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An autoresonance electron acceleration phenomenon in the combined steady-state inhomogeneous

magnetic and microwave fields is analytically studied. Equations describing the evolution of the phase

shift between the particle velocity and the microwave electric field, total energy, and longitudinal velocity

of the electron are obtained. Linear and parabolic profiles of the magnetic field are examined. It is shown

that the proper choice of the magnetic heterogeneity degree, the microwave electric field value, and initial

electron velocity can retain the electron in the acceleration phase band. The results obtained in this work

show a complete agreement with our previous autoresonance results obtained through simulations of the

relativistic Newton-Lorentz equation.
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I. INTRODUCTION

It is well known that the cyclotron autoresonance or self-
sustenance regime for an electron is performed by continu-
ous maintaining of equality between the frequency of the
electromagnetic field and the cyclotron frequency. The
autoresonance electron-microwaves interaction in homo-
geneous magnetic fields was realized by increasing in time
of the magnetic field level at a rate which permits to keep
the cyclotron frequency value equal to the microwaves
frequency despite the relativistic electron mass rise [1–8].
A cyclotron resonance acceleration of the electrons in a
magnetostatic guide field by a traveling electromagnetic
wave with adiabatically varying parameters was named
spatial autoresonance cyclotron accelerator [9,10]. The
electron acceleration to high energies by microwaves was
also found in the numerical experiments on plasma dy-
namics in an electron cyclotron resonance (ECR)
minimum-B trap [11], which was attributed to a self-
sustenance of the ECR conditions on some part of the
electron trajectory. Plasma heating by pulse microwaves
in an adiabatic mirror magnetic trap observed in the experi-
ments [12] was attributed to a cyclotron autoresonance
interaction of electrons with microwaves. We have recently
reported on the possibility of self-sustenance of the ECR
conditions in the stationary inhomogeneous magnetic
fields at a fixed microwave field frequency through a
numerical solution of the relativistic Newton-Lorentz
equation in the one-particle approximation [13]. This
type of cyclotron resonance speeding up of electrons can
be named as spatial autoresonance acceleration (or
SARA).

In the present paper, we analyze analytically the SARA
phenomenon in a single particle approximation. The basic
set of the SARA equations which describe the evolution of
the phase, energy, and longitudinal velocity of the electron
are developed. The SARA electron-microwave interaction
significantly differs from the other types of autosustenance

acceleration: it occurs in the inhomogeneous magnetic
field. The fact that the diamagnetic force is presented in
the SARA concept but not found in the GYRAC concept
[5,6] is a most remarkable difference between these accel-
eration mechanisms. For the SARA concept, the diamag-
netic force is one of the important factors limiting the
energy which can be achieved. The analytical results
were verified through numerical experiments under the
conditions which were used in our previous SARA simu-
lations [13].

II. PHYSICAL SCHEME AND THEORETICAL
MODEL

A physical scheme for the SARA phenomenon realiza-
tion is shown in Fig. 1. A cavity of cylindrical geometry (1)
is placed inside the current coil set (2) which forms a static
magnetic field of the desired profile. In the cavity, a TE11p

mode (with p ¼ 1; 2; 3 . . . ) can be excited (3). An electron

FIG. 1. A physical model scheme: 1—cavity, 2—magnetic
coils, 3—electric field profile (particular case of TE111 mode),
4—on-axis injection point, 5—off-axis injection point, 6—elec-
tron trajectory, 7—stop plane.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 041301 (2009)

1098-4402=09=12(4)=041301(8) 041301-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.12.041301


with the initial energy ofW0 can be injected both along the
cavity axis (4) and through an off-axis orifice (5). The
cavity axis which coincides with the magnetic field axis
is taken as the z axis.

The evolution of the magnetic field along the z axis is
expressed as

~Bð0; zÞ ¼ ~B0½�0 þ bðzÞ�; (1)

where B0 ¼ m0!=e is the magnetic induction correspond-
ing to the exact cyclotron resonance for the electron rest-

mass m0, ! is the electromagnetic field frequency, �0 ¼
½1� ðvz0=cÞ2��1=2 is the initial relativistic factor, vz0 and c
are the initial electron and light velocities, respectively.
The coordinate origin z ¼ 0 is located on the left-hand
lateral side of the cavity (see Fig. 1). The longitudinal
magnetic component profile is determined by the dimen-
sionless function bðzÞ, assuming bð0Þ ¼ 0. The spatial

magnetic configuration ~Bðr; zÞ is deduced from the equa-

tion �r � ~B ¼ 0 under the condition inside the cavity
@Bz=@r ffi 0:

~Bðr; zÞ ¼ �ð1=2Þ½rdBzðzÞ=dz�r̂þ BzðzÞẑ; (2)

where

Bzðr; zÞ ffi BzðzÞ ¼ B0½�0 þ bðzÞ�: (3)

The TE11p cylindrical mode excited in the cavity is given

by the expressions

Er ¼ 2E0ð1=hrÞJ1ðhrÞ sin� sinðp�z=dÞ cos!t; (4)

E� ¼ 2E0J
0
1ðhrÞ cos� sinðp�z=dÞ cos!t; (5)

where h ¼ S11=a, S11 ¼ 1:841, and a is the radius of the
cavity; E0 is the microwave amplitude and d is the cavity
length. When hr < 1, the Bessel function is approximated
as J1ðhrÞ ffi hr=2. Then Eqs. (4) and (5) are reduced,
respectively, to

Er ¼ E0 sin� sinðp�z=dÞ cos!t; (6)

E� ¼ E0 cos� sinðp�z=dÞ cos!t: (7)

One can see that the TE11p mode is well approximated by a

stationary plane wave. An electron moving along the z axis
interacts effectively with the right-hand polarized TE
standing wave if the phase shift between the electric field
and the transversal velocity is maintained between�=2 and
3�=2. This phase shift denoted as ’ (see Fig. 2) is intro-
duced in the expression for the electric field:

~E ¼ E0ðsin’r̂þ cos’�̂Þj sinðp�z=dÞj: (8)

In expression (8), the third factor is given in the absolute
form because the microwave electric field direction has
been taken into account in the phase shift ’. The coordi-
nate system for the off-axis injection case is shown in
Fig. 3.

In the S0ðx0; y0Þ coordinate system, where the point 00 is
the guide center of the electron injected at a point r0 � 0,
the magnetic field components are

B0
r ¼ �ð1=2Þðr0 þ r0 cos�

0ÞðdB0
z=dzÞ; (9a)

B0
� ¼ ð1=2Þðr0 sin�0ÞðdB0

z=dzÞ; (9b)

B0
z ¼ Bz: (9c)

For the off-axis injection case, the electric field can be
expressed in a form analogous to expression (8) if the
inequality r0 þ r0 < a=S11, which is the case in the present
work, is satisfied. The motion equation of an electron with
the momentum ~p and the velocity ~v (v ¼ �c and p ¼
��m0c) in the combined field composed of the inhomoge-

neous magnetic field ~B0ðr; zÞ and the microwave electric

FIG. 2. (a) Mutual dispositions of the particle trajectory, elec-
tric, and magnetic fields; (b) electron trajectory projection onto
the transverse plane and definitions of the angles which charac-
terize the electron motion:!c ¼ dc =dt, where c is the absolute
phase of the transversal velocity ~v?, ’ is the angle between ~v?
and ~E.

FIG. 3. Coordinate scheme for the off-axis electron injection
case.
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field ~E0 is

d ~p0=dt ¼ ~F0 ¼ �e ~E0 � e ~v0 � ~B0 þ ~FS; (10)

where ~FS is the synchrotron radiation force which is dis-
regarded here because the electron energies for the chosen
simulations are not expected to be high enough.

Substituting Eqs. (8) and (9) in Eq. (10) and taking into
account that B0

r=B
0
z � 1 and v0

r=v
0
� � 1, we obtain

v0
zB

0
�=v

0
�B

0
z � 1. Therefore, the force components can be

written as

Fr ¼ �ev0
?B

0
z � eE0j sinðp�z0=dÞj sin’0; (11)

F� ¼ �eE0j sinðp�z0=dÞj cos’0; (12)

Fz ¼
�
� m0v

02
?

2B0½!0
cðzÞ=!� �

�
ev?r0

2

�
sinð’0 þ!tÞ

��
dB0

z

dz

�
;

(13)

where !cðzÞ ¼ v0
?ðzÞ=r0ðzÞ (v0

? ffi v0
� and r0 � 0) is the

local electron cyclotron frequency. Equation (11) is defined
as the centripetal force, Eq. (12) is related to the energy
variation, and Eq. (13) is the diamagnetic force which acts
in the direction opposite to the magnetic field gradient and
impedes the advance of the electrons into a higher mag-
netic field. In the particular case of the exact resonance
!0

cðzÞ ¼ !, Eq. (13) is reduced to the equation which
corresponds to the case when the electric field is absent.
One can see that the spatial self-sustained acceleration is
different from the other autoresonance types because in the
inhomogeneous magnetic field there appears a diamagnetic
force which is a function of the particle position. To
simplify the presentation of the expressions here and fur-
ther on, the upper index, which marks the S0ðx0; y0Þ coor-
dinate system values, is omitted.

From Eq. (11) we get

�m0v
2
?=r ¼ ev?BzðzÞ þ eE0j sinðp�z=dÞj sin’; (14)

where

� ¼ ½1� ðv2
? þ v2

zÞ=c2��1=2: (15)

Using Eqs. (3), (14), and (15) and the dimensionless elec-
tric field g0 ¼ E0=B0c, the local electron cyclotron fre-
quency !cðzÞ can be written as

!cðzÞ=! ¼ ��1½�0 þ bðzÞ�
þ g0�

�1½ð1� ��2Þ � ðvz=cÞ2��1=2

� j sinðp�z=dÞj sin’: (16)

The phase-shift evolution is described by the expression

_’ ¼ !cðzÞ=!0 � 1; (17)

where the dot denotes the operator ð1=!0Þðd=dtÞ.
Substituting Eq. (16) in Eq. (17) and normalizing the
lengths and velocities to the relativistic Larmor radius
rL ¼ c=!0 and the light velocity c respectively, we obtain

_’ ¼ ��1½�0 � �þ bð�Þ�
þ g0�

�1ð1� ��2 � u2zÞ�1=2j sinðp��=�Þj sin’; (18)
where � ¼ z=rL, � ¼ d=rL, and uz ¼ vz=c.
For the azimuth force component [Eq. (12)], it is more

convenient to express it as an energy variation:

dð�m0c
2Þ=dt ¼ �e ~E � ~v ffi �eE0v?j sinðp�z=dÞj cos’:

(19)

Equation (19) can be rewritten as

_� ¼ �g0ð1� ��2 � u22Þ1=2j sinðp��=�Þj cos’: (20)

Using expressions (3) and (17), the longitudinal force
component

dð�m0vzÞ=dt ¼ Fz (21)

can be transformed into

dð�vzÞ=dt ¼ �
�
½v2

?=2ð _’þ 1Þ�

� eB0v?r0
2m0

sinð’þ!tÞ
�
dbðzÞ=dz: (22)

From this equation, we obtain

dvz

dt
¼

1���2�ðvz=cÞ2
2ð _’þ1Þ c2��3 dbðzÞ

dz � ½1� ��2 � ðvz

c Þ2�1=2 vz

c
dv?
dt � !0r0c

2 ½1� ��2 � ðvz

c Þ2�1=2��3 sinð!tþ ’Þ dbðzÞdz

��2 þ ðvz

c Þ2
: (23)

Equation (15) leads to

dv?
dt

¼ c

�
1� ��2 �

�
vz

c

�
2
��1=2

�
��3 d�

dt
� vz

c2
dvz

dt

�
:

(24)

Substituting Eq. (24) in Eq. (23) and normalizing the
variables, we have

_uz ¼ ���1

�
1� ��2 � u2z
2ð _’þ 1Þ

dbð�Þ
d�

þ uz _�

þ r�0
2
ð1� ��2 � u2zÞ1=2 sinð’þ �Þdbð�Þ

d�

�
; (25)

where r�0 ¼ r0=rL. The function � ¼ �ð�Þ is deduced from
the expression
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_� ¼ uz: (26)

Equations (18), (20), (25), and (26) form a closed set of
highly nonlinear differential equations which describes the
time evolution of the energy, phase shift, longitudinal
velocity, and z position of the particle during its motion
in the SARA conditions. This set can be solved numeri-
cally by using the Runge-Kutta method of the fourth order
under the following initial conditions:

’ð0Þ ¼ �; (27)

�ð0Þ ¼ ½1� u2?ð0Þ � u2zð0Þ��1=2; (28)

uzð0Þ ¼ uz0; (29)

�ð0Þ ¼ �0; (30)

where u? ¼ v?=c.
We can turn to the cyclotron acceleration in a homoge-

neous magnetic field increasing slowly in time when
the following substitutions will be made: bð�Þ ! bð�Þ,
j sinðp��=�Þj ! 1, and naturally put uz ¼ 0. Therefore,
Eqs. (18) and (20) are reduced to

_’ ¼ ��1½�0 � �þ bð�Þ� þ g0�
�1ð1� ��2Þ�1=2 sin’;

(31)

_� ¼ �g0ð1� ��2Þ1=2 cos’: (32)

These equations are similar to the equations obtained in
[5,6] for the GYRAC concept, except for the term corre-
sponding to the synchrotron radiation.

When utð0Þ ¼ 0 the factor ð1� ��2 � u2zÞ�1=2 causes a
singularity in Eq. (18). It so happens because the definition
!c ¼ v?=r is valid only at r � 0. To avoid the singularity

at the injection point where the electric field is nil (see
Fig. 1), we start with the Newton-Lorentz equation in the
rectangular coordinates and use the following approxima-
tion:

~B ffi B0½�0 þ bðzÞ�ẑ; (33)

� ffi �0: (34)

In this approximation, we obtain

_u x ¼ ���1
0 fg0 cosð�Þ sinðp��=�Þ þ uy½�0 þ bð�Þ�g;

(35)

_u y ¼ ���1
0 fg0 sinð�Þ sinðp��=�Þ � ux½�0 þ bð�Þ�g;

(36)

� ¼ uz0�: (37)

This set of differential equations can be solved with the
Runge-Kutta method under the injection-point conditions:
’ð0Þ ¼ � and ux0 ¼ uy0 ¼ � ¼ 0.

Stability of the acceleration.—Proceeding from the
function ’ð�Þ, which is to remain in the band �=2<
’ð�Þ< 3�=2, 8� and whose initial value is ’ð0Þ ¼ �,
we can deduce the magnetic field profile bð�Þ to ensure the
maintenance of the acceleration regime along the electron
trajectory. Hence, using Eq. (18), we get the magnetic field
profile as

bð�Þ ¼
�
uz

d’

d�
þ 1

�
�� �0 � g0ð1� ��2 � u2zÞ�1=2

� j sinðp��=�Þj sin’: (38)

Therefore,

dbð�Þ
d�

¼ �

�
u�1
z _uz

d’

d�
þ uz

d2’

d�2

�
þ

�
uz

d’

d�
þ 1

�
u�1
z _�þ g0ð1� ��2 � u2zÞ�3=2

�
ð��3u�1

z _�� _uzÞj sinðp��=�Þj sin’

� ð1� ��2 � u2zÞ
��

p�

�

�
Sð�Þ cosðp��=�Þ sin’þ j sinðp��=�Þj cos’d’

d�

��
: (39)

Here

Sð�Þ ¼ sinðp��=�Þ
j sinðp��=�Þj ¼

8><
>:
1 if 2k < pð�=dÞ< 2kþ 1; k ¼ 0; 1; 2; . . .
0 if pð�=dÞ ¼ k
�1 if 2kþ 1<pð�=dÞ< 2kþ 2; k ¼ 0; 1; 2; . . . :

(40)

For the particular case of r�0 ¼ 0, substituting Eq. (39) in Eq. (25), we have

_uz ¼
�ð1� ��2 � u2zÞ

2ðuz d’d� þ 1Þ
�
uz

d2’

d�2
þ ��1

��
uz

d’

d�
þ 1

�
u�1
z _�þ g0�

�3ð1� ��2 � u2zÞ�3=2u�1
z

��������sin
�
p��

�

���������sin’ _�

þ g0ð1� ��2 � u2zÞ�1=2

�
ðp�=�ÞSð�Þ cos

�
p��

�

�
sin’þ

��������sin
�
p��

�

���������cos’
d’

d�

��	
þ uz�

�1 _�

�

�
�ð1� ��2 � u2zÞ

2ðuz d’d� þ 1Þ
�
�u�1

z

d’

d�
þ g0�

�1ð1� ��2 � u2zÞ�3=2

��������sin
�
p��

�

���������sin’
�
� 1

��1
: (41)
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Solving the differential equations (20), (26), and (41) at the
initial conditions (28)–(30), we can, first, obtain the func-
tions �, uz, and �, and then the magnetic field profile can be
calculated using Eq. (38). The singularity in Eq. (41) at
bð�Þ ffi 0 is treated in the same way as the Eq. (18)
singularity.

A continuous sustenance of the exact resonance is pos-
sible only in the particular case of p ¼ 1, because, if p �
1, the phase ’ jumps an angle � in each node of the
standing electromagnetic wave. For the exact resonance
’ ¼ �, Eq. (38) leads to

� ¼ �0 þ b: (42)

Substituting Eq. (42) in Eqs. (20) and (41), for the case of
’ ¼ �, we obtain

_b ¼ g0½1� ð�0 þ bÞ�2 � uz
2�1=2 sin½��ð�Þ=��; (43)

_u z ¼ ð1=2Þð�0 þ bÞ�1f½ð�0 þ bÞ�2 � 1�u�1
z � uzg _b;

(44)

where _b ¼ uzðdb=d�Þ, and uz are determined by expres-
sion (26). Equations (43) and (44) can be solved numeri-
cally with the conditions at the injection point z ¼ 0:

bð0Þ ¼ 0; (45)

uzð0Þ ¼ uz0; (46)

�ð0Þ ¼ 0: (47)

The simulations are stopped when the electron comes in
contact with the cavity wall or reaches its return point on a
stop plane where uz ¼ 0 (7 in Fig. 1). The latter condition
generates a singularity in Eq. (44), and therefore the mini-
mum z velocity at the return point is taken as uzmin ¼
10�4. The corresponding total electron energy can be
obtained directly from Eq. (42).

For the case of p ¼ 2, the phase shift in the microwave
field node, which divides the cavity into two parts, is
changed by �. The fulfillment of the expression

’ð�Þ ¼
� 2�� �

1þexp½10ð���=2Þ��� if 0 � � < �=2

�� �
1þexp½10ð���=2Þ=��� if �=2< � � �

(48)

guarantees the maintenance of the acceleration regime.
Here � and �� are the normalized lengths of the cavity
and of the zone where the phase shift varies, respectively.
We can note that ’ð0Þ ¼ � and ’jð�=2Þ� � ’jð�=2Þþ ¼ �.

III. RESULTS AND DISCUSSIONS

Now we proceed from the case BzðzÞ ¼ Bzð0; zÞ which
was studied in our previous work [13]. Using the values
obtained in [13], the function bðziÞ ¼ Bð0; ziÞ=B0 � 1 was
determined on the z axis in 81 points where the derivative
dbðziÞ=dz was found numerically. The values bðzÞ and

dbðzÞ=dz in the particle position points were calculated
by using a linear interpolation method. The magnetic
field shown in Fig. 4 is determined in the approximation
of Eq. (3). In our case, the radial component Brðr; zÞ
expressed through the first term in the right-hand side
of Eq. (2), is insignificant in comparison with the longitu-
dinal component. Accordingly, the radial inhomogeneity
of the magnetic field is found equal to
ð1=8ÞB0r

2½dbðzÞ=dz�2=½�0 þ bðzÞ�. In spite of this, the
transversal component can hardly be ignored because the
diamagnetic force depends on this component. It should be
mentioned in this connection that the longitudinal velocity
uz of the electron injected at r0 ¼ 1:5 cm oscillates around
the values calculated for the electron which begins to move
along the cavity axis but this oscillations are found insig-
nificant, �uz=uz < 4� 10�2. The energy difference is
found still smaller. This is why the graphs demonstrating
the mentioned differences are not shown.
Figure 5 shows the energy space evolution derived for

the present model and for the magnetic field data given in
[13]. Both simulations were fulfilled for the electrons with
an initial energy of 10 keV injected into the cavity where a
TE112 microwaves of 2.45 GHz frequency and an ampli-
tude of 6 kV=cm was excited. The phase-shift dependence
on the longitudinal coordinate for the cases of Fig. 5 is
presented in Fig. 6.
The difference between the energies (see Fig. 5) which is

observed in the space z 	 12:5 cm where the Larmor
radius is relatively large (0.7–1.6 cm), can be attributed
to the difference in the transversal magnetic field inhomo-
geneities. In case [13], the diamagnetic force is high
enough to prevent the electron from crossing the z ¼
19 cm transverse plane (Fig. 5, the circles) whereas in
the case of the approximated magnetic field the accelera-
tion in the transversal plane is not so effective that it

FIG. 4. The magnetic field profile in the y ¼ 0 plane.
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permits the electron to achieve the lateral cavity wall
(Fig. 5, the solid line).

Figure 7 demonstrates the electron energy evolution
calculated on the basis of the SARA model (solid, dashed,
and doted lines) and the exact equation data (circles,
triangles, and rectangles) at the initial energies of 10, 20,
and 30 keV. The other experimental parameters are as
follows: the cylindrical cavity of 2.0 m long with a radius
of 1.33 m was excited at TE111 mode by 100 MHz micro-
waves with the amplitude of 6 kV=cm. The space variation
of the magnetic field is determined by a linear function
bðzÞ ¼ 	z, where 	 ¼ �0ðRm � 1Þ=d and Rm ¼ 1:3. One
can see that the SARA model data agrees well with the
exact equation simulation results. The electron with the
initial energy of 30 keV penetrates deeper into the cavity

than the electrons with lower initial energies and speeds up
to 0.94 MeV.
Figure 8 shows the calculations fulfilled in accordance

with the SARA model for a magnetic profile bðzÞ ¼ 	z2,
	 ¼ �0ðRm � 1Þ=d2, and Rm ¼ 1:2. The cavity parame-
ters were taken identical with those used for the linear case
but microwave field was chosen equal to 10 kV=cm. In this
case, the electron with the initial energy of 30 keV is
accelerated up to 1.2 MeV. The electron is seen to acquire
more energy in a magnetic field of a parabolic type than in
the linear case.
Figure 9 shows the evolution of the phase shift, deter-

mined by expression (48), along the electron path for three
phase zone lengths �z ¼ 12 cm, 9 cm, and 6 cm. At the

0 5 10 15 20

2π

3π/2

π

π/2

ϕ (
ra

d)

Z(cm)

FIG. 6. Dependence of the phase shift on the longitudinal
coordinate: the solid line is the SARA model; the circles repre-
sent data obtained in Ref. [13].

FIG. 7. Energy evolution in a linear magnetic field at different
initial injection energies: (A) Wi ¼ 10 keV, (B) Wi ¼ 20 keV,
(C) Wi ¼ 30 keV.

FIG. 8. Electron energy evolution at different initial injection
energies for a parabolic magnetic field case: (A) Wi ¼ 10 keV,
(B) Wi ¼ 20 keV, (C) Wi ¼ 30 keV.
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FIG. 5. Spatial evolutions of the electron energy: the solid line
is the SARA model, the circles represent the data obtained in
Ref. [13].
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injection point, the electron is in the exact cyclotron reso-
nance which is followed by the phase-shift deviation from
�. However, this deviation remains in the acceleration
band, which guarantees the acceleration stability.

The smaller is �z, the larger is the zone where the
electron is found in the near-exact cyclotron resonance
conditions. Figure 10 shows the electron energy change
for the �z values, presented in Fig. 9. The energy increases
monotonically with the exception of the region close to
z ¼ 10 cm where the microwave field is nil. The energy
rise comes to a stop when the diamagnetic force prevents
the electron from penetrating into a higher magnetic field
region (see Fig. 10). It is worth mentioning in this connec-
tion that the optimization of ’ðzÞ for the maximum energy
achievement is not discussed in the present work.

The magnetic field profiles for different �z presented in
Fig. 11 were calculated using expression (38). The results
shown in Fig. 11 offer the magnetic field profiles which
provide quite an effective acceleration along the electron
trajectory. Figure 12 shows the longitudinal velocity com-
ponent evolution as the function of the electron z coordi-
nate for each case presented in Figs. 10 and 11. At the end
of the electron motion, the longitudinal velocity diminishes
or falls to zero due to the diamagnetic force action.

IV. CONCLUSIONS

The possibility of the cyclotron autoresonance accelera-
tion in space inhomogeneous magnetic fields is analyzed.
The magnetic field configuration which keeps the condi-

FIG. 10. Electron energy space evolution for different lengths
of the zone where the phase shift is varied: (A) �z ¼ 12 cm,
(B) �z ¼ 9 cm, (C) �z ¼ 6 cm.

FIG. 11. Magnetic field profile for different lengths of the zone
where the phase shift varies: (A) �z ¼ 12 cm, (B) �z ¼ 9 cm,
(C) �z ¼ 6 cm.

FIG. 12. Longitudinal velocity evolution for different lengths
of the zone where the phase shift varies: (A) �z ¼ 12 cm,
(B) �z ¼ 9 cm, (C) �z ¼ 6 cm.

FIG. 9. Dependence of the phase shift on the longitudinal
coordinate for different lengths �z of the zone where the phase
shift varies: (A) �z ¼ 12 cm, (B) �z ¼ 9 cm, (C) �z ¼ 6 cm.

CYCLOTRON SPATIAL AUTORESONANCE . . . Phys. Rev. ST Accel. Beams 12, 041301 (2009)

041301-7



tions for the phase shift up in the acceleration band is
found.

The total SARA operation parameters are of steady-state
mode and make the SARA concept more attractive for
practical realizations if compared with the existing self-
sustained acceleration methods. The problems of how the
synchrotron radiation force influences the electron energy
balance and of acceleration stability with respect to the
initial conditions will be analyzed in our future work.
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