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We report a universal beam envelope equation that governs the transverse linear dynamics of high-

intensity and high-brightness relativistic beams under constant acceleration in axisymmetric linear

accelerators. This dimensionless and almost parameter-free nonlinear equation is useful for understanding

scaling properties and for investigating nonlinear behaviors that are beyond analytical analysis.

Particularly, we explore emittance compensation in high-brightness beams evolving from the space-

charge regime to the thermal-emittance regime, a transition that commonly occurs during acceleration but

is not well studied. A new formula is given for correctly computing the rms bunch emittance from slice

envelopes, which is different from the commonly used quadratic sum of the thermal emittance and the rms

emittance in the envelope phase space.
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I. INTRODUCTION

This paper deals with transverse linear beam dynamics
during acceleration of space-charge-dominated high-
brightness relativistic beams in axisymmetric accelerators.
Our motivation comes from photoinjectors, but the results
may also be useful to certain high-intensity proton or ion
accelerators. Photoinjectors are the premier sources for
high-brightness and high-intensity electron beams that
drive many exciting applications such as x-ray free-
electron lasers, the next-generation synchrotron-radiation
sources based on energy-recovery linacs, and potentially
the International Linear Collider. The performance and
cost of these large, sophisticated devices rely critically
on the quality of electron beams, especially the electron
density in phase space. Over the past two decades, exten-
sive research and development have been devoted to under-
standing and improving beam quality with lower emittance
and higher current. A major difficulty is due to the repul-
sive Coulomb forces that tend to blow up high-density
electron bunches at low energy. Because of cancellation
between the Coulomb force and the self-magnetic force of
a bunch moving at high velocity, the space-charge forces
are inversely proportional to the square of the beam energy
and are less harmful at high energy. Therefore, a primary
goal in photoinjectors is to preserve the low thermal emit-
tance that the electrons are born with, while accelerating
the electrons from the space-charge regime at low energy
to the thermal-emittance regime at high energy. To limit
the space-charge disruption, the high electric field from a
radio-frequency (rf) cavity is used around a cathode to
accelerate electrons from rest to relativistic energy as
quickly as possible. Even so, in the early days, large

correlated transverse emittance growth was observed,
mostly due to linear space-charge forces.
A key advance in rf photoinjector development is the

recovery of the initial emittance with proper focusing, a
technique known as emittance compensation [1,2]. This
critical process is governed by the nonlinear envelope
equation addressed shortly. The first beam-envelope theory
of emittance compensation is based on perturbative treat-
ment of space-charge-dominated beam evolution in con-
stant focusing channels nearby a special quasiequilibrium
solution, known as the invariant envelope [3,4]. For space-
charge-dominated beams, the invariant envelope is analo-
gous to Brillouin flow for nonaccelerating beams, where
focusing and defocusing forces are balanced to produce a
stable beam. This theory successfully revealed a matching
condition for a space-charge-dominated beam at the en-
trance of a linac. However, it is inadequate for emittance
compensation inside an injector where the beam is far from
equilibrium and there is no well-defined invariant enve-
lope. This problem was addressed recently, and additional
criteria for compensating the detrimental slice-dependent
space-charge and chromatic forces were found [5]. Current
understanding of emittance compensation in linacs is still
limited to the space-charge-dominated invariant-envelope
theory. However, as a beam is accelerated out of the space-
charge regime, this model inevitably fails because the
emittance term must be considered. Furthermore, the in-
variant envelope becomes unstable due to insufficient fo-
cusing, and nonlinearity has to be taken into account.
Unfortunately, the intrinsic nonlinearity makes it difficult
to develop a more general theory until now, and general
dynamics across the transition (from space-charge regime
to emittance regime) is not well understood. In this paper
we present a dimensionless and almost parameter-free
universal beam envelope equation for a relativistic beam
under constant acceleration. It provides an opportunity to
numerically explore emittance compensation beyond ap-
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proximate theory and obtain understanding as general as
analytical theories can provide.

When using the slice envelopes to compute rms bunch
emittance, a common practice is to use the rms slice-
envelope emittance in the envelope phase space, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�2ih�02i � h��0i2p

, or its quadratic sum with the thermal
emittance. We pointed out that the correct expression

should be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2ih�02i � h��0i2 þ �2thh�2ih1=�2i

q
, where

� and �th are the slice envelope and thermal emittance,
respectively. The correct account of thermal-emittance
effect becomes important as a beam comes out of the
space-charge-dominated regime in a linac.

II. UNIVERSAL BEAM ENVELOPE EQUATION

Photoinjectors are usually axisymmetric. Evolution of a
beam slice under linear forces (from external electromag-
netic fields and average internal space-charge field) is
governed by the reduced beam envelope equation [4,6]

�̂ 00 þ �

�2�2
�̂� �s

�2�2

1

�̂
� �2n

�̂3
¼ 0; (1)

where the reduced envelope �̂ is derived from the rms
beam radius � by �̂ ¼ ffiffiffiffiffiffiffi

��
p

�; � and � are the velocity
divided by c and relativistic energy factor of a reference
particle, respectively; � is external focusing strength; �s is
beam perveance (generalized perveance without � and �);
and �n is normalized slice emittance. We consider systems
with constant �n and �s. Constant slice emittance requires
linearity in the underlying single-particle dynamics, with
negligible nonlinear space-charge force, in particular. The
projected emittance of a bunch slice ensemble can still vary
dramatically and needs to be controlled by emittance com-
pensation. When a beam is matched into a linac, �s often
becomes constant and the same for all slices such as in the
SPARC photoinjector [5,7,8]. The envelope equation has
two defocusing terms, with the space-charge (emittance)
term dominating at low (high) energy. The ratio of the
emittance to the space-charge term

� �
�
���nffiffiffiffiffi
�s

p
�̂

�
2

(2)

is an important parameter that grows with acceleration
from � � 1 (space-charge-dominated) to � � 1 (emit-
tance dominated). The transition energy, defined by � ¼
1 and not to be confused with the well-known transition
associated with zero slippage, reads

��j�¼1 ¼
ffiffiffiffiffi
�s

p
�̂

�n
¼ �s

�n
ffiffiffiffi
�

p ; (3)

at which point the beam envelope changes from space-
charge-dominated to emittance dominated. A major result
of understanding space-charge-dominated high-brightness
beams is finding the invariant-envelope solution

�̂ inv ¼
ffiffiffiffiffiffiffiffiffiffiffi
�s=�

q
(4)

and the emittance compensation of a beam close to the
invariant envelope [3]. The invariant envelope is the ob-
vious equilibrium solution of Eq. (1) with constant � and
�s, and �n ¼ 0. The envelope equation can be generated
from a nonautonomous Hamiltonian with a time-
dependent nonlinear potential well, at whose bottom the
invariant envelope sits [4]. However, such understanding is
insufficient when both space-charge and emittance terms
have to be considered.
Using the invariant envelope and the space-charge pa-

rameter �, the envelope equation can be written as

�̂ 00 þ ��

�2�2
�̂

�
1þ ��

��
�

�
�̂inv

�̂

�
2 � �

�
�̂inv

�̂

�
4
�
¼ 0;

(5)

where we have extracted a constant part �� from the exter-
nal focusing � and let �� ¼ �� ��. The focusing constant
�� is used for the invariant envelope in Eq. (4). Since beam
energy and � increase monotonically for accelerating
beams, we can use beam energy (scaled by the transition
energy)

�� �
ffiffiffiffi
�

p
�

¼ �nffiffiffiffiffi
�s

p
�̂inv

�ðsÞ (6)

as the independent variable instead of position s. Using the
scaled dimensionless envelope

w � �̂

�̂inv

(7)

as the dependent variable instead of �̂, Eq. (1) reduces to

��2 d
2w

d ��2
þ��00

�02 ��
dw

d ��
þ ��

�2�02

�
w� 1

w
þ��

��
w��2 ��2

w3

�
¼ 0:

(8)

In deriving this equation we have used

�̂ 00 ¼ ��02 d
2�̂

d ��2
þ ��00 d�̂

d ��
; ��0 ¼ �0

�
��; ��00 ¼ �00

�
��:

(9)

Hereafter, primes on �̂, �, and �� represent differentiation
with respect to position s, but primes on w represent
differentiation with respect to ��. Equation (8) can be
derived from the Hamiltonian

H ¼
ffiffiffiffiffi
�s

p
2�0�n

�
p2
w þ

�
�n
�̂inv

�
2 1

�2 ��2

�
�
w2 � lnw2 þ ��

��
w2 þ �2 ��2

w2

��
(10)

with a time-dependent nonlinear potential well.
In linacs, to a good approximation (for beams from high-

brightness photoinjectors where the beam becomes relativ-
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istic although it is still space-charge dominated; more
discussion later), we have

� ’ 1; �00 ’ 0: (11)

The focusing from rf accelerating field of amplitude E0 and
solenoid of amplitude Bs is given by [3,4]

� ¼ h�0i2
�
�2 þ 1

4

�
; �2 � 1

sin2’r

�
�

8
þ

�
Bsc

E0

�
2
�
;

(12)

where ’r is the rf phase of the reference particle, � is
determined by the space harmonics of the accelerating
structure, and c is the speed of light. Insert these into
Eq. (8) and, to our surprise, Eq. (1) reduces to a universal
envelope equation

�� 2 d
2w

d ��2
þ

�
��2 þ 1

4

��
w� 1

w
þ �2 � ��2

��2 þ 1=4
w� ��2

w3

�
¼ 0;

(13)

where all the quantities are dimensionless, and �� is a
focusing constant associated with �� via Eq. (12) and the
invariant envelope (e.g., initial value of � at the linac
entrance). This equation is remarkable because of its uni-
versal form, independent of beam parameters such as
emittance, perveance, energy, and accelerating gradient.
In fact, there is no free parameter at all for a traveling-wave
linac with� ¼ 0. Despite its universal and parameter-free
form, the universal envelope equation is almost as good as
the original envelope equation. This is significant because
it reduces complex problems to a unique parameter-free
equation that can be studied numerically without losing
generality. Furthermore, it provides a foundation to under-
stand various scaling properties in such systems. Note that
a different universal equation has been used in [3], but it is
limited to the space-charge regime. Existence of a general
universal envelope equation is nontrivial and useful. We
should also mention that different scaling methods have
long been used to reduce free parameters in the envelope
equation for intense beams in constant-focusing channels
without acceleration (e.g., [9]).

Because of the intrinsic nonlinearities in the envelope
equation, it is notoriously hard to draw analytical conclu-
sions. However, numerical solutions are straightforward,
from which general conclusions on beam evolution can be
obtained, thanks to the universal form of the envelope
equation. In the following, we investigate beam evolution
from the space-charge regime to the emittance regime, a
transition that commonly occurs in high-brightness beams
but for which little is known about its general dynamics
(except numerous design simulations).

III. UNIVERSAL BEAM ENVELOPE UNDER
UNIFORM FOCUSING

In the case of constant focusing, the universal envelope

equation has only one constant parameter ��, and the�2 �
��2 term in Eq. (13) vanishes. Current emittance-
compensation theory in a linac is based on linear perturba-
tion around w ¼ 1, assuming �� � 1 due to space-charge
domination. As �� inevitably becomes large, w ¼ 1 is no
longer a solution, and the perturbation diverges with beam
energy [3,4] (see the �� dependence of the R matrix in the
Appendix). To see what actually happens, we used the
universal envelope equation to numerically compute the
special solution W�ð ��Þ satisfying W�ð0Þ ¼ 1 and
W 0

�ð0Þ ¼ 0, the initial conditions for the invariant enve-

lope. Figure 1 plots W� and its derivative for � ¼ 0, 1, 2,
3, 4, 5 from �� ¼ 0 to 1 and 20, respectively. It shows that
the invariant envelope does not change much when �� � 1,
but becomes unstable and expands freely as it goes through
the transition �� ’ 1.
The nonlinear potential in the Hamiltonian of Eq. (10)

has a minimum given by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ ��2

qr
: (14)

In the space-charge regime, this potential minimum pro-
vides an equilibrium solution of the envelope equation, i.e.,
the invariant-envelope solution w ¼ 1. Figure 1 shows
that, with strong focusing (� * 3), the invariant envelope
still sits at the potential minimum even outside the space-
charge regime, which has been proposed to describe the
transition [10,11]. However, this may not be suitable for
weak focusing with smaller�, especially when there is no
magnetic focusing. The qualitative behavior ofw0 is easy to
understand. From w00 ¼ ���2ð�2 þ 1=4Þð1=wþ ��2=w3 �
wÞwe see that Eq. (14) gives the turning point, wherew00 ¼
0 and w0 reaches maximum and then decreases.
Using the universal envelopeW�, just like a mathemati-

cal special function, a general beam envelope initially
matched to the invariant envelope can be expressed as

� ¼
ffiffiffiffiffiffiffi
�s

� ��

s
W�

�
��n

ffiffiffiffi
��

p
�s

�
: (15)

Note that the accelerating gradient has no role in it. The
1=

ffiffiffiffi
�

p
in front of W� reflects the well-known adiabatic

damping with energy, which is stopped after transition by
the � dependence of W�.
Besides providing a better understanding of the basic

dynamics, such a solution offers a new way to compute the
often-needed linear transfer matrix across an accelerating
structure for intense beams matched to the invariant enve-
lope, taking linear space-charge forces into account.
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IV. EMITTANCE EVOLUTION

In addition to the invariant-envelope evolution, it is
important to know the evolution of the emittance. Using
the slice envelopes, the rms bunch emittance �rms can be
computed as

�2rms ¼
�������� hx2ibunch hxx0ibunch

hxx0ibunch hx02ibunch
� ���������

¼ jhh½x; x0�T½x; x0�isislicesj

¼
��������
�

�2 ��0
��0 �02 þ �2n=�

2

� ��
slices

��������
¼ h�2ih�02i � h��0i2 þ h�2ih�2n=�2i; (16)

where h� � �ibunch, h� � �is, and h� � �islices indicate ensemble
average over the entire bunch, an individual slice, and all
slices, respectively. �2n � hx2ishx02is � hxx0i2s is the rms
emittance of individual slices. Slice envelope �2 � hx2is,
whose derivative yields hxx0is ¼ ��0, and thus hx02i ¼
�02 þ �2n=�

2, which has been used in the above emittance
expression. The second derivative of beam envelope yields
��00 þ �02 ¼ hxx00is þ hx02is. In general, such beam-
moment equations cannot be closed. But for linear forces
with x00 ¼ �KðsÞx, this equation gives the slice-envelope
equation �00 þ K�� �2n=�

3 ¼ 0. Furthermore, �n be-
comes constant and usually the same for all slices. We
review these details because, to our knowledge, all slice-
envelope-based emittance computations have been using

the envelope-phase-space emittance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�2ih�02i � h��0i2p

,
which is Eq. (16) without the thermal-emittance term
�2nh�2ih1=�2i in the square root (sometimes, thermal emit-
tance is accounted for by a simple-minded quadratic sum
without the factor h�2ih1=�2i). However, though appeal-
ing, the envelope-phase-space emittance may not be ade-
quate for computing particle-phase-space emittance,
especially when thermal emittance becomes important. It
should be clear that the rms bunch emittance in Eq. (16)
has not taken into account nonlinear effects such as fila-
mentation of mismatched beams. Thus, it may not repre-
sent the final emittance of a thermalized beam in a long
linac.

Inserting �̂ ¼ �̂invw ¼ ffiffiffiffiffiffiffiffiffiffiffi
�s= ��

p
w and �̂0 ¼ ��0�̂invw

0 ¼
ð�0�n=

ffiffiffiffiffi
�s

p Þw0 into Eq. (16), the rms emittance �� in the �̂

coordinates reduces to

�� ¼ �nffiffiffiffi
��

p
=�0 �w ¼ �nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��2 þ 1=4
q �w; (17)

where �w is the emittance in the w coordinates given by

�w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2

wih�0
w
2i � h�w�

0
wi2 þ ð ��2 þ 1=4Þh�2

wih1=�2
wi

q
:

(18)

Note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 þ 1=4

q
plays the role of thermal emittance in

the w space.

FIG. 1. (Color) Universal beam envelope W�ð ��Þ, which repre-
sents evolution of the invariant envelope under constant focusing
and acceleration. Plots (a) and (b) are W� in the space-charge
regime ( �� from 0 to 1) and up to the emittance regime ( �� from 0
to 20), respectively. Plots (c) and (d) are the corresponding
derivatives W 0

�. The curves are for different values of focusing

parameter �, as labeled. The dots are approximate solutions
with the given expressions. Clearly, the invariant envelope is
unstable and transits into free expansion. For strong focusing
with large �, the approximate solution given by the potential
minimum appears good all the way through the transition.
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A conceptual benefit of using the naturally scaled vari-
ables and the beam-independent universal equation is the
possibility to address optics issues independent of beam
properties. In particular, since h�2

wih�0
w
2i � h�w�

0
wi2 � 0

and h�2
wih1=�2

wi � 1 according to Schwarz and Chebyshev

inequalities, �w �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 þ 1=4

q
. Clearly it is desirable to

have the envelope-phase-space emittance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2

wih�0
w
2i � h�w�

0
wi2

q
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 þ 1=4

q
(19)

and

h�2
wih1=�2

wi ’ 1: (20)

These simple expressions help to set a clear goal for the
envelope-phase-space distribution at the high-energy end
in the emittance-dominated regime, while the universal
envelope equation can map it back to the emittance-
dominated regime at the entrance of a linac, regardless of
the various parameters of a particular system.

To investigate the evolution of the emittance across the
transition, we compute �w using Eq. (18) and our
parameter-free universal envelope equation with � ¼ 0.
Starting from a slice ensemble randomly distributed on an
ellipse in the w-w0 space around the invariant envelope at
�� ¼ 0:1 (see the first inset in Fig. 2), we numerically track
each slice and plot the emittance evolution in Fig. 2 up to
�� ¼ 10. The rms emittance is computed using, respec-
tively, the exact universal equation (red and black), the
space-charge-dominated theory that assumes �n ¼ 0 and
linear perturbation around w ¼ 1 (cyan), and linear per-
turbation around W� (blue). The red curve includes the
thermal emittance while the other three do not. The evo-

lution of an envelope-phase-space ellipse is used to dem-
onstrate the nonlinear effects, since linear dynamics will
simply map an ellipse to other ellipses. The emittance
decreases at the beginning mostly due to adiabatic damp-
ing, then increases as nonlinearities pick up. Space-charge-
dominated theory clearly fails across the transition. The
effect of thermal emittance is significant across transition
into the emittance-dominated regime.
To examine the relevance and accuracy of our theory in

practice, we apply it to the state-of-art SPARC photoinjec-
tor [7,8], which has been analyzed in [5] with notations
consistent with this paper. Its booster linac consists of two
accelerating cavities separated by a short drift. A focusing
solenoid is superimposed on the first cavity. Detailed fo-
cusing profile as well as perveance and energy of the center
slice are given in Fig. 1 of [5]. For our purpose here, from a
HOMDYN [12] simulation of this injector, we extracted the

phase-space information of all slices at the booster en-
trance and converted it into w-w0 space, then numerically
tracked all slices using the universal envelope equation,
Eq. (13), with the solenoid focusing treated as �� and the
drift ignored. The resulting emittance is plotted in Fig. 3
together with the HOMDYN simulation. The beam is accel-
erated from about ��	 0:05 at 6 MeV to ��	 1:3 at
156 MeV, barely across the transition. The agreement is
excellent except for a small shift in the second cavity due to
the drift space. To see beam behavior further into the
emittance regime, Fig. 3 also shows the emittance up to
�� ¼ 4 under the same acceleration. To see the effect of
thermal emittance on rms bunch emittance, we showed,
respectively, the envelope-phase-space emittance itself
(blue and cyan), its quadratic sum with the thermal emit-
tance (magenta), and rms bunch emittance computed with
Eq. (18).
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FIG. 2. (Color) Emittance compensation in linacs with constant
focusing. The red curve is the rms bunch emittance computed
with the universal equation and Eq. (18). The other three curves
are rms envelope-phase-space emittance from, respectively, the
exact universal equation (black), the space-charge-dominated
theory (cyan), and linear perturbation around W� (blue). Insets
are phase-space distributions at the beginning and the end, as
well as at locations with the minimum and maximum emittances.
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FIG. 3. (Color) Comparison of emittance in the booster linac of
the SPARC photoinjector computed using HOMDYN simulation
(blue) and the universal envelope equation (cyan) excluding the
thermal emittance. The small difference in the second cavity is
due to the drift space between the two cavities in the booster. The
emittance beyond the booster is also shown assuming the same
accelerating structures. Thermal emittance is included in the red
curve using Eq. (18) and in the magenta curve using a simple
quadratic sum.
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V. DISCUSSIONS

In deriving the universal envelope equation, we have
assumed a space-charge-dominated beam that is relativis-
tic and under constant acceleration in Eq. (11). This is true
for present-day high-brightness photoinjectors because of
the extremely small emittance and high bunch charge. In
our example—the SPARC injector shown in Fig. 3—the
beam is space-charge-dominated beyond 100 MeV.
However, it may be desirable to remove the � ¼ 1 condi-
tion for other applications, especially for proton and ion
linacs. To explore this possibility, we note that, if using
�� � ffiffiffiffi

�
p

instead of Eq. (6), Eq. (8) changes to

�� 2 d
2w

d ��2
þ Fð�Þ ��dw

d ��
þ �2 ��

�02

�
w� 1

w
þ��

��
w� ��2

w3

�
¼ 0;

(21)

where Fð�Þ ¼ �2��00
�02 � 1

�2 ¼ � 1
�2 under constant accelera-

tion. To estimate the effect of Fð�Þ, we consider the
Wronskian determinant of linear perturbations that char-
acterizes the effect of F on mapping a small phase-space
area, which is given by the factor [13]

e
�
R

��

��0
Fð�Þ= ��d �� ¼ e

R
�

�0
1=�3d� ¼ e1=2�

2
0�1=2�2 
 e1=2�

2
0 :

(22)

This suggests that we may be able to ignore the second
term in the above equation when beam energy � > 2 with
10% accuracy.
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APPENDIX A: LINEAR PERTURBATIONS

The material in this Appendix is not necessary for under-
standing this paper, but can be interesting for understand-
ing the evolution of small perturbation around the invariant
envelope, especially the emittance effect on the transfer
matrix discussed in [3,4,14]. In addition to a special solu-
tion �w, such as the invariant-envelope solution, we are also
interested in nearby envelope solutions w ¼ �wþ �w.
Inserting this into the universal envelope equation and
linearizing the equation in terms of �w yields

��2 d
2�w

d ��2
þ
�
��2 þ 1

4

��
1þ 1

�w2
þ �2 � ��2

��2 þ 1=4
þ 3 ��2

�w4

�
�w¼ 0:

(A1)

We are interested in solutions nearby the envelope starting
from the invariant envelope �w ¼ 1. For a constant-

focusing channel, �w ’ 1 holds within a few percent up to
�� ¼ 1 for � ¼ 0 [worse for larger �, as seen from W� in

Fig. 1(a)], and the�2 � ��2 term is zero. Thus, we have the
linear equation for small perturbations as

�� 2 d
2�w

d ��2
þ

�
��2 þ 1

4

�
ð2þ� ��2Þ�w ¼ 0; (A2)

where � ¼ 3 for constant focusing. Setting � ¼ 0 will
ignore the emittance effects and reduce to the equation
studied in [3,4,14].
This equation can be transformed into the well-

known Bessel equation d2y=dz2 þ ð1=zÞdy=dzþ ð1�
	2=z2Þy ¼ 0 with y ¼ �w=

ffiffiffiffi
��

p
, z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�2 þ 1=4Þp
��,

and 	 ¼ i$, where $ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 þ 1=4

p
. Thus, the general

solution for �w can be written as

�w ¼ c1
ffiffiffiffi
��

p
J	ðzÞ þ c2

ffiffiffiffi
��

p
Y	ðzÞ; (A3)

where c1;2 are some constants, and J	ðzÞ and Y	ðzÞ are the
standard Bessel functions of the first and second kinds,
respectively. Since 	 is purely imaginary here, instead of
J	ðzÞ and Y	ðzÞ, it is better to use the pair of real functions
[15]

F	ðzÞ ¼ 1

2
sec

�
	


2

�
fJ	ðzÞ þ J�	ðzÞg; (A4)

G	ðzÞ ¼ 1

2
csc

�
	


2

�
fJ	ðzÞ � J�	ðzÞg: (A5)

Their power series representations read

Fi$ðzÞ ¼
�
2$ tanhð$
=2Þ




�
1=2

� X1
n¼0

ð�1Þnðz2=4Þn cosð$ lnðz=2Þ ��$;nÞ
n!½ð$2Þð1þ$2Þ � � � ðn2 þ$2Þ�1=2 ;

(A6)

Gi$ðzÞ ¼
�
2$ cothð$
=2Þ




�
1=2

� X1
n¼0

ð�1Þnðz2=4Þn sinð$ lnðz=2Þ ��$;nÞ
n!½ð$2Þð1þ$2Þ � � � ðn2 þ$2Þ�1=2 ;

(A7)

where �$;n ¼ argf�ð1þ nþ i$Þg.
To obtain the transfer matrix R for propagating the

envelope deviations

�w
�w0

� �
¼ R

�wð0Þ
�w0ð0Þ

� �
; (A8)

we note that

�w
�w0

� �
¼ A

y
y0

� �
; A ¼

ffiffiffiffi
��

p
0

1
2
ffiffiffi
��

p ffiffiffiffi
��

p
" #

; (A9)
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and

y
y0

� �
¼ Ry

y
y0

� �
0
; R ¼ Að ��ÞRyAð ��0Þ�1; (A10)

where

Ry ¼ Fi$ Gi$

F0
i$ G0

i$

� �
Fi$ð0Þ Gi$ð0Þ
F0
i$ð0Þ G0

i$ð0Þ
� ��1

: (A11)

In computing Ry, we can ignore any constant coefficients

in Fi$ and Gi$. It is also sufficient to keep the zero-order
term for the initial values. After a little algebra, we have

Ry ¼
X1
n¼0

ð�1Þnðz2=4Þn
n!½ð1þ$2Þ � � � ðn2 þ$2Þ�1=2

� cosun
��0

$ sinun
�$

�� ðsinun � 2n
$ cosunÞ ��0

�� ðcosun þ 2n
$ sinunÞ

" #
;

(A12)

where un ¼ $ lnð ��= ��0Þ ��$;n þ�$;0. The phase differ-

ence �$;n ��$;0 can be computed as

argf�ð1þ nþ i$Þg � argf�ð1þ i$Þg
¼ arg½�ð1þ nþ i$Þ�ð1� i$Þ�
¼ arg½ðnþ i$Þ � � � ð1þ i$Þ�ð1þ i$Þ�ð1� i$Þ�
¼ 
$

sinhð
$Þ arg½ðnþ i$Þðn� 1þ i$Þ � � � ð1þ i$Þ�:
(A13)

Combining Eqs. (A10), (A9), and (A12), we get the trans-
fer matrix

R ¼ X1
n¼0

ð�1Þnðz2=4Þn
n!½ð1þ$2Þ � � � ðn2 þ$2Þ�1=2

r11 r12
r21 r22

� �
;

(A14)

where

r11 ¼
ffiffiffiffiffiffi
��

��0

s �
cosun � 1

2$
sinun

�
;

r12 ¼
ffiffiffiffiffiffiffiffiffi
�� ��0

p
$

sinun;

r21 ¼ � $ffiffiffiffiffiffiffiffiffi
�� ��0

p
��

1þ 1þ 4n

4$2

�
sinun � 2n

$
cosun

�
;

r22 ¼
ffiffiffiffiffiffi
��0

��

s �
cosun þ 1þ 4n

2$
sinun

�
:

Note that at n ¼ 0 this matrix reduces to the previous result
[3,4,14] except for a factor �0 ��=� different in the off-
diagonal elements (because �w0 is a differentiation with
respect to �� instead of s). The n > 0 terms give the effects
due to emittance.
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