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Transverse beam stability is strongly affected by the beam space charge. Usually it is analyzed with the

rigid-beam model. However, this model is only valid when a bare (not affected by the space charge) tune

spread is small compared to the space charge tune shift. This condition specifies a relatively small area of

parameters which, however, is the most interesting for practical applications. The Landau damping rate

and the beam Schottky spectra are computed assuming that validity condition is satisfied. The results are

applied to a round Gaussian beam. The stability thresholds are described by simple fits for the cases of

chromatic and octupole tune spreads.
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I. INTRODUCTION

Particle interaction via the walls of the vacuum chamber
is conventionally described by the wake functions and
impedances. In the absence of damping, this interaction
leads to beam coherent instabilities. However, if there are
particles in resonance with coherent motion, they effec-
tively exchange their incoherent energy with the energy of
coherent oscillations. If the phase space density of the
resonant particles is sufficiently large, the instability is
stabilized by this mechanism, called the Landau damping.
Contrary to the wakefields, Coulomb interaction does not
drive the instability by itself, since it preserves the total
energy and momentum. However, the collective Coulomb
field can strongly affect the beam stability because it
separates coherent and incoherent frequencies. Indeed,
when the beam oscillates as a whole, its collective motion
does not see the space charge, while an individual particle
does. Thus, if the coherent and incoherent frequencies are
separated, there are no resonant particles, and no Landau
damping.

To analyze the beam stability with space charge, an
effective method was suggested by Möhl and Schönauer
in 1974 [1]. To describe transverse oscillations of a coast-
ing beam, they introduced a linearized equation of motion:

d2xi
dt2

þ�i
2Qi

2xi þ 2�0
2Q0½�Qc �xþ�Qscðxi � �xÞ� ¼ 0:

(1)

Here xi is the offset of the ith particle,�i, Qi, �Qsc are its
revolution frequency, the tune, and the direct space charge
tune shift,�0,Q0 are the average revolution frequency and
tune, �x is the offset of beam center, and �Qc is the
impedance-driven coherent tune shift. Although perturba-
tion of a particle motion depends on its amplitudes, this
equation assumes that the beam oscillates as a rigid body
when the coherent beam fields are computed. Con-
sequently, the beam coherent motion is completely de-
scribed by the dipole offset �x. This assumption is correct

if all lattice frequencies�iQi are identical. In this case, all
particles respond identically to the coherent field, �xi ¼ �x;
consequently, the beam oscillates as a rigid body, and the
spread of the space charge tune shifts does not matter.
However, a spread of the lattice frequencies generally
makes the rigid-body model of Eq. (1) incorrect. Indeed,
an individual response to the coherent field is determined
by the separation of the individual lattice frequency from
the coherent frequency, which varies from particle to par-
ticle. Since individual responses are not identical, the beam
shape is not preserved in the dipole oscillations, so the
rigid-body model of Eq. (1) is not self-consistent and
generally cannot be justified.
In 2001, Blaskiewicz showed a way to analyze the

problem, avoiding the rigid-beam assumption [2]. Within
a one-dimensional model, he developed an integral equa-
tion on the phase space density perturbation. He found two
cases when his equation gives the same result as the rigid-
beam approach. The first case was the Lorentz momentum
distribution, and the second one was the water-bag distri-
bution over the transverse actions. With some additional
model simplifications, he plotted several stability diagrams
for distributions close to Gaussian. The same problem of
self-consistent beam stability analysis was recently exam-
ined by Pestrikov [3]. Considering a two-dimensional
model, he came to a general integral equation and found
it ‘‘too complicated even for a numerical solving.’’ To
proceed, he considered a single-dimensional problem,
came to the same integral equation as Blaskiewicz, and
reproduced his Lorentz and water-bag results. For a
Gaussian distribution, he plotted additional stability dia-
grams, and found no antidamping, found earlier in his
rigid-beam model studies [4]. Indeed, Landau antidamping
cannot exist at all if the distribution is close to Gaussian:
this is a mere consequence of the second law of thermo-
dynamics. A Hamiltonian system in thermal equilibrium is
always stable. Appearance of Landau antidamping in the
rigid-beam model is a striking example of how wrong the
results of this model can be. Rigid-beam stability diagrams
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were presented in several papers [4–6]; however, the range
of their applicability was not clarified.

II. MODEL JUSTIFICATION

As mentioned above, the rigid-beam model is correct if
all the lattice frequencies are identical, �iQi ¼ �0Q0.
This case is simple, but not so interesting, since there is
no Landau damping, and any impedance with a nonzero
real part makes the beam unstable. Now let us assume that
the lattice frequency spread is sufficiently small so that the
rigid-beam model would still be a good approximation.
That requires the rms spread of the lattice frequencies
�ð�iQiÞ to be small compared with the separation fre-
quency, which is a difference of the coherent frequency
from an average incoherent one:

�ð�iQiÞ � j��sepj � �0jReð�QcÞ � h�Qscij; (2)

where h�Qsci is the average space charge tune shift. In this
case, the rigid-beam model is still a good approximation;
but there is a small amount of the resonant particles in tails
of the distribution, yielding small Landau damping. If the
impedance-driven instability rate �0 Imð�QcÞ is also
small, even this tiny amount of Landau damping can be
sufficient for the beam stabilization. Thus, when the insta-
bility rate is much smaller than the separation frequency, or

Im ð�QcÞ � jReð�QcÞ � h�Qscij; (3)

a relatively small frequency spread is sufficient to stabilize
the beam. Near the threshold, the small frequency spread is
not significant for a bulk of the beam, which oscillates
almost the same way as for zero tune spread. The tiny
amount of the resonant particles has almost no influence on
the coherent motion, except a slow transfer of the coherent
energy into an incoherent one, and thus, a slow collective
mode damping. In other words, when Eq. (3) is satisfied,
the rigid-beam model is applicable for calculation of
Landau damping required for beam stabilization.
This energy-based calculation of Landau damping leads
to the same result as a formal solution of the dispersion
equation [7].

In this paper, we limit ourselves to a case of thin tail, or
small frequency spread approximation of Eq. (2), where
the rigid-beam model is applicable. This allows us to
calculate the Landau damping and the threshold parame-
ters of the beam for a relatively small growth rate (3). Our
primary interest is the threshold calculation. This is addi-
tionally simplified due to an exponentially small phase
space density of resonant particles, and consequently
the Landau damping. When the damping rate is a steep
function of the dimensionless frequency separation
��sep=�ð�iQiÞ � 1, the threshold condition mostly de-

termines this big ratio, being only slightly dependent on the
coherent growth rate.

In practice, the far tails of the distributions are not well
measured or well reproducible, so that even exact formulas

cannot produce reliable results for the instability growth
rates. On the contrary, the stability threshold for the beam
intensity, being an inverse function of the Landau damping
rate, depends much weaker on specific behavior of the
distribution tails, and therefore can be predicted much
better. Note also that the condition of small growth rate
of Eq. (3) is typically well satisfied for low and medium
energy hadron machines, mainly addressed by this paper.

III. DISPERSION EQUATION

After validity limits of the rigid-beam model are speci-
fied, a solution of Eq. (1) can be considered in more detail.
Assuming xiðtÞ / expð�i!tÞ and ! � �0ðnþQ0 þ �Þ,
one obtains the dispersion relation for the eigenvalue � [1]:

"ð�Þ � 1�
Z ½�Qcð!Þ��QscðJx; JyÞ�fxJxd�

�QlðJx; Jy; p̂Þþ�QscðJx; JyÞ��� i0
¼ 0;

d�� dJxdJydp̂; �¼!=�0 �ðnþQ0Þ;
f¼ fðJx; Jy; p̂Þ; fx � @f

@Jx
;

Z
fdJxdJydp̂¼ 1:

(4)

Here, all the notations are rather conventional: Jx and Jy
are the transverse actions; p̂ ¼ �p=p is a relative momen-
tum offset; �QlðJx; Jy; p̂Þ is the total lattice-related tune

shift; �QscðJx; JyÞ is the direct space charge tune shift as a
function of the amplitudes; and � ¼ 1=�2

t � 1=�2 is the
slippage factor. The transverse actions are normalized by
the beam rms emittances x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2"xJx�x

p
cosc x and simi-

larly for y. That results in

Z
fJx;ydJxdJydp̂ ¼ 1:

In this paper we will only consider the first two terms
contributing to the total lattice-related tune shift: the chro-
matic contribution and the contribution due to octupole
nonlinearity so that

�QlðJx; Jy; p̂Þ ¼ ½�� ðnþQÞ��p̂þ �QoðJx; JyÞ;
n ¼ 0;�1;�2; . . . :

The coherent shift �Qcð!Þ describes the beam interaction
with the wall. This interaction produces both the dipole and
quadrupole forces, or, in other words, driving and detuning
wakes [8]. Thus, the entire force acting on the ith particle
can be expressed as Fi ¼ W �xþDxi, with W as the con-
ventional dipole (or driving) wake function, and D as the
quadrupole (or detuning) wake function. By definition,
only the driving wake term contributes into the coherent
shift �Qcð!Þ / W. For the coasting beam, the detuning
wake simply shifts all tunes by the same amount. It makes
no change for stability analysis and therefore is omitted
below.
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A conventional method of analysis of the dispersion
equation results in a stability diagram in the complex plane
of the coherent shift �Qcð!Þ. However, if the rigid-beam
model is used, only computations of tails of the diagram
result in a reliable answer because inequalities of Eqs. (2)
and (3) are not fulfilled for the diagram’s main part. In the
area of tails, however, another significant step can be done:
the rate of Landau damping can be calculated and ex-
pressed in terms of a regular integral of the distribution
function f.

IV. LANDAU DAMPING

When the condition (2) is satisfied, the rate of Landau
damping can be found from Eq. (4). Note that this disper-
sion equation formally defines the dielectric function "ð�Þ
for values of � located on the real axis and the upper half-
plane, Imð�Þ � 0. To obtain it in the lower half-plane,
where roots of the dispersion equation are located, the
direct use of Eq. (4) is invalid; instead, a complex extension
of the analytical function "ð�Þ has to be used. This can be
done in the following way. First, let the eigenvalue � be
real, Im� ¼ 0, and solve the dispersion equation for the
coherent shift as a function of the eigenvalue. Then the
imaginary part of the found coherent shift Im�Qc is equal
to the Landau damping�, since at the threshold, Im� ¼ 0,
they exactly compensate each other. After expansion of the
integral denominators over a small relative tune spread
�Ql=�Qsep for Re�Qc, the result for the eigenvalue � ¼
�c and the damping rate � follows (see the Appendix):

�c¼Re�Qcþ�Qð1Þþ�Qð2Þ;

�¼��h�Qsepi
Z
�QsepfxJx�ð�Qlþ�Qsc��cÞd�;

�Qsep�Re�Qc��QscðJx;JyÞ;
h�Qsepi��

�Z fxJxd�

�Qsep

��1
;

�Qð1Þ ¼�h�Qsepi
Z �QlfxJxd�

�Qsep

:

�Qð2Þ ¼�h�Qsepi
Z �Q2

l fxJxd�

�Q2
sep

:

(5)

Note that the sign of the damping rate � is always deter-
mined by the sign of the derivative of the distribution
function fx ¼ @f=@Jx for the resonance particles, similar
to the classical Landau result for the plasma oscillations
(no antidamping for monotonic distributions). Note also

that corrections �Qð1Þ and �Qð2Þ to the real part of the
eigenvalue play a role when the distribution function drops
exponentially; in this case even a small correction to the
tune of the resonant particles significantly affects the
damping rate �.

Let us first assume that the tune spread is purely chro-
matic. In this case the first-order correction is equal to zero,

�Qð1Þ ¼ 0, and only the second-order correction remains,

�Qð2Þ. For the Gaussian momentum distribution, f /
expð�p̂2=2�2

pÞ, and constant transverse density, �Qsc ¼
const, the second-order correction is determined by the

following equation: �Qð2Þ ¼ �2
�p=�Qsep, where ��p �

j�� ðnþQÞ�j�p. That yields the damping rate:

� ¼
ffiffiffiffi
�

2

r
�Q2

sep

��p

exp

�
��Q2

sep

2�2
�p

� 1

�
: (6)

Note that this result is e times smaller than a simple-

minded formula neglecting the second-order term �Qð2Þ.
Another possibility to stabilize the beam is an introduc-

tion of octupole nonlinearity. Contrary to the chromatic

spread, the first-order correction to the eigenvalue �Qð1Þ is
nonzero here. For the Gaussian transverse distribution,
including this first-order correction reduces the rate � by
a constant factor �2–3, similar to the role of the second-
order term for the chromatic tune spread. For the octupole
tune spread the second-order term makes only a small
correction to the damping rate and can be neglected.
As was pointed out above, the rigid-beam model is valid

only if the frequency spread is small compared with the

separation frequency, �Qð1;2Þ=h�Qsepi � 1. Accounting

the tune corrections �Qð1Þ, �Qð2Þ within the rigid-beam
approximation assumes that the inaccuracy of the model
is smaller than these corrections. The correctness of this
assumption is a subject of separate study. Presently, we can
only refer to a specific example of chromatic tune spread
for a Gaussian beam, considered in Ref. [3] within a
framework of one-dimensional self-consistent model,
compared with the rigid-beam result. As it is clearly seen
from a presented stability diagram, the discrepancy be-
tween the two results is rather small, �10%–20% in the
area of rigid-beam model validity. This suggests that ac-

counting the eigenvalue corrections �Qð1Þ, �Qð2Þ is within
the model accuracy, and thus it is legitimate. Finally, it

should be noted that, although the corrections �Qð1Þ, �Qð2Þ
change the damping rate� by 2–3 times, their influence on
the threshold space charge over the tune spread value is
relatively small, since the Landau damping exponentially
depends on beam parameters [like in Eq. (6)], and an error
in the preexponential factor (� 2–3) only slightly modifies
the threshold.

V. THRESHOLD LINES

As it was stated above, rigid-beam stability diagrams are
mostly invalid if the space charge is present. A small
correct part of them lies typically so close to zero that it
is hard to resolve details on the pictures usually presented
in the literature (Refs. [4–6]). Therefore we do not draw
these diagrams here and present the stability threshold in a
different way. Indeed, Eq. (6) shows that the stability
condition depends on two dimensionless parameters. The
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first parameter determines to what extent the coherent and
incoherent frequencies are separated; obviously, it is de-
fined by the ratio of the separation frequency over the
lattice frequency spread. The second parameter shows the
strength of the instability that is to be suppressed by the
Landau damping; it can be described by the coherent
growth rate�0 Im�Qc in units of the separation frequency.
A dependence of the threshold dimensionless separation
over dimensionless coherent growth can be called the
threshold line. In this section we present it for round
Gaussian beams. The problem is solved both for a pure
chromatic tune spread,

�Ql ¼ ½�� ðnþQÞ��p̂ � ��pp̂=�p;

and for an axially symmetric octupole-induced spread,

�Ql ¼ ���oðJx þ JyÞ=2> 0:

The results are presented in Figs. 1 and 2. Here we addi-

tionally assume that jRe�Qcj � jh�Qscij. We do not con-
sider negative sign of the octupoles, since they would
detune even more incoherent frequencies from the coher-
ent line, making the beam more unstable.
Above we used a following presentation for the space

charge tune shift of a round Gaussian beam as a function of
the transverse actions Jx, Jy [9]:

�QscðJx; JyÞ ¼ �Qscð0Þ
Z 1

0

½I0ðJxz2 Þ � I1ðJxz2 Þ�I0ðJyz2 Þ
exp½zðJx þ JyÞ=2� dz:

(7)

Here�Qscð0Þ ¼ �rp	C=ð4��2�3"Þ is the maximal space

charge tune shift with 	 as the linear density, C as the orbit
circumference, rp as the classical radius of the beam

particles, " as the unnormalized rms emittance, and �, �
as relativistic factors. For numerical calculations, we ap-
proximated the exact result (7) by the following fit:

�Qscðax; ayÞ ¼ �Qscð0Þ
192� 11ax � 18

ffiffiffiffiffiffiffiffiffiffi
axay

p þ 3a2y

192� 11ax � 18
ffiffiffiffiffiffiffiffiffiffi
axay

p þ 3a2y þ 36a2x þ 24a2y
; ax;y �

ffiffiffiffiffiffiffiffiffiffi
2Jx;y

q
;(8)

which is accurate within a few percent for ax, ay 	 6; it has
the right Tailor expansion at small amplitudes and the right
asymptotic behavior at large amplitudes.

As it is seen from the plots, the suggested fits for the
threshold lines

j�Qscð0Þj
��p

¼ 1:7 ln

�j�Qscð0Þj
Im�Qc

�
(9)

for the chromatic spread, and

j�Qscð0Þj
��o

¼ 9:5 ln

�j�Qscð0Þj
7 Im�Qc

�
(10)

for the symmetric octupole spread are accurate within 10%
or better.
Note that the stabilizing rms tune spread is 3–4 times

smaller for the octupoles than for the chromatic case. The
reason is that the octupole-driven tune shift goes quadrati-
cally with amplitudes, while the chromatic tune shift is a
linear function of the momentum offset.
It is instructive to compare thresholds for dimensionless

growth rates Im�Qc=�Qsep of the Gaussian beam (9) with

FIG. 1. (Color) Threshold line for the chromatic tune spread.
The dimensionless maximal space charge tune shift
j�Qscð0Þj=��p is plotted versus dimensionless growth time

j�Qscð0Þj=Im�Qc. The dots are numerical results, and the line
is a fit with the formula highlighted in yellow.

FIG. 2. (Color) Threshold line for the octupole tune spread.
Notations are similar to Fig. 1.
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j�Qscð0Þj ffi 2�Qsep, and the Kapchinsky-Vladimirsky

(KV) [10] beam (6) with � ¼ Imð�QcÞ. The two thresh-
olds are close at �Qsep=��p ¼ 2, but they diverge expo-

nentially with an increase of the separation frequency. At
�Qsep=��p ¼ 5, the Gaussian threshold growth rate is

almost 3 orders of magnitude higher than that for the KV
beam. The reason for this advantage of the Gaussian beam
is that its resonant particles may have not so high momen-
tum offset in expense of higher transverse amplitudes,
where the space charge tune shift goes down. For the KV
beam this is impossible, and that is why the KV threshold
growth rate is always lower.

VI. SCHOTTKY NOISE

Particle interaction affects the spectrum of beam
Schottky noise. In the application to the beam with signifi-
cant space charge, this problem was solved in Ref. [4] in a
framework of the rigid-beam model. Comparison of this
analytic solution with a particle tracking code and with real
beam measurements was considered in Ref. [11]. In this
section we apply the results obtained above to the problem
of beam Schottky noise.

In the rigid-beam approximation, the spectral power of
the transverse Schottky noise �x2ð�Þ is [4]

�x2ð�Þ ¼ "x�x

N

Pð�Þ
j"ð�Þj2

Pð�Þ ¼ �
Z

fJx�ð�Ql þ �Qsc � �Þd�;
(11)

where �x, N are the beta function at the pickup and the
number of particles. Note that this result assumes the
validity of the rigid-beam model, j���Qscj � �� �
�ð�iQiÞ=�0. As above, it is true in the vicinity of the
coherent peak due to the high value of the tune separation.
Since the model is not generally correct at the incoherent
frequency range, j�� �Qscj ffi ��, the above result is not
justified there. However, the noise power (11) reaches its
maximum at the coherent peak, where the model is valid,
and, consequently, Eq. (11) can be used. Expansion of the
denominator at � ¼ �c þ ��, �� � �Qsep, leads to

�x 2ð�Þ ¼ "x�x

N


�ð�cÞ
ð�� �cÞ2 þ ½�ð�cÞ � Im�Qc�2

: (12)

The form factor


 � h�Qsepi2Pð�cÞ
�ð�cÞ ;

introduced here, appears to be scarcely sensitive to the
beam features, being always 
 � 1. Indeed, let the tune
spread be chromatic, with arbitrary momentum distribu-
tion. For KV distribution, 
 ¼ 1. For a Gaussian transverse
distribution, a fit 
 ¼ 0:9þ 0:02�Qscð0Þ=��p is valid with

accuracy of a few percent for any �Qscð0Þ=��p 	 20.

Integrating the noise power (12) over frequencies for the

given Schottky band yields

h �x2i �
Z

�x2ð�Þ d�
�

¼ 

"x�x

N

1

1� Im�Qc=�ð�cÞ : (13)

Note that the integrated power (13) contains the coherent
growth rate Im�Qc multiplied by a factor, extremely sen-
sitive to the beam temperature,�ð�cÞ�1. When the beam is
being cooled, its total Schottky noise (13) almost does not
change, being equal to its zero-impedance limit, until the
very threshold of the instability, where it immediately
jumps to infinity. That is why measuring the Schottky noise
can hardly help to see a real part of impedance responsible
for the coherent rate Im�Qc: the rate is either invisible or
fatal.

VII. SUMMARY

The applicability of the rigid-beam model is considered
for the case when the space charge plays a significant role
in beam dynamics. The results prove that the stability
diagrams obtained with this model are not valid for most
of the complex plane of the coherent shift. However, the
small area of its validity typically covers the entire area of
practical interest. Based on the rigid-beam model, rather
simple formulas for the Landau damping were calculated.
These formulas are used for computation of the threshold
space charge tune shift versus coherent growth time.
Convenient analytical fits for the threshold lines are pre-
sented for round Gaussian beams.
The results obtained here do not undermine results of

Refs. [4–6], based on the analysis of the dispersion equa-
tion at the rigid-beam approximation, as soon as this
approximation is valid. What is new in this paper is, first,
a delimitation of validity area for the rigid-beam approxi-
mation, and, second, solutions of the dispersion equation
are presented in more detail, important for practical
analysis.
At the end, the results are applied for the Schottky noise.

For strong space charge case studied here, j�� �Qscj �
��, the Schottky spectrum is dominated by narrow reso-
nant peaks at coherent frequencies.
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APPENDIX

Here the solution (5) of the dispersion equation (4) is
derived. The problem can be formulated as follows: for a
given real eigenvalue �, the real and imaginary parts of the
corresponding coherent tune shift have to be found. The
solution can be sought as

�Qc ¼ �� �Qþ i�: (A1)

A correction to the real part �Q is found by expansion of
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the dispersion integral in (4) by the small lattice tune
spread �Ql=�Qsep. Indeed, after substitution (A1) in the

dispersion integral (4), and then addition and subtraction
�Ql in its numerator, the real part of the dispersion equa-
tion results in

�Q
Z fxJxd�

�Ql þ�Qsc � �
¼

Z �QlfxJxd�

�Ql þ �Qsc � �
: (A2)

To first order in the small parameter �Ql=�Qsep it leads to

�Q ¼ �Qð1Þ ¼ �h�Qsepi
Z �QlfxJxd�

�Qsep

;

�Qsep � Re�Qc � �Qsc;

h�Qsepi � �
�Z fxJxd�

�Qsep

��1
:

(A3)

This first-order result is sufficient for the octupole-related

lattice tune shift, where �Qð1Þ � 0, and the second-order
term gives only a small correction to the Landau damping.
For the chromatic tune spread though, the first-order cor-

rection vanishes, �Qð1Þ ¼ 0, and the second-order term has
to be taken into account. The only nonzero second-order
term comes from expansion of the denominator in the
right-hand side of Eq. (A2) over the small parameter
�Ql=�Qsep, resulting in

�Q ¼ �Qð2Þ ¼ �h�Qsepi
Z �Q2

l fxJxd�

�Q2
sep

: (A4)

If both octupole and chromatic tune spreads have to be
taken into account, the former gives the first-order correc-
tion (A3), while the latter results in the second-order term
(A4). Note also, that in the denominators of (A3) and (A4),
the eigenvalue � is substituted by the coherent shift
Re�Qc. Thus, the real part of the dispersion equation leads
to

� ¼ Re�Qc þ �Q; (A5)

with �Q as a sum of the two contributions (A3) and (A4).
An imaginary part of the dispersion integral is convention-
ally calculated using Im½1=ðx� i0Þ� ¼ ��ðxÞ, and imme-
diately results in the damping rate � in Eq. (5).
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