal force from the rf field. That is why that kind of
Landau damping can be called intrinsic. Although the
method of calculation is general, the specific results as-
sume small coherent tune shift between the two neighbor
modes, Qw � Q2

s=Qeffð0Þ. In particular, independence of
the Landau damping rate of the chromaticity should not be
expected for larger wake terms (32), since these terms
directly depend on the chromaticity. For those large wake
forces, the chromaticity changes the asymptotic of eigen-
functions, and thus, the Landau damping would change as
well.

VII. LANDAU DAMPING BY LATTICE
NONLINEARITY

In the previous section, the Landau damping was esti-
mated for a linear lattice, where the bare tunes do not
depend on the transverse amplitudes. If it is not so, the

lattice tune spectrum is continuous, which may contribute
an additional part to the entire Landau damping. This
contribution is considered in this section.
To begin, let QðJ2Þ be a nonlinear correction to the

individual betatron tune for the 1st degree of freedom,
which depends only on another action J2 and does not
depend on its own action J1. Possible dependence on J1
is taken into account later on. The nonlinearity modifies the
single-particle equation of motion, Eq. (4), as

_y ið�Þ ¼ iQ½�ið�Þ�fyið�Þ � �y½�; �ið�Þ�g � Qiyið�Þ: (48)

For positive nonlinearity, Qi > 0, there is a certain point
in the bunch, � ¼ �r, where the nonlinear tune shift exactly
compensates the local space charge tune shift:

Qi ¼ Qð�rÞ: (49)

When the particle crosses this point, it crosses a resonance
of its incoherent motion with the coherent one. Crossing
the resonance excites the incoherent amplitude. Indeed, a
solution of Eq. (48) is expressed similar to Eq. (20):

yið�Þ ¼ �i
Z �

�1
Q½�ið�0Þ� �y½�0; �ið�0Þ�

� exp½i�ð�Þ � i�ð�0Þ�d�0;
�ð�Þ �

Z �

0
fQ½�ið�0Þ� � Qgd�0:

(50)

Taking the integral (50) by the saddle-point method yields
the incoherent amplitude excitation by the resonance cross-
ing:

j�yij ¼ Qð�rÞ �yð�rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	

j _Qð�rÞj

s
: (51)

Here

_Qð�rÞ ¼ dQ

d�

d�

d�
¼ dQ

d�
v

is a time derivative of the local space charge tune shift in
the resonance point (49) seen by the particle. For the
Gaussian bunch, _Q ¼ �QQs�v, in the dimensionless units
of length � and velocity

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJk � JrÞ

q
; Jr � �2r=2: (52)

After the single-pass incoherent excitation is found, the
multipass summation for the coherent energy dissipation
can be done exactly as in the previous section, leading to an
analogue of Eq. (44):

� _E ¼ 2Qs

	

Z
dJ?

Z 1

Jr

dJkfðJ?; JkÞj�yij2; (53)

with J? ¼ ðJ1; J2Þ as 2D transverse action. Like in the
previous section, using � _E ¼ 2�kEk, this energy dissipa-
tion gives the Landau damping rate,

TABLE II. Mode asymptotic parameters b2k for the modes of
Table I.

��nk 0 1 2 3 4 5 6 7 8 9

1.5 0 2.5

2.0 0 1.3 15 64 160

2.5 0 0.85 7.5 40 105 260 500 1060 1700 2300
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�k ¼ Qs

	Ek

Z
dJ?

Z 1

Jr

dJkfðJ?; JkÞj�yij2: (54)

Up to this point, it is assumed that the nonlinear tune
shift is independent of the action J1 associated with the
considered plane of the oscillation. If this dependence
exists, the result has to be modified similar to the conven-
tional head-tail case (no-space charge), f ! �J1@f=@J1,
leading to a general formula:

�k ¼ � Qs

	Ek

Z
dJ?

Z 1

Jr

dJk
@fðJ?; JkÞ

@J1
J1j�yij2: (55)

Equation (55) is valid for any distribution function and
arbitrary nonlinearity.

For a Gaussian bunch (35), with the space charge tune
shift (26a), and symmetrical nonlinearity Q ¼
hQi 
 ðJ1 þ J2Þ=2, evaluating the integral leads to

�k ¼ A
�y2kð1Þ
��

hQi2
Qmaxð0Þ ; A � 1� 102

�ykð1Þ ¼
�
1 if k ¼ 0
�bk=�k; otherwise;

(56)

where hQi is an average value for the nonlinear tune shift.
Note that the sign of the nonlinear tune shift is crucial for

the Landau damping. In this section, the positive sign of
nonlinearity is assumed. For that case, particles with higher
transverse amplitudes have additional positive tune shift.
For high enough amplitudes, this compensates their nega-
tive tune shift from the space charge, opening a door for the
Landau damping, calculated in this section. For negative
nonlinear tune shift, this compensation does not happen;
thus, negative nonlinearity should be either useless or
detrimental for the beam stabilization.

A complete Landau damping rate is a sum of the two
rates: the intrinsic rate found in the previous section and
the nonlinearity-related rate of Eq. (55).

VIII. VANISHING TMCI

When the wake-driven coherent tune shift is small com-
pared with the distance between the modes, Qw �
Q2

s=Qmax, it is sufficient to take it into account in the lowest
order, as done by Eq. (32). When the wake force is not so
small, that approximation is not justified. In this case, the
modes are strongly perturbed by the wake forces; their
shapes and frequencies significantly differ from the no-
wake solutions of Eq. (25).

To complete the theory of the space charge modes, this
equation has to be generalized for arbitrary wake field. To
do so the wake term has to be dealt with in the same way as
the space charge term, / �y, was dealt.

If the coherent tune shift is small compared with the
space charge tune shift, the generalized equation for the
eigenmodes follows:

� �yð�Þ þ uð�Þ d

d�

�
uð�Þ

Qeffð�Þ
d �y

d�

�
¼ �ðŴ �yþD̂ �yÞ

Ŵ �y �
Z 1

�
Wð�� sÞ exp½i�ð�� sÞ��ðsÞ �yðsÞds;

D̂ �y � �yð�Þ
Z 1

�
Dð�� sÞ�ðsÞds:

(57)

Note that this wake-modified equation is valid for any ratio
between the coherent tune shift and the synchrotron tune;
only the small value of the coherent tune shift compared
with the space charge tune shift, Qw � Qmax, is required.
A straightforward way to solve Eq. (57) is to expand the

eigenfunction �yð�Þ over the full orthonormal basis of the
no-wake modes �y0kð�Þ:

�yð�Þ ¼ X1
k¼0

Bk �y0kð�Þ; (58)

with as yet unknown amplitudes Bk. After that, the inte-
grodifferential equation (57) is transformed into a linear
matrix problem for eigensolutions

½�W
_

þ �D
_

þ Diagð�0Þ�B ¼ �B: (59)

HereW
_

and D
_

are the matrices of the driving and detuning
wake operators in the basis of the no-wake modes:

W
_

km ¼
Z 1

�1

Z 1

�
Wð�� sÞ exp½i�ð�� sÞ�

� �ðsÞ �y0kð�Þ �y0mðsÞu�1ð�Þdsd�;
D
_

km ¼
Z 1

�1

Z 1

�
Dð�� sÞ�ðsÞ �y0kð�Þ �y0mð�Þu�1ð�Þdsd�;

(60)

a symbol Diagð�0Þ represents a diagonal matrix whose kth
diagonal element is a kth eigenvalue of the no-wake prob-
lem �0k:

Diag ð�0Þmn ¼ �0mmn;

and B is a vector of the mode amplitudes in Eq. (58).
In the conventional no-space-charge head-tail theory

(see, e.g., Ref. [4]), the beam is stable at zero chromaticity
and the wake amplitude below a certain threshold. When
the wake term grows, it normally moves the tunes �k ¼
kQs, k ¼ 0;�1;�2; . . . increasingly down. Mostly the
tune of the mode number 0, or the base tune, is moved.
As a result, that base tune meets at some threshold intensity
the nearest from below tune of the mode �1, which is
typically moved not as much. Starting from this point, the
transverse mode coupling instability (TMCI) occurs. The
threshold value of the coherent tune shift is normally about
the synchrotron tune.
There is a significant structural difference between the

conventional synchrobetatron modes and the space charge
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modes introduced here. The conventional modes are num-
bered by integer numbers, both positive and negative,
while the space charge modes are numbered by positive
integers only. All the tunes of the space charge modes are
positive (i.e. they are above the bare betatron tune), in-
creasing quadratically with the mode number. Because of
fundamental properties of wake functions, the tunes are
normally moved down by the wake force, and normally the
mode 0 is affected most. At this point an important differ-
ence between the conventional and the space charge modes
appears. Namely, in the conventional case, the 0 mode has
a neighbor with lower tune. On the contrary, the space
charge lowest mode does not have a neighbor from below;
thus, its downward shifted tune cannot cross a tune of some
other mode. Moreover, since the wake-driven tune shift
normally decreases with the mode number, the wake field
works as a factor of divergence of the coherent tunes. As
soon as this typical picture is valid, TMCI is impossible.
An illustration of this mode behavior is presented in Fig. 4,
where coherent tunes of the Gaussian bunch are shown as
functions of the wake amplitude for a case of a constant
wakeW ¼ �W0 ¼ const< 0, no detuning, and zero chro-
maticity. The eigenvalues are given in the same units as
they were calculated in the no-wake case and presented in
Table I.

The TMCI still appears, as it is seen in Fig. 4, but at very
high values of the wake field, where formally calculated
lowest order coherent tune shift is an order of magnitude
higher than a tune separation between the lowest two
modes. A similar mode behavior is shown in Fig. 5, for
the resistive wall wake function, Wð�Þ ¼ �W0=

ffiffiffi
�

p
.

The conclusion about vanishing TMCI is also confirmed
by calculations of Ref. [6] for an air-bag bunch in the
square well with an exponential wake Wð��Þ ¼
�W0 expð���Þ. In particular, Fig. 14 of that article shows
disappearance of TMCI for any wake length 1=�, as soon
as the wake-driven coherent tune shift is exceeded by the
space charge tune shift. The conclusion of this TMCI
suppression at strong space charge should not be taken
for granted for any wake function. TMCI suppression does
not necessarily happen for significantly oscillating wake
functions, for which diagonal matrix elements have a
maximum for one of the high-order modes. As a result,
mode coupling would appear at rather low coherent tune
shift for the oscillating wake functions. A mode behavior

FIG. 4. (Color) Coherent tunes of the Gaussian bunch for zero
chromaticity, constant wake and no detuning, versus the wake
amplitude. The eigenvalues are in the units of Table I. Thick and
thin lines show real and imaginary parts of the eigenvalues
correspondingly. Colors of the real and imaginary parts are
matched. Note the high value of the TMCI threshold.

FIG. 5. (Color) Same as Fig. 4, but for the resistive wake
function Wð�Þ ¼ �W0=

ffiffiffi
�

p
.

FIG. 6. (Color) Mode coupling for the square potential well and
an oscillating wake function Wð�Þ ¼ �W0 cosð2	�=lÞ. Note
that the TMCI threshold is where it can be expected from low-
wake behavior of the most affected mode.
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like that is illustrated in Fig. 6, where the coherent fre-
quencies are calculated for the square potential well with
an oscillating wake function Wð�Þ ¼ �W0 cosð2	�=lÞ.
For this oscillating wake, the lowest 0th mode is not shifted
at first approximation, since its diagonal matrix element is
zero due to the wake oscillations. The 1st mode is the most
affected by the wake field, being strongly shifted to the
almost unaffected 0th mode. As a result, the TMCI thresh-
old is close to a point where it can be expected from the
zero-wake slope of the 1st mode; there is not any suppres-
sion of TMCI.

From a practical point of view, wakes of hadron ma-
chines are typically dominated by the resistive wall con-
tributions, which is constantlike in this context. In this case
the TMCI threshold is significantly increased when the
space charge tune shift exceeds the synchrotron tune.

To summarize, an entire picture of the TMCI threshold
can be described for the arbitrary ratio of the space charge
tune shift and the synchrotron tune. When this ratio is
small, the conventional TMCI theory is applicable, giving
approximately the synchrotron tune as the threshold value
for the maximal coherent tune shift. When the space charge
tune shift starts to exceed the synchrotron tune, the TMCI
threshold for the coherent tune shift ðQwÞth is approxi-
mately determined by a minimum of two values: the space
charge tune shift Qmax and the lowest tune of the space
charge mode Q2

s=Qmax, multiplied for nonoscillating
wakes by a rather big numerical factor, 20–100. A very
schematic picture of the TMCI threshold as a function of
the space charge tune shift over the synchrotron tune is
presented in Fig. 7.

This schematic picture would be additionally modified
by multiturn wake field or multiple bunches. This sort of
coherent interaction can be taken into account for the space
charge modes in the same manner it is done for the con-

ventional head-tail modes [4]. Both for the conventional
and the space charge modes, it is achieved by additional
summation over bunches and the previous revolutions in
the wake term.

IX. SUMMARY

In this paper, a theory of head-tail modes is presented for
space charge tune shift significantly exceeding the syn-
chrotron tune, which is a rather typical case for hadron
machines. A general equation for the modes is derived for
any ratio of the synchrotron tune and the wake-related
coherent tune shift. Without the wake term, this is a 2nd
order self-adjoint ordinary differential equation, known to
have full orthonormal basis of the eigenfunctions. The
spectrum of this equation is discussed in general and
solutions for the Gaussian bunch are presented in detail.
Landau damping of the space charge modes is considered
and calculated both without and with lattice nonlinearity.
Finally, the transverse mode coupling instability for the
space charge modes is considered. It is shown that typically
the TMCI threshold is 1–2 orders of magnitude higher than
that naively expected from the small wake behavior of the
lowest mode.
The presented theory needs to be compared with simu-

lations and measurements. The author hopes this will
happen in the near future.
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