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A ceramic chamber with Cu stripes is usually used as the vacuum chamber in a rapid cycling

synchrotron. The Cu stripes terminate at either end as capacitors, and provide the low impedance for

the circulating beam, and the high impedance for the induced current with the frequency components of

the external time-dependent magnetic field (for example, injection bump magnets, bending magnets, etc.).

It is important to be able to precisely estimate the field modulations inside the chamber when the field is

excited, because any such field modulations can cause the beam characteristics to deteriorate. In this paper

a theoretical approach to evaluate the field modulations in a quick and precise manner is developed.

DOI: 10.1103/PhysRevSTAB.12.032401 PACS numbers: 03.50.De, 41.85.Ar, 29.27.�a

I. INTRODUCTION

Reducing the amount of total magnetic field errors in an
accelerator has recently become of importance, because
they can result in difficulty in injecting linac beams into the
ring and also cause intolerably large closed orbit distortion
(COD). The intensity of the proton beam in the accelerator
increases [such as that used at the Japan Proton Accelerator
Research Complex (J-PARC), the Spallation Neutron
Source (SNS), and ISIS [1–3] ], thus making it essential
to avoid any beam loss caused by magnetic field errors.
The linac beam is usually injected into the ring, while the
bump (dipole) magnets are excited during the injection
period [4–6]. The bump orbit, which is created by the
injection bump magnets, has flattop time in preparation
for the injection beam. When the uniformity of the flattop
field ‘‘inside the chamber’’ is intolerably broken, the beam
may be lost during the injection period.

In the rapid cycling synchrotron (RCS), a ceramic cham-
ber covered in Cu stripes equipped with capacitors is used
as the vacuum chamber [7–10]. The capacitance is deter-
mined by the low impedance for the circulating beam and
the high impedance for the induced current with the fre-
quency components of the time-dependent magnetic field
[7,8]. The Cu stripes are necessary in preventing the elec-
tromagnetic field from radiating to the external world,
when the beam passes through the chamber (and hence is
sometimes referred to as an rf-shielded chamber) [9]. If
there were no Cu stripes, the radiation could cause noise in
the monitors, which are right besides the chamber, or it
could be a big source of impedance to the beam [9–11].

It is evident that the magnetic field inside the ceramic
chamber is not the same as without it, when the time-
dependent magnetic field is excited outside the chamber,

because the rf-shielded Cu stripes interact with the mag-
netic flux. It is very important to determine whether the
field error or field modulation due to this effect is signifi-
cant, as the possibility exists that any field modulations
could cause the characteristics of the beam to deteriorate.
While a standard approach to such a typical accelerator

design problem is numerical, theoretical ways of estimat-
ing the field modulation inside the chamber would be very
useful, and hence in this paper we develop a theory to use
when a dipole magnetic field is excited outside the cham-
ber. The theory can also be used to describe the effect of the
ferromagnetic yoke surrounding it. In Sec. II, a general
theory is derived by considering the interaction between
the rf-shielded chamber and the magnetic field. The in-
duced current on the Cu stripes is classified into two types
by source: one being the current in the case where the
magnetic flux traverses a Cu stripe itself, while the other is
where the magnetic flux traverses the area enclosed by the
pairs of the Cu stripes and the flanges on both sides of the
chamber. In Sec. II, the field modulation deriving from
these two types of current are considered. In Sec. III, the
developed theory is applied in some simple cases (the
bump magnet during the injection period and the bending
magnet in the RCS) and explicitly calculate the modulation
of the magnetic field inside the chamber. Section IV sum-
marizes this paper.

II. THEORETICALWAY OF EVALUATING THE
FIELD MODULATION INSIDE THE CHAMBER

The ceramic chambers in an RCS are usually covered in
Cu stripes equipped with capacitors, as given in Fig. 1. The
interaction between the rf-shielded chamber and the dipole
magnetic field, which is excited outside of it, was consid-
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ered. Two types of induced current flow in the Cu stripes:
one is the current that flows inside the Cu stripe, while the
other flows between them. The first is caused by the
magnetic flux that traverses the Cu stripe itself, while the
other by the flux that traverses the area encircled by the
pairs of Cu stripes and the flanges on both sides of the
chamber. In Sec. II, these two types of field modulations
are respectively considered. The former is studied in
Sec. II A and the latter in Sec. II B.

A. Effect of the eddy currents caused by the magnetic
flux traversing Cu stripes themselves

When the magnetic field traverses one of the Cu stripes,
an eddy current flow is generated (refer to Fig. 2), causing a
field modulation inside the chamber. In this subsection, this
phenomenon will be investigated.
The radius of the cylindrical rf-shielded chamber is

given by a. For the sake of simplicity, the effects of the
ceramics and both edges of this chamber are neglected (this
simplification was applied in order to include the after
effect of the yoke surrounding the chamber in our theory).
Each of the stripes is cylindrical with radius b, as depicted
in Figs. 2 and 3. (The shape of the Cu stripes being
rectangular will be briefly discussed at the end of this
subsection.) As given in Fig. 3, the chamber is surrounded
by a ferromagnetic yoke and a primary magnetic field is
excited outside of it using current conductors. For example,
the ceramic chamber during the injection period with the
3 GeV RCS of J-PARC is just inside a window-frame-type
magnet rather than a C-type or H-type magnet [12]. The
assumption was made that Cu stripes were symmetric to
the x ¼ 0 plane. Each of the stripes was defined

FIG. 2. (Color) The schematic picture of the eddy current, which
flows in one of Cu stripes. For simplicity, it is assumed that the
Cu stripe is cylindrical with its radius b. The external magnetic
field B traverses the stripe vertically. Current lines couple to each
other by the mutual inductance.

FIG. 3. (Color) The schematic picture of the rf-shielded cham-
ber, which is surrounded by the ferromagnetic yoke that is
denoted by the blue object. The current conductors excite the
external magnetic field BðtÞ. Cu stripes are symmetric to the x ¼
0 plane. Each of the stripes is defined by ð�a sinð�N þ
2�ðID�1Þ

N Þ;�a cosð�N þ 2�ðID�1Þ
N Þ; zÞ, with ID used as the index to

specify the IDth stripe that runs from 1 to N=2, N is the total
number of stripes, a is the radius of chamber, 2g is the gap height
of yoke, and 2h is the gap width of yoke. The direction of the
external magnetic field is vertical y.

FIG. 1. (Color) The ceramic chamber covered in Cu stripes
equipped with capacitors. There are flanges on both sides of
the chamber to fix it along the ring. The brown objects denote
capacitors, which are associated on Cu stripes to realize the high
impedance for the induced current with the frequency compo-
nents of the external time-dependent magnetic field and the low
impedance for the circulating beam. This kind of chamber is
usually used in a rapid cycling synchrotron (RCS).
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by ð�a sin�ID;�a cos�ID; zÞ, where �ID ¼ �
N þ 2�ðID�1Þ

N ,

with ID used as the index, which runs from 1 to N=2, to
specify the IDth stripe and N the total number of Cu
stripes.

Since all stripes are cylindrical, the position of the eddy
current was specified using both a local coordinate ðr; ’; zÞ
and the global coordinate ðx; y; zÞ used to identify the Cu
stripe (refer to Fig. 4). The angle ’ moves from �� to �.
The symmetry of this system reveals that the direction of
the eddy current for 0<’<� and that for ��< ’< 0
are opposites. Using this property, we imagined a small
coil inside the stripe that is composed of the lines at
ðr sin’; r cos’; zÞ and ð�r sin’; r cos’; zÞ.

The inductance between the coils specified with the
coordinates of ðr; ’; zÞ and ðr0; ’0; zÞ can now be calcu-
lated. Ampere’s law gives us the magnetic field on the coil
composed of the lines ðr0 sin’0; r0 cos’0; zÞ and
ð�r0 sin’0; r0 cos’0; zÞ when caused by eddy currents at
ðr sin’; r cos’; zÞ and ð�r sin’; r cos’; zÞ. The mutual in-
ductance m12 between the coils is then given by

m12 ¼ Z0

2�c
log

r2 þ r02 � 2rr0 cosð’0 þ ’Þ
r2 þ r02 � 2rr0 cosð’0 � ’Þ ; (1)

where Z0ð¼ 120�Þ is the impedance of the free space and
c is the velocity of light.

In order to obtain the current density iðr; ’Þ of the coil,
which is composed of the lines ðr sin’; r cos’; zÞ and
ð�r sin’; r cos’; zÞ, a circuit equation needs to be created.
Not only the effect of the resistance of this coil, but also the
effect of another coil specified by ðr0; ’0Þ needs to be

included in this equation. Since the formula of the induc-
tances m12 is given by Eq. (1), the circuit equation can be
described as follows:

dB

dt
2r sin’ ¼

Z b

0
dr0

Z �

0
d’0r0

diðr0; ’0Þ
dt

Z0

2�c

� log
r2 þ r02 � 2rr0 cosð’0 þ ’Þ
r2 þ r02 � 2rr0 cosð’0 � ’Þ

þ 2iðr; ’Þ
�

; (2)

where � is the conductivity of copper and B the original
magnetic flux density, which was assumed to be uniform
spatially for the sake of simplicity. In the above descrip-
tion, the assumption was also made that the field modula-
tion to be derived can be dealt in a perturbative manner,
when compared to the original magnetic flux. It will be
shown that this assumption is plausible in Sec. III when the
field modulation is actually calculated.
In order to solve Eq. (2), the assumption was made that

current density iðr; ’Þ can be expanded as

iðr; ’Þ ¼ X1
k¼0

�kr
2kþ1 sin’; (3)

considering the symmetry of this system. Substituting
Eq. (3) into Eq. (2) and integrating it for r0 and ’0 results in

dB

dt
¼ Z0

4c

X1
k¼0

d�k

dt

b2kþ2

kþ 1
þ �0

�
; (4)

�kþ1 ¼ Z0�

4c

d�k

dt

�
1

kþ 1
� 1

kþ 2

�

¼ �k
i¼0

�
1

iþ 1
� 1

iþ 2

��
Z0�

4c

�
kþ1 dkþ1�0

dtkþ1
: (5)

Here the fact that Eq. (2) should be satisfied for arbitrary r
and ’ was used, because variable r moves in 0< r < b
while ’ does in ��< ’<�. Substituting Eq. (5) into
Eq. (4) results in an infinite order differential equation for
�0. While this is rather difficult to solve, for the special
case satisfying the following condition,

Z0�b
2

4cT0

< 1 (6)

(time T0 is the typical time scale for the change in magnetic
flux B), this equation can be truncated by the first order
differential of �0. Since this condition can be satisfied for
almost every case, the infinite order differential equation
turns out to be the first order differential equation:

dBðtÞ
dt

¼ �0

�
þ Z0b

2

4c

d�0

dt
: (7)

By solving Eq. (7), the formula for the current density can
be obtained as

FIG. 4. (Color) The global coordinate and the local coordinate.
The global coordinate ðx; y; zÞ specifies the Cu stripe and the
local coordinate ðr; ’; zÞ specifies the position of the eddy
current in one of Cu stripes.
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iðr; ’Þ ¼ 4c

Z0b
2

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞr sin’:

(8)

Since we know the current density of a stripe, the field
on the axis of the chamber can be calculated using
Ampere’s law. At first, the effect of one Cu stripe specified

by ða sin�i;�a cos�i; zÞ is calculated, and then, the effect
of all stripes is superposed. For this purpose, it is conve-
nient to use both local and global coordinates. Since the
magnetic field at the center ðx ¼ 0; y ¼ 0; zÞ of the cham-
ber, which comes from ith stripe, can be described as

Hi ¼ 2c

�b2Z0

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞ Z b

0
dr

I
d’

r2 sin’ð�a cos�i þ r cos’;�a sin�i � r sin’; 0Þ
a2 þ r2 � 2ar cosð�i þ ’Þ

¼ cb2

2a2Z0

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞðsin2�i;� cos2�i; 0Þ; (9)

using the formulas

I
d’

sin’ð�a cos�þ r cos’Þ
a2 þ r2 � 2ar cosð�þ ’Þ ¼

�r

a2
sin2�; (10)

I
d’

sin’ð�a sin�� r sin’Þ
a2 þ r2 � 2ar cosð�þ ’Þ ¼ ��r

a2
cos2�; (11)

the total effect of all the stripes can be summarized as

�By ¼ �b2

a2

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞ XN=2

i¼1

cos2�i

¼ �b2

2

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞ

�XN
i¼1

y2i � x2i
ðy2i þ x2i Þ2

; (12)

by applying the law of superposition in Eq. (9).
Now, the case where the ferromagnetic yoke surrounds

the chamber is considered. When the relative permeability

of magnetic yoke �0 is infinite, the magnetic field lines
must be perpendicular to the face of the magnetic pole.
This situation can be realized by using image currents of
½2mhþ ð�1Þma sin�i; 2ng� ð�1Þna cos�i; z� instead of
the ferromagnetic yoke, where 2g is the gap height of the
magnet yoke, 2h the gap width of the yoke, and m and n
are arbitrary integers (refer to Appendix A and Fig. 5).
Since the current density iðr; ’Þ is antisymmetric in the
transformation of ’ ! �’, the direction of the current
should be opposite each time integer m, which specifies
the horizontal position of the image current, differs [i.e. the
direction of the current at ½2mhþ ð�1Þma sin�i;
2ng� ð�1Þna cos�i; z� and at ½2ðmþ 1Þhþ
ð�1Þmþ1a sin�i; 2n

0g� ð�1Þn0a cos�i; z� are opposite,
while integers n and n0 are not necessarily the same] but,
the direction of the current is the same vertically for fixed
integer m. We finally obtain the expression for the field
modulation on the axis of the rf-shielded chamber inside
the ferromagnetic yoke as

�By;ferr ¼
Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞb2

XN=2

i¼1

X1
m;n¼�1

ð�1Þm ½2mhþ ð�1Þma sin�i�2 � ½2ng� ð�1Þna cos�i�2
f½2mhþ ð�1Þma sin�i�2 þ ½2ng� ð�1Þna cos�i�2g2

¼
Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞ � b

2

2

XN
i¼1

X1
m;n¼�1

ð�1Þm ½2mhþ ð�1Þmxi�2 � ½2ngþ ð�1Þnyi�2
f½2mhþ ð�1Þmxi�2 þ ½2ngþ ð�1Þnyi�2g2

: (13)

Equation (13) shows that the time dependence and the
geometrical dependence in field modulation �By;ferr is
totally divided, or describable as the product of the two
factors. It was also discovered that the relaxation time � for
the damping of this field modulation can be characterized
using

� ¼ Z0b
2�

4c
: (14)

This reflects the fact that the Cu stripe itself has its own
inductance.

When the shape of the stripe is rectangular (which is
specified using 2bx � 2by), it is much more difficult to

obtain a formula for current density ið�;�Þ, where ð�; �Þ is
the local Cartesian coordinate of a stripe. Considering the
property that the current density should be antisymmetric
with respect to the � ¼ 0 plane, the simple assumption is
made that ið�; �Þ can be approximated using

ið�;�Þ ¼ 4c

Z0b
2
x

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2
x�Þ�ðt0�tÞ�; (15)

by referring to Eq. (8) where the shape of the stripe was
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cylindrical. In the above expression the radius of stripe b is
replaced by the horizontal half length of rectangular stripe
bx, because magnetic flux B traverses the stripe vertically.

Similar to the cylindrical case, the field modulation at the
center of the chamber due to the ith stripe that exists at
ðXi; YiÞ can be described using

�Bi;y ¼ � 2

�b2x

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2
x�Þ�ðt0�tÞ Z bx

�bx

d�
Z by

�by

d�
ðXi þ �Þ�

ðXi þ �Þ2 þ ðYi þ �Þ2

¼ 2

�b2x

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2
x�Þ�ðt0�tÞQðXi; YiÞ; (16)

QðXi; YiÞ ¼ �b2x � X2
i

2
tan�1

Y þ by
Xþ bx

þ ðY þ byÞ2
2

tan�1 X þ bx
Y þ by

þ b2x � X2
i

2
tan�1

Y þ by
X � bx

� ðY þ byÞ2
2

tan�1 X � bx
Y þ by

þ b2x � X2
i

2
tan�1

Y � by
X þ bx

� ðY � byÞ2
2

tan�1 X þ bx
Y � by

� b2x � X2
i

2
tan�1

Y � by
X � bx

þ ðY � byÞ2
2

tan�1 X � bx
Y � by

� 2bxby þ
XiðYi þ byÞ

2
log

ðX þ bxÞ2 þ ðY þ byÞ2
ðX � bxÞ2 þ ðY þ byÞ2

� XiðYi � byÞ
2

log
ðX þ bxÞ2 þ ðY � byÞ2
ðX � bxÞ2 þ ðY � byÞ2

: (17)

When the ferromagnetic yoke surrounds the rf-shielded chamber, the above formula can be generalized as

�By;ferr ¼ 2

�b2x

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2
x�Þ�ðt0�tÞ XN

i¼1

X1
m;n¼�1

ð�1ÞmQ½2mhþ ð�1ÞmXi; 2ngþ ð�1ÞnYi�; (18)

by summing the effects of the image currents, instead of
the ferromagnetic yoke.

B. Effects of induced currents caused by the magnetic
flux traversing the area enclosed by the pair of Cu
stripes and flanges on both sides of the chamber

When the magnetic field traverses the area enclosed by
the pair of Cu stripes and flanges on both sides of the

chamber, the induced current flows over all the stripes. It
is essential to take this effect into account to evaluate the
field modulation correctly, because the flanges on both
sides of the chamber connects the Cu stripes electrically
in reality, and the induced currents flow over all the stripes
interactively. In this subsection, the field modulation inside
the chamber due to this effect will be considered.
As given in Fig. 3, since each stripe is at

ð�a sin�i;�a cos�i; zÞ the system of N Cu stripes was
simplified into that of N=2 coils by combining the ith
and �ith stripes and flanges on both sides of the chamber
(refer to the left in Fig. 6). In order to take into account the
effect of the yoke in our theory, the assumption was made

FIG. 5. (Color) The effect of the ferromagnetic yoke, which is
denoted by the blue object, is replaced by that of the image
currents that are represented by pink objects. The image currents
are located at ½2mhþ ð�1Þma sin�i; 2ng� ð�1Þna cos�i; z�,
where m and n are arbitrary integers. The orange objects denote
the current conductors to produce the external magnetic field
BðtÞ.

FIG. 6. (Color) The schematic picture of the ith Cu coil, which
is denoted by the red line. The brown objects denote capacitors.
The coil is originally defined by combining the ith and �ith Cu
stripes and the flanges on both sides of the chamber as shown in
the left figure. As a result of applying Gauss’s law in one of
Maxwell equations (divB ¼ 0), the form of this coil can be
deformed to that in the right figure, because the longitudinal
component of magnetic field is assumed to be zero.
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that the longitudinal component of the magnetic fields
could be neglected. This simplification enabled changing
the form of the coil given on the left in Fig. 6 to that given
on the right, as a result of applying Gauss’s law in one of
Maxwell equations (divB ¼ 0). From here on in, we sim-
ply collectively call the ith coil that which is composed of
the ith and �ith stripes. Using this simplification, the
system of an rf-shielded chamber in an excited dipole
magnetic field is rewritten to that of multicoils. The appro-
priateness of this simplification is discussed by comparing
our results with simulated results using OPERA-3D ELEKTRA

in the next section [13].
The magnetic field at ðx; y; zÞ needs to be known when

current I flows on the ith coil. When intrinsic frequency f
of the current in this coil is sufficiently lower than that of

factor �cZ0=2�, the displacement current can be ignored
in the Maxwell equation, and can then be evaluated using
Ampere’s law. Since copper is used in the stripe that
shields the electromagnetic field, it can be evaluated as
�cZ0=2� ¼ 1:0� 1018 Hz. Since this value is usually
sufficiently higher than the normal mode frequencies of
coils (for example, refer to Fig. 32 in the next section), this
simplification was applied. As the assumption was made
that the longitudinal component of magnetic fields could
be ignored, only the situation was considered where cur-
rent I flows at ða sin�i;�a cos�i; zÞ and �I at
ð�a sin�i;�a cos�i; zÞ inside the ferromagnetic yoke,
and hence the induced magnetic field H at ðx; y; zÞ can be
written:

H ¼ X1
m;n¼�1

If�½y� 2ngþ ð�1Þna cos�i�; x� 2mh� ð�1Þma sin�i; 0g
2�f½x� 2mh� ð�1Þma sin�i�2 þ ½y� 2ngþ ð�1Þna cos�i�2g

� X1
m;n¼�1

If�½y� 2ngþ ð�1Þna cos�i�; x� 2mhþ ð�1Þma sin�i; 0g
2�f½x� 2mhþ ð�1Þma sin�i�2 þ ½y� 2ngþ ð�1Þna cos�i�2g

; (19)

where the effect of the ferromagnetic yoke is replaced
by the image currents at ½2mhþ ð�1Þma sin�i; 2ng�
ð�1Þna cos�i; z� and ½2mh� ð�1Þma sin�i; 2ng�
ð�1Þna cos�i; z� (refer to Fig. 5). Differing from the case
in the previous subsection, the direction of the current,
specified by integers m and n, is the same for a different
m and n when deriving Eq. (19).

Since each coil interacts through mutual inductances, it
is necessary to calculate, in advance, the self and mutual
inductance between the ith and jth coils to obtain the

current for each coil. The magnetic flux crossing the jth
coil arriving from the current on the ith coil, can be
obtained by the integration of �0� Eq. (19) from
�a sin�j to a sin�j over x and from �l=2 to l=2 over z

on the fixed y ¼ �a cos�j plane, where l is the longitudi-

nal length of the chamber. The mutual inductance between
the ith and jth coil is obtained by dividing this magnetic
flux by current �I. The self and mutual inductance matrix
Lij is then given by

Lij ¼�Z0l

�c
log

b

2a sin�i
� Z0l

2�c

X1
m;n¼�1;m;n�0

log
½a sin�j � 2mh�ð�1Þma sin�i�2 þ½�acos�j þð�1Þnacos�i � 2ng�2
½�a sin�j � 2mh�ð�1Þma sin�i�2 þ½�acos�j þð�1Þnacos�i � 2ng�2 ;

(20)

for i ¼ j, and

Lij ¼ � Z0l

2�c

X1
m;n¼�1

log
½a sin�j � 2mh� ð�1Þma sin�i�2 þ ½�a cos�j þ ð�1Þna cos�i � 2ng�2
½�a sin�j � 2mh� ð�1Þma sin�i�2 þ ½�a cos�j þ ð�1Þna cos�i � 2ng�2 ; (21)

for i � j, where integers m and n do not become zero simultaneously in the summation of the second term of
Eq. (20). When the ferromagnetic yoke does not surround the chamber, the effects of the image currents do not have to
be taken into account. Equations (20) and (21) reproduce the well-known formula [14]:

Lij ¼
8<
:
� Z0l

�c log b
2a sin�i

; for i ¼ j;

� Z0l
2�c log

ða sin�j�a sin�iÞ2þð�a cos�jþa cos�iÞ2
ð�a sin�j�a sin�iÞ2þð�a cos�jþa cos�iÞ2 ; for i � j:

(22)

It should be noticed that inductance matrix Lij given by Eqs. (20)–(22) is symmetric.
The current on each coil will now be calculated using electric circuit theory [15]. When time-dependent dipole magnetic

flux density BðtÞ is excited outside the chamber, current Ii on the ith coil (actually consisting of the ith and�ith stripes), is
in line with the following equation:
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B00ðtÞal sin�i ¼
XN=2

j¼1

Lij

2

d2Ij

dt2
þ R

dIi
dt

þ Ii
C
; (23)

where R is the resistance of each Cu stripe and C the
associated capacitance. Here the assumption is made that
each stripe can be described using the electric circuit in
Fig. 7 and that the influence on the original magnetic flux
of the induced current is insignificant. Since the inductance
matrix Lij is symmetric, this equation can be diagonalized
using the orthogonal matrix Uij. When the eigenvalues of
the inductance matrix are provided with �i, the current on
the ith coil can be solved as

Ii ¼ � XN=2

j;k¼1

Uij

Z t

�1
dt0

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�j

C � R2
q B00ðt0ÞalU�1

jk

� sin�ke
½ðR=�jÞ�ði=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�j=cÞ�R2

p
�ðt0�tÞ

þ XN=2

j;k¼1

Uij

Z t

�1
dt0

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�j

C � R2
q B00ðt0ÞalU�1

jk

� sin�ke
½ðR=�jÞþði=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�jÞ=CÞ�R2

p
�ðt0�tÞ: (24)

Once the current of the ith coil is known, the magnetic
field on the axis of the chamber can be obtained using the

superposition of the currents of all the stripes. If the
assumption is made that the field on the x ¼ 0 plane is
constant, a simple formula for the field modulation �By

can be approximated using

�By ¼ � Z0

2cg

XN=2

i¼1

Ii; (25)

as a result of applying Ampere’s law to the path depicted in
Fig. 8, because the azimuthal component of the magnetic
field is zero at the surface of the ferromagnetic yoke with
its relative permeability of �0 ¼ 1.
A more rigorous formula can be also obtained by sub-

stituting Eq. (24) into Eq. (19) where the effects of the
magnet yoke are replaced by those of the image currents. It
should be noted here that the contribution of this image
current is already included in the inductance matrix for-
mula given using Eqs. (20) and (21). When the magnet
yoke surrounds the chamber, the final expression of the
modulation of the magnetic flux at the axis of the chamber
is

�By ¼ � Z0

�c

XN=2

i¼1

X1
m;n¼�1

ð�1ÞmaIi sin�i½�4m2h2 þ a2 þ 4n2g2 � 4nð�1Þnga cos�i�
½4m2h2 þ 4n2g2 þ a2 � 4ngð�1Þna cos�i�2 � 16m2h2a2sin2�i

: (26)

By comparing Eq. (25) with Eq. (26), a discussion is made
in the next section whether the approximation of the mag-
netic field being constant on the x ¼ 0 plane, which was
used in deriving Eq. (25), is appropriate or not.

III. APPLICATION

In this section, the theory is applied in some simple
cases: the bump magnet during the injection period
and the bending magnet, in particular for 3 GeV RCS at

C
L  /2

L  /2

ij

ii

R

I

I

i

j

FIG. 7. The schematic picture of the ith Cu stripe in terms of
the electric circuit theory. The character C denotes the capacitor
associated on the Cu stripe, R does the resistance of Cu stripe,
Lij is the mutual inductance between the ith and the jth coil, and

Lii is the self-inductance of the ith coil.

FIG. 8. (Color) The red line denotes the path to which Ampere’s
law is applied. The approximation is made that the field on the
x ¼ 0 plane is constant in the derivation of Eq. (25). The blue
and orange objects represent the ferromagnetic yoke and the
current conductors to produce the external magnetic field BðtÞ,
respectively.
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J-PARC. The modulation of the magnetic field inside the
chamber is concretely calculated for these cases.

As given in Fig. 9, a chamber with flanges is fixed by
dielectric materials, which are supported by metal poles
with the 3 GeV RCS at J-PARC. The capacitance made up
of the dielectric materials and the Cu stripes is typically
evaluated as being in the tens of pF. Since that value is
significantly smaller than the capacitance of the attached
capacitors (typically 0:3 �F), the approximation was made
that the one side of the chamber would be approximately
isolated, while the other side would act as the Earth (be-
cause the corresponding flange is grounded).

A. The modulation of the magnetic field inside the
chamber when the injection bump magnet is excited

A linac beam is usually injected into the ring through
creating a bump orbit during the injection period. With a
high intensity proton machine like that used at J-PARC, it
is important to evaluate the influence of the field modula-
tion on the beam due to the interaction between the rf-
shielded chamber and the original magnetic field.
Furthermore, a significant decision must be made with
the field pattern of the bump magnet in order that the field
modulation does not cause any deterioration in the char-
acteristics of the beam.

1. The field modulation due to the magnetic flux
traversing the Cu stripe

First, the field modulation due to the magnetic flux
traversing the Cu stripe is considered. The formulas given

in Eqs. (13) and (18) describe this effect. Before exploring
the above case where the bump magnet excites the magnet
flux, the accuracy of the aforementioned formulas is veri-
fied by comparing the theoretical results with the simulated
results using OPERA-3D ELEKTRAwith a much simpler field
pattern, which is given in Fig. 10. The formula given in
Eq. (13), which is applicable in the case where the stripes
are cylindrical, is more rigorous than that given in Eq. (18),
which applies to the rectangular stripe. However, it is
rather difficult to deal with a cylindrical stripe using
OPERA-3D ELEKTRA. Hence, only a rectangular stripe is

considered and the results are compared with those calcu-
lated with Eq. (18).
A chamber with radius a ¼ 15:25 cm was surrounded

by a magnet yoke of longitudinal length 80.0 cm, which
was the longitudinal length of the chamber, too. The gap
height 2g was 32.0 cm while the gap width 2h is 64.0 cm.
In this case the magnetic field was assumed to be excited
during 0.5 ms and its flux density at x ¼ y ¼ 0 to have
become 1664 G (refer to Fig. 10). All the Cu stripes were
independent, or not connected electrically. For the sake of
simplicity, a square-type stripe bx ¼ by ¼ 2:5 mm was

chosen. The conductivity of each stripe � was given by
5:9� 107=�m. There were a total 44 Cu stripes (two of
them at x ¼ 0) in order to reduce the necessary memory
size.
The accuracy of the simulated results will now be dis-

cussed by changing the mesh size along the time axis.
Figure 11 gives the field modulation at the center of the
chamber for the different size of mesh. The red, blue, and
black points describe the results where the mesh size was

FIG. 9. (Color) The chamber with flanges is fixed by dielectric
materials (green objects), which are supported by metal poles
(red objects) with the 3 GeV RCS at J-PARC. Cu stripes
terminate at either end as capacitors. One side of the chamber
would be approximately isolated, while the other side would act
as the Earth

FIG. 10. (Color) The magnetic field is excited during 0.5 ms and
its flux density at x ¼ y ¼ 0 to have become 1664 G (analytical
data).
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0.1 ms, 0.05 ms, and 0.025 ms, respectively. A 0.025 ms
mesh size proved sufficiently small to obtain the correct
results, as they were sufficiently convergent.

In preparing to compare the simulated results with the
theoretical results, it was necessary to confirm that the
condition given in Eq. (6) was satisfied (0.5 ms could be

selected as time T0), because it is indispensable in deriving
Eq. (13). In fact, it could be satisfied as follows:

Z0�b
2

4cT0

� 0:23< 1: (27)

The simulated results will now be compared with the
theoretical results. Both the simulated and theoretical re-
sults are given in Fig. 12. The left figure denotes the field
modulation at the center of the chamber while the right
figure gives the maximum current density [i.e. the current
density ið�;�Þ at the edge of stripe � ¼ bx]. The red points
give the simulated results while the blue line gives the
theoretical results. The black line in the left figure repre-
sents the results of the case where the shape of the stripe is
cylindrical (b ¼ 2:5 mm). The simulated and theoretical
results are in good agreement for the amount of field
modulation and current density. A small discrepancy how-
ever does appear in the excitation time. This is a result of
the approximation that the radius of cylindrical stripe b
could be replaced by the horizontal half size of rectangular
stripe bx in deriving the formula for the field modulation of
Eq. (18). Comparing the results where the shape of the
stripe is square (blue line) with where the shape of the
stripe is cylindrical (black line), as in the left of Fig. 12, it
can be seen that the field modulation with the cylindrical
stripe is about 2=3 smaller than that with the rectangular
stripe. This drop in field modulation can be explained by
the fact that the cross section of the cylindrical stripe is
smaller than that of the square type.

FIG. 11. (Color) The field modulation at the center of the
chamber. The red, blue, and black points describe the results
where the mesh size was 0.1, 0.05, and 0.025 ms, respectively.

FIG. 12. (Color) The field modulation at the center of the chamber (the left figure) and the current density at the edge of stripe (the
right figure). This field modulation is caused by the magnetic flux traversing isolated Cu stripes. The chamber radius a is 15.25 cm and
its longitudinal length is 80.0 cm. The gap height 2g is 32.0 cm and the gap width 2h is 64.0 cm. The red points describe the simulated
(numerical) results and the blue line does the theoretical (analytical) results where the stripe is square: 5 mm� 5 mm. The black line
in the left figure represents the theoretical (analytical) results where the stripe is cylindrical: b ¼ 2:5 mm.
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Since the theory has proved to be capable of providing
sufficiently accurate results for the field modulation, the
influence on the beam of the magnetic flux BðtÞ that makes
the bump orbit during the injection period is now consid-
ered. As a simple model, this can be described using

BðtÞ ¼ Dðt� t0Þ�ðt� t0Þ �Dðt� t0Þ�ðt� t1Þ
þDðt1 � t0Þ�ðt� t1Þ

�Dðt1 � t0Þ
t3 � t2

ðt� t2Þ�ðt� t2Þ

þDðt1 � t0Þ
t3 � t2

ðt� t3Þ�ðt� t3Þ; (28)

�ðtÞ as the step function and D the constant value.
Magnetic flux BðtÞ is characterized by the rising time t1 �
t0, flattop time t2 � t1, and damping time t3 � t2, as given
in Fig. 13. For the sake of simplicity, only the case where
the shape of the stripe is cylindrical is considered.
Substituting the first differential of Eq. (28) with time
into Eq. (13), the field modulation can finally be expressed
as

�By;ferr ¼ DZ0b
4�

8c
ð1� e½ð4cÞ=ðZ0b

2�Þ�ðt0�tÞÞXN
i¼1

X1
m;n¼�1

ð�1Þm ½2mhþ ð�1Þmxi�2 � ½2ngþ ð�1Þnyi�2
f½2mhþ ð�1Þmxi�2 þ ½2ngþ ð�1Þnyi�2g2

for t0 < t < t1; (29)

�By;ferr ¼ DZ0b
4�

8c
ðe½ð4cÞ=ðZ0b

2�Þ�ðt1�tÞ � e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞÞ

�XN
i¼1

X1
m;n¼�1

ð�1Þm ½2mhþ ð�1Þmxi�2 � ½2ngþ ð�1Þnyi�2
f½2mhþ ð�1Þmxi�2 þ ½2ngþ ð�1Þnyi�2g2

for t1 < t < t2; (30)

�By;ferr ¼ DZ0b
4�

8c

�
e½ð4cÞ=ðZ0b

2�Þ�ðt1�tÞ � e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞ � t1 � t0

t3 � t2
ð1� e½ð4cÞ=ðZ0b

2�Þ�ðt2�tÞÞ
�

�XN
i¼1

X1
m;n¼�1

ð�1Þm ½2mhþ ð�1Þmxi�2 � ½2ngþ ð�1Þnyi�2
f½2mhþ ð�1Þmxi�2 þ ½2ngþ ð�1Þnyi�2g2

for t2 < t < t3; (31)

�By;ferr ¼ DZ0b
4�

8c

�
e½ð4cÞ=ðZ0b

2�Þ�ðt1�tÞ � e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞ � t1 � t0

t3 � t2
ðe½ð4cÞ=ðZ0b

2�Þ�ðt3�tÞ � e½ð4cÞ=ðZ0b
2�Þ�ðt2�tÞÞ

�

�XN
i¼1

X1
m;n¼�1

ð�1Þm ½2mhþ ð�1Þmxi�2 � ½2ngþ ð�1Þnyi�2
f½2mhþ ð�1Þmxi�2 þ ½2ngþ ð�1Þnyi�2g2

for t3 < t: (32)

In order to clarify the field modulation property caused
by the eddy current, the chamber is surrounded by the
magnet yoke with an equal gap height and gap width of
2g ¼ 2h. The magnetic flux is assumed to be excited as
given in Fig. 13 [characterized by the rising time
t1ð¼ �800 �sÞ � t0ð¼ �300 �sÞ, flattop time
t2ð¼ 300 �sÞ � t1ð¼ �300 �sÞ, and damping time
t3ð¼ 800 �sÞ � t2ð¼ 300 �sÞ]. The same parameters
were used for the chamber as those in the previous case.
Namely, the longitudinal length of chamber l ¼ 80:0 cm,

its radius a ¼ 15:25 cm, and the radius of each Cu stripe b
2.5 mm. The number of Cu stripesN was especially chosen
to be 100 in order to obtain a more realistic field modula-
tion than that in the previous case.
Let us imagine a situation where the chamber is covered

in stripes from the lower side; for example, five cases
where 20, 40, 60, 80, and 100 stripes covering the chamber
can be used. The case where the chamber is not surrounded
by the magnet yoke is initially considered, because image
currents do not have to be considered. The results are given

FIG. 13. (Color) The behavior of the bump magnet flux BðtÞ
(analytical data). This is characterized by rising time
t1ð¼ �300 �sÞ � t0ð¼ �800 �sÞ, flattop time t2ð¼ 300 �sÞ �
t1ð¼ �300 �sÞ, and damping time t3ð¼ 800 �sÞ �
t2ð¼ 300 �sÞ.
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on the right in Fig. 14. The red, blue, green, black, and pink
lines in this figure represent the results for the cases with
20, 40, 60, 80, and 100 stripes, respectively. It is possible to
cancel the effect of the eddy current at the center of the
chamber by summation of the effects of the stripes, par-
ticularly when the number of strips is 50 and 100, because
the dominant term is proportional to cos2�i as given in
Eq. (12).

On the other hand, the magnet yoke is very close to the
chamber in reality. The left in Fig. 14 gives the results
where the size of the magnet yoke was specified as 2h ¼
2g ¼ 32:0 cm. The red, blue, green, black, and pink lines
in this figure represent the results for the cases with 20, 40,
60, 80, and 100 stripes, respectively. The situation is quite
different from that without the yoke. In particular, the
maximum field modulation is seen in the case where the
chamber is completely surrounded by Cu stripes. Figure 15
gives the dependence of the field modulation on the size of
the magnet yoke when the chamber is completely sur-
rounded by Cu stripes (N ¼ 100). The discovery was
made that the effect of the yoke is negligible, when the
size of the magnet yoke is sufficiently large (typically 3
times larger than the radius of the chamber a). However in
reality, the effect is actually very significant.

The case where the magnetic flux BðtÞ is provided with a
more realistic field pattern will now be considered. The left
in Fig. 16 is the magnetic flux used during the injection
period with the 3 GeV RCS at J-PARC. The original

FIG. 14. (Color) The dependence of the field modulation at the center of the chamber on the number of Cu stripes, when the magnetic
flux traverses the Cu stripes themselves. As a typical set of parameters, the radius of the chamber a ¼ 15:25 cm and the radius of Cu
stripe b is 2.5 mm. The original magnetic flux changes as in Fig. 13 (analytical data). The right figure shows the theoretical results
without the magnet yoke and the left figure does the results where the size of magnet yoke is specified as 2h ¼ 2g ¼ 32:0 cm. The red,
blue, green, black, and pink lines represent the cases that 20, 40, 60, 80, and 100 stripes cover the chamber from the lower side. The
100 stripes corresponds to the case where the chamber is completely covered by Cu stripes. The field modulation might become the
smallest when the chamber is completely or half covered by stripes when the effect of the yoke could be negligible, while it is the
largest in reality in the case where the chamber is completely covered by the stripes due to ‘‘the effect of the yoke.’’

FIG. 15. (Color) The dependence of the field modulation (theo-
retical results) on the size of magnet yoke where the chamber
is completely surrounded by Cu stripes (N ¼ 100). The red,
blue, green, black, and pink dotted lines represent the cases
where both the gap height g and the width h is equal to
aðthe radius of the chamberÞ þ bðthe radius of the Cu stripeÞ,
where both g and h are 2 times larger than a, where both g and h
are 3 times larger than a, where both g and h are 4 times larger
than a and where both g and h are 5 times larger than a,
respectively.
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measured field pattern was given for 500 ns intervals.
However, the magnet power supply is provided with a
low-pass filter at the output, the cutoff frequency of which
is 70 kHz. The field data is then averaged over every 14 �s
to obtain that given on the left of Fig. 16 [16].

The theorem of partial integration enables the formula
for the field modulation of Eq. (13) to be rewritten as
follows:

�By;ferr ¼
�
BðtÞ � 4c

Z0b
2�

Z t

�1
dt0Bðt0Þe½ð4cÞ=ðZ0b

2�Þ�ðt0�tÞ
�

� b2

2

XN
i¼1

X1
m;n¼�1

ð�1Þm

� ½2mhþ ð�1Þmxi�2 � ½2ngþ ð�1Þnyi�2
f½2mhþ ð�1Þmxi�2 þ ½2ngþ ð�1Þnyi�2g2

;

(33)

where the assumption is made that BðtÞ ¼ 0 at t ¼ �1.
Substituting this field pattern into Eq. (33) can be used to
obtain the field modulation at the center of the chamber

when the magnetic flux traverses the Cu stripe. The results
are given on the right in Fig. 16. Comparing the results on
the left of Fig. 14 with those on the right in Fig. 16 results
in the discovery that the simple model, described using
Eq. (28), is able to estimate the field modulation appropri-
ately. The small discrepancy comes from the fact that the
differential of the magnetic flux with time is not perfectly
linear during the excitation and damping period.

2. The field modulation due to the magnetic flux
traversing the Cu coils

Second, the field modulation due to the magnetic flux
traversing the ‘‘Cu coils’’ is considered. Equation (25), or
(26), describes the field modulation due to this effect. If the
assumption is made that the bump magnet is excited in line
with Eq. (28), the current on the ith coil can be calculated
by substituting the second differential of it with time into
Eq. (24). The current on the ith coil Ii can then be obtained
using

Ii ¼ 0 for t < t0; (34)

Ii ¼ � XN=2

j;k¼1

DalUijU
�1
jk sin�ke

½ðR=�jÞþð1=�jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt0�tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2�j

C

q þ XN=2

j;k¼1

DalUijU
�1
jk sin�ke

½ðR=�jÞ�ð1=�jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt0�tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2�j

C

q
for t0 < t < t1; (35)

FIG. 16. (Color) The left figure represents the magnetic field pattern, which is used at the injection period with the 3 GeV RCS at J-
PARC (measured data). The right figure represents the field modulation (theoretical results) at the center of the chamber when this
(measured) magnetic flux traverses the Cu stripe. The red, blue, green, black, and pink lines represent the cases where 20, 40, 60, 80,
and 100 stripes cover the chamber from the lower side.
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Ii ¼ � XN=2

j;k¼1

DalUijU
�1
jk sin�kðe½ðR=�jÞþð1=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt0�tÞ � e½ðR=�jÞþð1=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt1�tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � 2�j

C

q

þ XN=2

j;k¼1

DalUijU
�1
jk sin�kðe½ðR=�jÞ�ð1=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt0�tÞ � e½ðR=�jÞ�ð1=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt1�tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � 2�j

C

q for t1 < t < t2; (36)

Ii ¼ � XN=2

j;k¼1

alUijU
�1
jk sin�kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � 2�j

C

q ½Dðe½ðR=�jÞþð1=�jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt0�tÞ � e½ðR=�jÞþð1=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt1�tÞÞ

�D1e
½ðR=�jÞþð1=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt2�tÞ� þ XN=2

j;k¼1

alUijU
�1
jk sin�kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � 2�j

C

q ½Dðe½ðR=�jÞ�ð1=�jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt0�tÞ

� e½ðR=�jÞ�ð1=�jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt1�tÞÞ �D1e

½ðR=�jÞ�ð1=�jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt2�tÞ� for t2 < t < t3; (37)

Ii ¼ � XN=2

j;k¼1

alUijU
�1
jk sin�kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � 2�j

C

q ½Dðe½ðR=�jÞþð1=�jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt0�tÞ � e½ðR=�jÞþð1=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt1�tÞÞ

�D1ðe½ðR=�jÞþð1=�jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt2�tÞ � e½ðR=�jÞþð1=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt3�tÞÞ�

þ XN=2

j;k¼1

alUijU
�1
jk sin�kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � 2�j

C

q ½Dðe½ðR=�jÞ�ð1=�jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt0�tÞ � e½ðR=�jÞ�ð1=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt1�tÞÞ

�D1ðe½ðR=�jÞ�ð1=�jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt2�tÞ � e½ðR=�jÞ�ð1=�jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2�j=CÞ

p
�ðt3�tÞÞ� for t3 < t; (38)

where D1 ¼ Dðt1 � t0Þ=ðt3 � t2Þ. Summing these currents
over index i from 1 to N=2 gives the modulation of
magnetic field inside the rf-shielded chamber.

The feature of the field modulation when the current
flows in a single coil in an open space is easier to under-
stand than with a realistic complicated rf-shielded chamber
inside a magnetic yoke. This case is considered first as the

simplest example. In this case expressing the currents
using Eqs. (34)–(38) becomes much more simple. Since
it is already known that a general expression for the mag-
netic field is given by Eq. (19), field modulation By at the

center of the chamber can be obtained using:

By ¼ 0 for t < t0; (39)

By ¼ Z0Dlsin2�IDðe½ðR=LIDÞþð1=LIDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt0�tÞ � e½ðR=LIDÞ�ð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt0�tÞÞ

c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2LID

C

q for t0 < t < t1; (40)

By ¼ Z0Dlsin2�ID

c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2LID

C

q ðe½ðR=LIDÞþð1=LIDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt0�tÞ � e½ðR=LIDÞþð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt1�tÞ

� e½ðR=LIDÞ�ð1=LIDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt0�tÞ þ e½ðR=LIDÞ�ð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt1�tÞÞ for t1 < t < t2; (41)

By ¼ Z0lsin
2�ID

c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2LID

C

q ½Dðe½ðR=LIDÞþð1=LIDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt0�tÞ � e½ðR=LIDÞþð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt1�tÞÞ

�D1e
½ðR=LIDÞþð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt2�tÞ �Dðe½ðR=LIDÞ�ð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt0�tÞ þ e½ðR=LIDÞ�ð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt1�tÞÞ

þD1e
½ðR=LIDÞ�ð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt2�tÞ� for t2 < t < t3; (42)
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By ¼ Z0lsin
2�ID

c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2LID

C

q ½Dðe½ðR=LIDÞþð1=LIDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt0�tÞ � e½ðR=LIDÞþð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt1�tÞÞ

�D1ðe½ðR=LIDÞþð1=LIDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt2�tÞ � e½ðR=LIDÞþð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt3�tÞÞ �Dðe½ðR=LIDÞ�ð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt0�tÞ

� e½ðR=LIDÞ�ð1=LIDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt1�tÞÞ þD1ðe½ðR=LIDÞ�ð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt2�tÞ � e½ðR=LIDÞ�ð1=LIDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ð2LID=CÞ

p
�ðt3�tÞÞ�

for t3 < t: (43)

The field modulation due to the current of the coil
specified by index ID ¼ 1 is now considered. As a typical
parameter, capacitance C is chosen to be 0:3 �F. The other
parameters are the same as those in the right of Fig. 14. The
results are given in Fig. 17. The damping time of the field
modulation �2 can be characterized by

�2 ¼ LID

R
: (44)

In this case, it is evaluated as �2 ¼ 622 �s, which is then
consistent with the results of Fig. 17.

As mentioned in the Introduction, the attached capaci-
tors are usually chosen of low impedance for the circulat-
ing beam, and high impedance for the induced current with
the frequency components of the outside time-dependent
magnetic field. Differing from the bending magnet of an
RCS, a bump magnet can be of an even higher frequency.
The power spectrum (Fourier transformation of the field
pattern) for the bump magnet described in Fig. 13 is
represented in Fig. 18. There is some doubt however that

they show high impedance, for example, in the frequency
peak around 1.5 kHz. The field modulation in the case
where the coil in an open space has shorted ends is repre-
sented in Fig. 19. Comparing the results given in Fig. 17
with those in Fig. 19, it can be seen that the field modula-
tion is enhanced by an approximate order of magnitude 3,
because much more current is flowing in the stripes. This
clarifies the role of capacitors as a blocking capacitor with
the low frequency components.
Before proceeding with any further investigation it

needs to be confirmed whether the simplification where
the rf-shielded chamber with flanges is considered as a
multicoil systems is appropriate or not. For this purpose,
the induced current on the Cu stripes without any capaci-
tors is simulated using OPERA-3D ELEKTRA. As represented
in Fig. 20, the chamber is surrounded by a yoke whose
longitudinal length is 80.0 cm, and with gap height 2g ¼
32:0 cm and gap width 2h ¼ 64:0 cm. The radius of cham-
ber a is 15.25 cm. In order to also find the longitudinal leak
effect of the original magnetic flux from the area where the
magnet yoke is, the longitudinal length of chamber l was
considered to be twice as long as that of the yoke: namely
l ¼ 1:6 m. Similar to the previous simulation that was

FIG. 17. (Color) The field modulation at the center of the
chamber due to the current of only a single coil in an open
space, which is specified with index ID ¼ 1. As a typical
parameter, capacitance C ¼ 0:3 �F. The other parameters are
the same as those in the right of Fig. 14.

FIG. 18. (Color) Power spectrum for the field pattern BðtÞ rep-
resented in Fig. 13.
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done to investigate the field modulation due to the mag-
netic flux traversing the Cu stripes, the magnetic field was
assumed to have risen during 0.5 ms and that its flux
density at x ¼ y ¼ 0 would be 1664 G (refer to Fig. 10).
The total number of Cu stripes was 44 (two of them at x ¼
0) so as to reduce the amount of memory needed. The

shape of each stripe was a 5 mm� 5 mm square. The
resistance of each stripe was determined to be 10 � in
order that the induced magnetic field modulation would be
a few percent when compared to the amount of the original
magnetic field. This reduced conductivity makes the field
modulation due to the magnetic flux traversing the Cu
stripe about 0.01% smaller than that with case � ¼ 5:9�
107=�m [refer to Eqs. (29)–(32)]. That effect could then
be ignored in this simulation.
The Cu stripes were specified as ‘‘ID’’, which was

defined in Sec. II A (since the coils were defined by com-
bining stripes that are symmetrical in this theory, N ¼ 42
needs to be substituted into the definition of �ID). Similar to
the previous subsection, the accuracy of the results of this
simulation was investigated by changing the mesh size
along the time axis. Figure 21 gives the current density
of the Cu stripes specified with ID ¼ 11, which corre-
sponds to the largest coil in the system. The red, blue,
and black points represent the case where the mesh size
was 0.1, 0.05, and 0.025 ms, respectively. The discovery
was made that the 0.025 ms mesh size was sufficiently
small to obtain the correct results similar to in the case
discussed in the previous subsection.
The simulated results will now be compared with the

theoretical results. Figure 22 gives the current density at
0.5 ms on the Cu stripes specified as ID, and the time
dependence of the current density of the Cu stripes speci-
fied with an ID of 11. The red points represent the results of
the simulation, while the blue points the theoretical results.
In obtaining the above theoretical results, the assumption
was that the uniform magnetic flux BðtÞ would only tra-

FIG. 21. (Color) The dependence on the mesh size of the current
density for Cu stripes specified with ID ¼ 11. The red, blue, and
black points represent the results where the mesh size is 0.1,
0.05, and 0.025 ms, respectively.

FIG. 20. (Color) The chamber that is surrounded by the ferro-
magnetic yoke with the current conductors whose longitudinal
length is 80.0 cm, gap height 2g ¼ 32:0 cm, and gap width 2h ¼
64:0 cm. The radius of chamber a is 15.25 cm. The longitudinal
length of it is chosen to be l ¼ 1:6 m which is twice as long as
the yoke length to find the longitudinal leak effect of the original
magnetic field from the area where the magnet yoke exists.

FIG. 19. (Color) The field modulation where the coil in an open
space has shorted ends.
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verse the area specified by �a � x � a and �40 cm �
z � 40 cm and that the inductance matrix Lij could be

approximated using the summation of Eqs. (20)–(22) with
l ¼ 80 cm. The theoretical results and the numerical cal-
culation were in agreement with a below 6%–7% accuracy.

This discrepancy mainly arose from the assumption that
the original magnetic field BðtÞ was uniform and its longi-
tudinal component zero. Actually, the current with ID ¼
11 was reestimated using information from the three-

dimensional ~BðtÞ used in the simulation as input in the
theory. In this analysis, the original coil defined on the left
of Fig. 6 had to be used, because the magnetic field has a
longitudinal component. With this coil, magnetic flux �
should be calculated as

� ¼
Z
�
dS ~n � ~BðtÞ; (45)

where ~n is a normal vector perpendicular to the surface of
the coil and integration region� is specified as the surface
of each coil. This manipulation causes the left-hand side of
Eq. (23) to need modifying in order for BðtÞ to have the coil
dependence of BiðtÞ. In other words, magnetic flux density
D in Eqs. (34)–(38) should have the coil dependence ofDk.
The result is given in Fig. 23. The agreement between the
simulated and theoretical results is much better than the
results depicted on the right in Fig. 22.

Since the validity of the theory had been confirmed, the
rf-shielded chamber equipped with capacitors could be
considered. From a realistic point of view, it is significant

to consider the situation where the capacitors have been
partially broken. If only k capacitors are still working on
the lower side of the chamber, the current can only flow on

FIG. 22. (Color) Comparison between the theoretical and simulated results with OPERA-3D ELEKTRAwhere all the stripes have shorted
ends. The left figure shows the current density at 0.5 ms on the Cu stripe specified with ID and the right figure does the time
dependence of the current density for the Cu stripes specified with ID ¼ 11, which corresponds to the largest coil in this system. The
red and blue points represent the simulated and theoretical results, respectively. The assumption was made in the theory that the
uniform magnetic flux BðtÞ traverses only the area specified by �a � x � a and �40 cm � z � 40 cm. The theoretical results and
the numerical calculation were in agreement with a below 6%–7% accuracy.

FIG. 23. (Color) The time dependence of the current density for
the Cu stripes specified with ID ¼ 11. The red and blue points
represent the simulated and theoretical results, respectively.
Information from the three-dimensional ~BðtÞ is used in the
simulation as input in the theory. The agreements of both results
become much better than those on the right of Fig. 22.
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the Cu stripes. As a simple case, the situation where the
original magnetic flux, as given in Fig. 13, was excited
outside the chamber was considered. The dependence on
the number of working capacitors k of the field modulation
is given in Fig. 24 (the capacitance C ¼ 0:3 �F was used
as a typical parameter. The other parameters were the same
as those in the left of Fig. 14). The left figure gives the
behavior around t ¼ �300 �s, while the right figure be-
havior around t ¼ 300 �s. The red, blue, and black lines
represent the cases where the number of working capaci-
tors k were equal to 40, 60, and 100, respectively. Since the
initial condition was the same for all the cases, the larger
the number of working capacitors k, the larger the amount
of field modulation, for any time before t1. After time t1,
the situation was not so simple. Since the eigenfrequencies
of the coils differed in each case, the oscillation changes at
time t1 and t2 had different timings. If the differential of the
field modulation with time were to be positive at time t1 or
t2, the oscillation would be enhanced, because the differ-
ential of the original magnetic field with time was reduced
at those times. If the differential of it with time were to be
negative, the oscillation would not have been enhanced
when compared to the previous case. This phenomenon
causes a reverse in the amount of field modulation with
respect to the number of working capacitors. Actually, this
reverse in the amount of field modulation can be seen in the

right of Fig. 24 under the field pattern given in Fig. 13. The
field modulation for the case k ¼ 60 is smaller than that
with the case k ¼ 40 for any time after t ¼ t2 ¼ 300 �s,
although the number of working capacitors k ¼ 60 is big-
ger than k ¼ 40.
In order to use Eq. (25) or (26), the current on the ith coil

needs to be calculated correctly. If the mutual inductance
between coils is ignored, the formula for the induced
current on the ith coil would be much simpler. Whether
the effect of the mutual inductance could be ignored was
investigated by comparing the results of Eqs. (34)–(38)
with those without the effects of the mutual inductances.
The results are given in Fig. 25. The left figure gives the
case where 20 capacitors are working on the lower side of
the chamber, while the right figure the case where all the
capacitors (k ¼ 100) are working. The red and blue points
in those figures represent the results of Eqs. (34)–(38) and
those using the formula where the mutual inductances were
neglected, respectively. There are large discrepancies. The
damping effect is reduced when the effect from the mutual
inductances is included. This is because the Qj value

( � �j=R
ffiffiffiffiffiffiffiffiffi
�jC

p
) for the jth mode is changed through the

inductance matrix Lij being diagonalized, which is repre-

sented by Eqs. (20) and (21). Figure 26 gives the result of
comparing the Qj value with and without the effect of the

mutual inductance. Confirmation was made that the Qj

FIG. 24. (Color) The dependence on the number of working capacitors k of the field modulation (theoretical results) caused by the
magnetic flux traversing the Cu coils. The original magnetic flux is excited outside the chamber, as in Fig. 13 (analytical data). The left
figure gives the behavior of field modulation around t ¼ �300 �s, while the right figure behavior around t ¼ 300 �s. The red, blue,
and black lines represent the cases where the number of working capacitors k is 40, 60, and 100, respectively. The attached capacitance
C ¼ 0:3 �F was used as a typical parameter, The other parameters are the same as in the left of Fig. 14. Namely, the chamber radius a
is 15.25 cm, the radius of Cu stripe b is 2.5 mm, the total number of Cu stripes N is 100, and the conductivity of copper � is
5:9� 107=�m. The chamber is surrounded by the magnet yoke with its longitudinal length 80 cm, and its equal gap height 2g ¼
32:0 cm and gap width 2h ¼ 32:0 cm.
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value had indeed been enhanced by the diagonalization. In
other words, it should be noticeable that the amount of field
modulation had been enhanced as a whole, when compared
to the case where only the effect from the self-inductance

was included, thus making it indispensable in evaluating
the field modulation correctly that the effect of the mutual
inductances between all the coils be considered. Once the
current on the ith coil is obtained, Eq. (25) or (26) can
describe the field modulation inside the chamber quite
appropriately.

FIG. 26. (Color) The red and blue points represent Qj value with
and without the effect of the mutual inductance, respectively.
The Qj value for the jth mode had been enhanced by the

inductance matrix Lij being diagonalized, when compared to

the case where the mutual inductance is neglected.

FIG. 25. (Color) The comparison of the field modulation (theoretical results) obtained by Eqs. (34)–(38) with that done by the formula
where the mutual inductances are neglected. The left figure represents the case that 20 capacitors are working on the lower side of the
chamber. The right figure represents the case where all the capacitors (k ¼ 100), which cover the chamber, are working. The red points
represent the results calculated by Eqs. (34)–(38) and blue points do those done by the formula where the mutual inductances are
neglected. It is indispensable to consider the effect of mutual inductance, in order to evaluate the field modulation correctly.

FIG. 27. (Color) The rate of change of magnetic flux jdB=Bdtj
for the ‘‘measured’’ field pattern that is given by the left of
Fig. 16.
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There is a possibility that the analysis using the above
model, where the original magnetic flux follows the field
pattern given in Fig. 13, has been too simplified to use in
estimating the field modulation, because a derivative dis-
continuity exists with magnetic flux BðtÞ in Eq. (24) when
Eq. (28) is used as the field pattern. Similar to the case in
the previous subsection, a more realistic field pattern
should be used, like the left in Fig. 16. As this figure
reveals, different to the pattern given in Fig. 13, the differ-
ential of the magnetic flux with time is not constant in the
excitation and damping periods. The rate of change of
magnetic flux jdB=Bdtj, which is given in Fig. 27, provides

more information on this field pattern. The amount of
jdB=Bdtj can be comparable to the normal mode frequen-
cies 1=2�

ffiffiffiffiffiffiffiffi
�iC

p
for this rf-shielded chamber (refer to

Fig. 32). It can also be seen that the magnetic flux actually
fluctuates even in the flattop period. This could mean that
the traverse of the Cu coils by the magnetic flux following
this field pattern induces the large field modulation inside
the chamber.
When the derivative of magnetic flux BðtÞ with time is

continuous, the formula for the induced current described
in Eq. (24) can be rewritten using the theorem of partial
integration. The result is then expressed as follows:

Ii ¼
XN=2

j;k¼1

Uij2BðtÞalU�1
jk sin�k

�j

� XN=2

j;k¼1

Uijð5R2 � 2�j

C ÞalU�1
jk sin�k

�2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�j

C � R2
q Z t

�1
dt0Bðt0ÞeðR=�jÞðt0�tÞ sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�j

C � R2
q

2�j

ðt0 � tÞ

� XN=2

j;k¼1

Uij4RalU
�1
jk sin�k

�2
j

Z t

�1
dt0Bðt0ÞeðR=�jÞðt0�tÞ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�j

C � R2
q

2�j

ðt0 � tÞ; (46)

where the assumption is made that magnetic flux BðtÞ and
its derivative with time dBðtÞ=dt at t ¼ �1 is zero. After
substituting the magnetic flux, which is shown in the left of
Fig. 16, into Eq. (46), and the induced current into Eq. (26),
the field modulation is obtained. The results are given in
Fig. 28. The left figure represents the case where 20 ca-
pacitors are working on the lower side of the chamber. The
right figure gives the case where all the capacitors (k ¼
100) are working. Comparing the results, which are given

by red lines in Fig. 25, that correspond to the case where
the original magnetic flux is excited of Eq. (28) with those
given in Fig. 28 reveals that the behavior of those field
modulations are quite different. Nevertheless, some of the
phenomena can be understood through analysis of the
previous simpler model. For example, Fig. 28 shows that
the time when the maximum modulation occurs is not
necessarily the same for different numbers of working
capacitors k. This is because whether the oscillation of

FIG. 28. (Color) The field modulation (theoretical results) due to the traverse of the area enclosed by different stripes by the measured
magnetic flux (that is given by the left of Fig. 16). The left figure represents the case where 20 capacitors are working on the lower side
of the chamber. The right figure represents the case where all the capacitors (k ¼ 100) are working.
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the field modulation is enhanced or not depends on when
the original magnetic flux kicks it, as discovered in the
previous analysis. Furthermore, as given in Fig. 29 that
describes the dependence of the maximum field modula-
tion on the number of working capacitors k, the maximum
field modulation does not necessarily become larger as k
does, although it is a rather broad tendency.

Figure 29 also reveals that the field modulation may be
about 1.7% when compared to the original maximum value
of BðtÞ ( ’ 0:115 T), if the chamber is completely sur-
rounded by Cu stripes. In order to reduce the noise on
the beam position monitors besides the chamber, or to the
impedance source in terms of the beam instability issue, it

is preferable that the chamber be completely surrounded by
them, as mentioned in the Introduction. Since there is the
broad tendency seen in Fig. 29 that the maximum field
modulation becomes smaller as the number of stripes does,
it is better to optimize to what degree the chamber should
be surrounded by Cu stripes, from the view point of the
design of accelerators.
The usefulness of Eq. (25) will now be discussed. In this

discussion, the case where the magnetic flux BðtÞ follows
the more realistic field pattern given on the left of Fig. 16 is
considered. The field modulation was calculated for the
cases where the number of working capacitors k was 20,
60, and 100, respectively, using both Eqs. (25) and (26).
The results are given in Fig. 30. The left, middle, and right
figures give the cases where the number of working ca-
pacitors k was 20, 60, and 100, respectively. The blue
points give the results calculated using Eq. (25) and the
red points using Eq. (26). As there is a larger number of
working capacitors, the approximation that the magnetic
field on the x ¼ 0 plane is constant is appropriate, because
the effect of the Cu stripes at both the right and left sides of
the chamber dominates. Equations (25) and (26) are in
good agreement of within a few percent for the case
with the larger number of working capacitors. Hence, use
of Eq. (25) saves on having to replace the yoke by image
currents.

B. The modulation of the magnetic field with a bending
magnet in an RCS

With an RCS, it is important to evaluate the COD in
advance, because it cannot be corrected if the effect of it is
too big, while with steering magnets it can be done if the
amount of field error is tolerable. Since the strength of the
magnet in an RCS changes over time, this phenomenon
may cause a field modulation inside the chamber. The
assumption was made that the magnetic flux changes as

FIG. 30. (Color) The comparison of the field modulation (theoretical results) obtained by Eq. (25) with that done by Eq. (26) (when the
original magnetic field is assumed to be excited, following the measured data that is given by the left of Fig. 16). The blue points
represent the results calculated by Eq. (25) and red points do those done by Eq. (26). The left, middle, and right figures show the cases
that the number of working capacitors k is equal to 20, 60, and 100, respectively. As the number of working capacitors is larger, the
approximation that the magnetic field on x ¼ 0 plane is constant becomes appropriate.

FIG. 29. (Color) The dependence of the maximum field modu-
lation on the number of working capacitors k when the measured
field pattern (that is given by the left of Fig. 16) is excited.
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BðtÞ ¼ 1

	

��pfin=cþ pini=c

2
cos

�

T
tþ pini=cþ pfin=c

2

�
;

(47)

where 	 is the radius of curvature of the bending magnet, T
the ramping time, and pini and pfin are the injection and
extraction momentum in units of eV=c, respectively (refer

to the left of Fig. 31). They are related to the total energy E
of the beam through the dispersion relation: E2=c2 � p2 ¼
m2

pc
2, where mp is the proton rest mass. Substituting the

second differential of Eq. (47) with time t into Eq. (24)
results in the formula for the current Ii on the ith coil as

Ii ¼ � XN=2

j;k¼1

alðpfin=c� pini=cÞ�2
UijU

�1
jk sin�k

2	T2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
: (48)

The modulation of the dipole field is calculated by sub-
stituting Eq. (48) into Eq. (26). As a typical example, the
case can be considered where ramping time T ¼ 20 ms,
the radius of curvature 	 ¼ 12:578 m, the injection mo-
mentum pini ¼ 0:61 GeV=c, and the extraction momen-
tum pfin ¼ 3:8 GeV=c. For the other parameters, the same
values described in Fig. 24 are used. The results are given
on the right in Fig. 31. Figure 32 gives the N=2 normal
mode frequencies: 1=2�

ffiffiffiffiffiffiffiffi
�iC

p
for this chamber. The modu-

lation is seen to be insignificant. Since all the frequencies

are within a few hundred kHz, much higher than the
inverse of ramping time 1=Tð¼ 50 HzÞ, the original mag-
netic field is considered to have been adiabatically excited
when compared with the eigenmode frequencies of the
coils.

IV. SUMMARY

A theory was developed for use in evaluating the field
modulation inside an rf-shielded chamber when the outside
dipole magnetic field is time-dependently changed. Our

FIG. 31. (Color) The time dependence of the original bending magnet BðtÞ is given in the left figure (analytical data) and the
modulation of it (theoretical results) is in the right figure. The field modulation inside the chamber is insignificant. The same
parameters as in Fig. 24 are used. Namely, the length of the chamber l is 80 cm, the radius of chamber a is 15.25 cm, the total number
of Cu stripes N is 100, the attached capacitance C for each stripe is 0:3 �F. The chamber is surrounded by the ferromagnetic yoke
whose longitudinal length is 80 cm, gap height 2g ¼ 32:0 cm, and gap width 2h ¼ 32:0 cm. As a typical set of parameters, ramping
time T ¼ 20 ms, the radius of curvature 	 ¼ 12:578 m, the injection momentum pini ¼ 0:61 GeV=c, and the extraction momentum
pfin ¼ 3:8 GeV=c.
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theory can predict the effect of the induced currents
quickly and also estimate the field modulation inside the
chamber within 6%–7% accuracy. This uncertainty is
mainly caused by the fact that the original dipole magnetic
field actually has a longitudinal component that leaks from
the area where the magnet yoke is. The theory can be easily
generalized to include the longitudinal effect if the 3D field
map of the original magnetic field is known. This manipu-
lation enables the field modulation inside the chamber to
be calculated much more accurately.

The type of field modulation was classified into two by
source: one from the traverse of the magnetic flux over a
Cu stripe and the other from the traverse of magnetic flux
over the area enclosed by a pair of Cu stripes and the
flanges. If the ferromagnetic yoke was sufficiently far
enough away from the chamber (typically 3 times more
than the radius of the chamber), the field modulation due to
the traverse of the magnetic flux over the Cu stripe would
be almost canceled out, especially for the case of a sym-
metrical chamber (square or cylindrical chamber) covered
in symmetrical stripes (square or cylindrical stripes).
However in reality, the ferromagnetic yoke is very close
to the chamber and the effect of it significant. The field
modulation then, reaches a maximum when the chamber is
completely surrounded by Cu stripes. Even in this case, the
field modulation from the magnetic flux traversing the Cu
stripe is smaller (typically less than the order of magnitude)
than that caused in the traverse of the area enclosed by a
pair of Cu stripes and the flanges.

The rf-shielded chamber was simplified as being a mul-
ticoil system in our theory to consider the effect of the
magnetic flux traversing the area enclosed by a pair of Cu
stripe and the flanges. This simplification proved to be
applicable in this case by comparing theoretical results
with simulated results. It is important to consider the effect
of the mutual inductance between coils. The effect of it
enhances the amount of field modulation because the
damping time of the induced current is longer. The discov-
ery was also made that the simpler formula given by
Eq. (25) is very useful in evaluating the field modulation
at the axis of the chamber, especially when the ferromag-
netic yoke surrounds it. Infinite image currents are unnec-
essary, using that formula being considered.
As typical examples, the procedure was applied in two

cases: the bump magnet during the injection period and the
bending magnet in the RCS. We were able to determine a
field pattern for the bump magnet so that the field modu-
lation caused by it does not deteriorate the characteristics
of the beam. From the point of view of the design of
accelerators, the degree to which the chamber in the
bump magnet should be surrounded by Cu stripes in re-
ducing the field modulation could be optimized, while the
noise on the beam position monitors, or the impedance
source could be sufficiently small. Another discovery was
that the field modulation is negligibly small inside the
bending magnet in the RCS, because the bending magnet
field is considered to have been adiabatically excited when
compared with the intrinsic frequencies of an rf-shielded
chamber.
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APPENDIX A: VALIDITYOF THE REPLACEMENT
OF THE FERROMAGNETIC YOKE BY IMAGE

CURRENTS

In the text, we mentioned that the effect of the ferro-
magnetic yoke on the field modulation can be included
in estimations by replacing it by image currents. In order
to confirm that this was correct, we will show that the
azimuthal component of this field modulation is zero on
the magnetic pole face. This Appendix is used to con-
cretely do so using the case where the field modulation is
induced by the magnetic flux traversing the Cu stripe, as an
example. A similar method can also be applied to the case
where it is induced by the magnetic flux traversing Cu
coils.

FIG. 32. (Color) The N=2 normal mode frequencies
(1=2�

ffiffiffiffiffiffiffiffi
�iC

p
) where i is mode index. These frequencies are

much higher than the inverse of ramping time 1=Tð¼ 50 HzÞ.
It may be considered that the original magnetic field is consid-
ered to have been adiabatically excited when compared with the
eigenmode frequencies of the coils.
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The field modulation at ðx; yÞ due to the ith stripe can be expressed using

Hiðx; yÞ ¼ 2c

�b2Z0

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞ X1

m;n¼�1
ð�1Þm

�
Z b

0
dr

I
d’

r2 sin’½�yþ 2ngþ ð�1Þnyi þ r cos’; x� 2mh� ð�1Þmxi � r sin’; 0�
½x� 2mh� ð�1Þmxi � r sin’�2 þ ½�yþ 2ngþ ð�1Þnyi þ r cos’�2 ; (A1)

with image currents. It is sufficient to show only that the azimuthal component of Hi is zero on the magnetic pole face,
because the total magnetic field is expressed by the superposition of all the stripes. As shown in Fig. 3, since the gap height
and gap width is 2g and 2h, respectively, the field modulation on the magnetic pole face is denoted with that on the surfaces
:ðx ¼ �h; yÞ and ðx; y ¼ �gÞ, where x and y moves from �h to h and �g to g, respectively.

As a typical case, we prove that the x component of Hiðx;�gÞ is zero. The component of Hi;xðx;�gÞ can be expressed

using

Hi;xðx;�gÞ ¼ 2c

�b2Z0

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞ X1

m;n¼�1
ð�1Þm

�
Z b

0
dr

I
d’

r2 sin’½gþ 2ngþ ð�1Þnyi þ r cos’�
½x� 2mh� ð�1Þmxi � r sin’�2 þ ½gþ 2ngþ ð�1Þnyi þ r cos’�2 : (A2)

By replacing index n by n� 1 and variable ’ by ’� �, it can be rewritten as

Hi;xðx;�gÞ ¼ 2c

�b2Z0

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞ X1

m;n¼�1
ð�1Þm

�
Z b

0
dr

I
d’

�r2 sin’½�gþ 2ng� ð�1Þnyi � r cos’�
½x� 2mh� ð�1Þmxi þ r sin’�2 þ ½�gþ 2ng� ð�1Þnyi � r cos’�2 : (A3)

Finally, by transforming index n to �n and variable ’ to �’, the following is obtained:

Hi;xðx;�gÞ ¼ 2c

�b2Z0

Z t

�1
dt0

dBðt0Þ
dt0

e½ð4cÞ=ðZ0b
2�Þ�ðt0�tÞ X1

m;n¼�1
ð�1Þm

�
Z b

0
dr

I
d’

�r2 sin’½gþ 2ngþ ð�1Þnyi þ r cos’�
½x� 2mh� ð�1Þmxi � r sin’�2 þ ½gþ 2ngþ ð�1Þnyi þ r cos’�2 : (A4)

Comparing the description of Hi;xðx;�gÞ in Eq. (A2) with
that of Eq. (A4), we find that Hi;xðx;�gÞ must satisfy the
relation

Hi;xðx;�gÞ ¼ �Hi;xðx;�gÞ; (A5)

which means that Hi;xðx;�gÞ is equal to zero. Similar to
the previous method, we were also able to prove the other
conditions: Hi;xðx; gÞ ¼ 0 and Hi;yð�h; yÞ ¼ 0.
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