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It is desirable to optimize (minimizing both the inductance and electron flow) the magnetically

insulated vacuum sections of low impedance pulsed-power drivers. The goal of low inductance is

understandable from basic efficiency arguments. The goal of low electron flow results from two

observations: (1) flowing electrons generally do not deliver energy to (or even reach) most loads, and

thus constitute a loss mechanism; (2) energetic electrons deposited in a small area can cause anode

damage and anode plasma formation. Low inductance and low electron flow are competing goals; an

optimized system requires a balance of the two. While magnetically insulated systems are generally

forgiving, there are times when optimization is crucial. For example, in large pulsed-power drivers used to

energize high energy density physics loads, the electron flow as a fraction of total current is small, but that

flow often reaches the anode in relatively small regions. If the anode temperature becomes high enough to

desorb gas, the resulting plasma initiates a gap closure process that can impact system performance.

Magnetic-pressure driven (z pinches and material equation of state) loads behave like a fixed inductor for

much of the drive pulse. It is clear that neither fixed gap nor constant-impedance transmission lines are

optimal for driving inductive loads. This work shows a technique for developing the optimal impedance

profile for the magnetically insulated section of a high-current driver. Particle-in-cell calculations are

used to validate the impedance profiles developed in a radial disk magnetically insulated transmission line

geometry. The input parameters are the spacing and location of the minimum gap, the effective load

inductance, and the desired electron flow profile. The radial electron flow profiles from these simulations

are in good agreement with theoretical predictions when driven at relatively high voltage (i.e., V �
2 MV).

DOI: 10.1103/PhysRevSTAB.12.030401 PACS numbers: 84.70.+p

I. INTRODUCTION

The efficient transport of electrical power densities orig-
inating from large pulsed-power drivers (1–1000 TW=m2)
is a critical requirement in operating high power particle
beam drivers and intense radiation sources. Magnetic in-
sulation in the vacuum section of these systems is critical,
given that the electric field generated between the conduc-
tors of the transmission line will usually result in the space-
charge-limited (SCL) emission of electrons from the line’s
cathode electrode [1,2]. Although the cathode in a vacuum
line will freely emit electrons under such electric stress, the
self-magnetic field of the transmission line’s current inhib-
its the electrons from reaching the anode [3–23]. When
steady-state operation is attained, insulated electrons are
confined to a sheath along the cathode and experience an
average E� B drift in the direction of power flow. The
understanding of the electron flow within these magneti-
cally insulated transmission lines (MITLs) is fundamental
to the successful operation of many pulsed-power systems.

Of particular interest are the high-current pulsers used in
high energy density physics (HEDP) experiments. Within
their vacuum section, the gap spacing between the anode
and cathode of each MITL, A-K gap, is an important

design parameter that directly impacts the electrical energy
transport efficiency of the system. The MITL is optimized
through the balance of two competing constraints: the self-
inductance of the line and the current carried by vacuum-
flowing electrons. Those vacuum-flowing electrons reach
the anode near the load in many cases. Typically it is
desirable to maintain a low system inductance, by mini-
mizing the self-inductance of the MITLs, in order to pro-
vide the most efficient transfer of electrical energy to the
load [24]. The self-inductance of a MITL is largely deter-
mined by its geometry (with some flux reduction as a result
of electron flow current) and is lowered through a reduction
in the spacing of the A-K gap. Decreasing this self-
inductance, however, generally results in an increase in
the current conducted by vacuum electrons. This electron
current can lead to plasma desorption when concentrated
into small regions of the anode (especially near the load),
resulting in a significant elevation in the temperature of the
surrounding material [25]. If the temperature of the anode
surface rises above �400�C [26,27] gas may be desorbed
and ionized by the high electric field, forming an anode
plasma. The resulting plasma expansion from the anode
and ion deposition to the cathode could adversely affect the
coupling of power flow into the load [28–34]. It is, there-

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 030401 (2009)

1098-4402=09=12(3)=030401(12) 030401-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.12.030401


fore, desirable to limit the electron flow current at the load
while maintaining the lowest possible vacuum inductance
within these systems.

Magnetic-pressure driven (z pinches and material equa-
tion of state) loads behave like a fixed inductor for much of
the drive pulse. Within a MITL driving an inductive load,
the spatial distribution of the electron flow current varies as
it is influenced by the magnetic and electric fields along the
transmission line. Because of inductive voltage drop, the
voltage varies along the line. Significant voltage differ-
ences occur with relatively low load inductances. For
example, if the equivalent MITL inductance equals the
load inductance, the voltage varies by a factor of 2 along
the MITL from inlet to outlet. Choosing an appropriate
vacuum impedance profile (i.e., the spacing of the A-K gap
as it varies as a function of distance from the load) con-
sistent with the current and local voltage allows for the
MITL’s self-inductance to be optimized as the total current
in flowing electrons is reduced. One such optimization was
done for the Z pulser at Sandia National Laboratories [35–
38]. In the design of the conical MITLs for that system,
Stygar et al. [36] demonstrated a procedure for developing
radial impedance profiles which were designed to mini-
mize the vacuum inductance of the system while limiting
the electron flow current entering the load. This process
assumed that the flowing electrons were incapable of re-
turning to the cathode surface, presumably due to an
accumulated loss in the total electron energy [19]. The
design was implemented using localized pressure-balance
calculations, which permitted the magnitude of the elec-
tron flow current to be expressed in terms of the local
voltage and total current [12], with the additional restric-
tion that electron flow current could never decrease in the
direction of power flow. The geometry of the vacuum
section was optimized through iterative computer model-
ing in order to produce the desired electrical performance
at the load [37]. Clearly, when vacuum-flowing electrons
are sufficiently insulated from reaching the anode and
cannot return to the cathode, the least inductive A-K gap
profile for this geometry results from a radially invariant
electron flow distribution.

Particle-in-cell (PIC) calculations performed on the vac-
uum section of the Z pulser [39,40] have demonstrated that
the local electron flow current operates at values which are
closely approximated by the local application of the 1D
pressure-balance model developed in Ref. [15], where the
vacuum impedance is varying slowly with radius.
Furthermore, these PIC simulations show that the electron
flow current near the load is considerably less than what
was originally predicted from circuit model calculations
[37]. It is hypothesized in Ref. [39] that this is a result of
electrons being retrapped (returned to the cathode) as the
local vacuum impedance gradually increases toward the
load. Well-diagnosed studies on a radiographic x-ray driver
(which has higher fractional electron flow than Z) have

measured the effects of electrons returning to the cathode
in some cases [41,42]. A design approach that accounts for
the possibility of electrons being returned to the cathode
could potentially lead to A-K gap spacing profiles which
are successful in further reducing the electron flow current
near the load of these MITLs. Decreasing the current in
vacuum-flowing electrons near the load would reduce the
amount of electron heating of the anode, and improve
power flow efficiency of large pulsed-power drivers [43].
In an effort to derive analytically the optimal A-K gap

profile for a radial MITL driving a z-pinch load, Savage
[44] developed an expression for a constant electron flow
impedance profile with regards to the line’s spatially vary-
ing voltage and vacuum impedance. This distributed im-
pedance was derived under the assumption that the system
possessed electromagnetic transit times that were shorter
than the current rise time; this led to a profile which was
formulated in terms of the size and location of the MITL’s
minimum gap, and the inductance contained within the
radius of the minimum gap. Savage et al. [45] later gener-
alized these calculations to allow for a spatially varying
electron flow. Those calculations are shown in Sec. II A
below, and are equally valid whether any excess flowing
electrons reach the anode or the cathode. In that model,
impedance profile solutions were generated numerically
(using a conventional root-solving algorithm), which cor-
responded to a prescribed rate of fractional electron current
change in the direction of power flow. Later work intro-
duced the general analytic mathematical solution to the
profile calculations. These methods neglect the expansion
of electrode plasmas across the A-K gap (i.e., gap closure)
and assume that the load inductance does not change as a
function of time. Typical (and efficient [24]) HEDP load
designs behave as essentially constant inductance during
much of the rise of the line current allowing them to be
modeled as an inductive cavity throughout the initial part
of the drive pulse [46,47]; by design their inductance is
essentially constant early in the drive pulse.
In this article we develop a design methodology centered

on the geometrical encoding of impedance profiles into the
A-K gaps of strongly insulated MITLs feeding inductive
loads. When reducing the electron flow current at the load,
these impedance profiles optimize the MITL’s self-
inductance while attempting to maintain an adiabatic
change in the spatial distribution of the electron flow along
the line. Although this method can be generalized to en-
compass any vacuum line geometry, the derivation of the
impedance profiles given in Sec. II is restricted to geome-
tries that are generated from 2D cross sections possessing
either translational or rotational symmetry (orthogonal to
the vacuum electron drift). Furthermore, while the remain-
der of this article focuses on purely inductive systems, as a
simplifying assumption, any system with transit times
shorter than the drive voltage rise time, and a load much
lower in impedance than the MITL vacuum impedance,
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would behave similarly. The model presented in Sec. II A
assumes that the line voltage is well above the rest mass of
an electron, i.e. V ffi 511 kV, and that the vacuum electron
flow is a function of the MITL’s local voltage and local
wave impedance. Analytical calculations which utilize the
localized 1D pressure balance of the electron sheath are
used to provide a lossless first-order approximation for the
relative behavior of the electron flow current as it varies as
a function of distance from the load. Gap profiles are
derived in Sec. II B and are represented by functions that
vary slowly with radius (for a radial disk MITL), are
monotonically decreasing in the direction of power flow,
and are uniquely defined by the desired spatial distribution
of the electron current. For numerical particle simulation
reasons, the design incorporates a flat cathode with a
curved anode into the MITL design. A flat cathode avoids
numerical issues associated with ‘‘stair-stepping’’ pertur-
bations in the high-resolution PIC calculations. Those
calculations will be used to validate the model in Sec. III.

While the primary focus of this article is on improving
the electrical efficiency of a high-current driver (optimiz-
ing vacuum inductance in tandem with reducing the elec-
tron flow current near the load), it should be noted that
several additional challenges exist for coupling power flow
into the load. Reductions in the load current (due to losses
in the vacuum section) are typically due to effective gap
closure within the MITL, resulting from anode and cathode
plasma expansion [48]. In this article, we are effectively
assuming that the minimum gap spacing is large in com-
parison to the product of the plasma’s expansion velocity
and the time scale of the pulse. The main concern, as
discussed in Sec. III, is the impedance profile’s effect on
the bunching of the electron flow near the load as a result of
the deceleration of the vacuum electron drift in the direc-
tion of increasing localized impedance [22]. There exists a
limitation as to what extent the electron flow rate can
diminish (in the direction of power flow) before the sub-
sequent accumulation of excess space-charge counteracts
the retrapping of vacuum electrons to the cathode [39].
Furthermore, if a sufficiently large linear current density is
present near the load, resistive (i.e., Ohmic) heating of the
anode surface will result in the presence of ion space
charge [33,34] which will also limit the reduction of the
electron flow current [30].

II. ANALYTICAL RETRAPPING MODEL

The calculations below demonstrate a general method
for estimating the A-K gap profile for a strongly insulated
MITL when provided common parameters. PIC simula-
tions of previous high-current drivers suggest that the
electron flow current within these inductive systems tends
to the local equilibrated theoretical value [39,40]. It is
therefore assumed, a posteriori, that the magnitude of the
electron flow, at a certain distance from the load, can be
determined analytically via the local quasistatic balance

between the magnetic field pressure and electric tension
acting on the vacuum electron sheath. This would imply
that the impedance profile of the line, and thus the MITL’s
self-inductance as a function of distance from the load, sets
the relative spatial behavior of the electron flow’s magni-
tude. This tailoring of the electron flow provides a decrease
in the magnitude of the electron flow current in the direc-
tion of power flow when vacuum-flowing electrons are
capable of either being returned to the cathode, or reaching
the anode. Electron flow to the cathode (retrapping) is
much more energetically desirable in practice because
electrons reach the cathode with substantially less kinetic
energy than electrons striking the anode. Because of the
magnetic field, electrons can generally only reach the
anode by aggregating into vortices with large space-charge
fields. Those electrons impact the anode with kinetic en-
ergy equal to the MITL voltage at that point (typically
MeV). In fact, the high-resolution simulations in Sec. III
show that for tailored electron flow e-folding distances of
one meter or more, electrons stay close to the cathode, and
return to the cathode during the current rise.
The exact distribution of the MITL’s electron flow cur-

rent is dependent on large scale variations within the
spatial distribution of the vacuum electrons’ total energy.
Electrons that continually gain total energy will be re-
turned to the cathode surface [49]. This is possible for an
orbiting electron, within the MITL’s A-K gap, when it is
extracting energy from the time-varying magnetic field.
During the rise of the current pulse, electrons drifting along
the cathode experience an increase in the magnetic flux
enclosed by their orbits. The electromotive force associ-
ated with this increasing flux performs work on the elec-
trons to increase their total kinetic energy through betatron
acceleration [50,51]. The energy typically gained within
the PIC calculations presented in Sec. III is on the order of
750 eV=cm for an electron with an average height of 1 mm
(above the cathode), at a radius of 0.2 m (from the load) and
7:5� 1013 A=s current slew rate. If the energy gained
through this process is higher than the rate of electron
energy loss, a mechanism is provided which is capable of
returning vacuum-flowing electrons to the cathode
conductor.
Drifting electrons can lose energy through synchrotron

radiation [52,53] and effective collisions through electron
flow instabilities resulting from electrostatic- and
electromagnetic-field fluctuations [54]. The energy radi-
ated from MITL electrons, gyrating within the vacuum
sheath, constitutes a negligible fraction of the electron’s
total energy within the nanosecond time scales in which
these drivers typically operate and will therefore be omit-
ted from the proposed model. A decrease in the total
electron energy can affect the electron flow when
vacuum-flowing electrons undergo effective collisions,
broadening the electron sheath. A comparison of a pro-
posed collisional model and collisionless predictions
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against a wide range of pulsed power experiments suggest
that effective collisions might produce non-negligible ef-
fects on the electrical performance of physically relevant
MITLs [54]. These effects are not evident in the high-
resolution two-dimensional radial disk PIC simulations
described in Sec. III and are not included in the simple
model presented in Sec. II A, which is derived through only
pressure-balance considerations. Likewise, the PIC calcu-
lations, discussed in Sec. III, provide a self-consistent
model of the magnetic induction within the vacuum line
but do not include models for electron energy loss due to
radiation, neutral particle interactions, or classical charged
particle collisions. Therefore, the model developed in
Sec. II Awill provide an initial design for MITL impedance
profiles albeit a complete description would require the
inclusion of electron energy loss considerations.

A. Impedance profiles

Consider the conceptual design, as shown in Fig. 1, for
an inductively loaded MITL utilizing a spatially varying
A-K gap profile, which is tapered from the power inlet to
the load. It is assumed here that the geometry is cylindri-
cally symmetric, either defining a radial disk or a tapered
coaxial line depending upon the axis of revolution. The
inductance of the load is assumed to be fixed. The follow-
ing calculations, in reference to Fig. 1, define the enclosed
inductance as a function of distance (from the load) and the
relative change in the magnitude of the electron flow
current in the direction of power flow. Assuming that the
line total current is azimuthally uniform, the impedance

profiles are derived from the local vacuum wave imped-
ance of the transmission line and the 1D pressure balance
of the electron sheath in terms of current and local voltage.
We begin by defining the enclosed inductance at any

position along the line, s, as the summation of the induc-
tance of the load, L0, and the integration of the trans-
mission line’s inductance per unit length,

LðsÞ ¼ L0 þ 1

c

Z s

s0

Zvðs0Þds0; (1)

where s0 is the location of the load cavity, s is the dimen-
sion of power flow (i.e., s ! r for a radial disk geometry
and s ! z for a coaxial line), and the inductance per unit
length is equal to the wave impedance, Zv, divided by the
wave propagation velocity in vacuum, c. The spatial dis-
tribution of the MITL’s anode potential is directly related
to this inductance profile. We assume that at each position,
the anode and cathode currents can be expressed in terms
of the line voltage, Va, through local electromagnetic
pressure-balance considerations [15,21],

Va ¼ Zv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2a � I2c

q
�mec

2

2e

�
I2a
I2c

� 1

�
; (2)

where Ia and Ic are the line currents conducted through the
anode and cathode, respectively, me is the electron rest
mass, and e is the fundamental electron charge. The total
current flowing in the anode is divided in the return path
between the current flowing in the cathode and the current
flowing through the vacuum electron flow, i.e. Ie ¼ Ia �
Ic. As a result, the local electron flow current is implicitly
contained within the analytical formulation given in (2). If
it is assumed that the electron flow is strongly insulated;
that is, the anode current is much greater than the current
carried by vacuum-flowing electrons, then a relation for the
electron flow current can be extracted from Eq. (2). The
electron current is well approximated by the explicit equa-
tion

Ie � V2
a

2IaZ
2
v

: (3)

Systems in which the electron flow is a small fraction of
the total current (and therefore have electron flow close to
the cathode) have an inductance profile close to the vacuum
inductance profile. Assuming the electrons are flowing
parallel to the electrodes, the inductance per unit length
of the transmission line is due to the spatial derivative (in
the power flow direction) of the total magnetic flux across
the A-K gap. The total flux is the sum of the flux between
the anode and the electron sheath, and the flux between the
electron sheath and the cathode. We define the total induc-
tance of the line as the ratio of magnetic flux to the anode
current,

L ¼ 1

Ia
½�a þ�c�; (4)

FIG. 1. (Color) Inductively loaded MITL with spatially varying
A-K gap profile. This configuration is cylindrically symmetric
about either the ĝ or ŝ axis depending upon the intended
geometry. A radial disk configuration would be generated by
revolving the ŝ axis about the ĝ axis such that ðx1; x2; x3Þ !
ðr; �; zÞ for a cylindrical curvilinear coordinate system. For a
coaxial line, the ĝ axis is revolved about the ŝ axis such that
ðx1; x2; x3Þ ! ðz;��; rÞ; the gap spacing in this case is defined as
the difference between the radius at the edge of the anode and the
radius at the edge of the cathode.
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where �a is the magnetic flux on the anode side of the
electron sheath and �c is the magnetic flux on the cathode
side of the electron sheath. The spatial derivative of this
inductance gives the inductance per unit length of the
transmission line,

L0 ¼ 1

Iac
½IaZf þ IcðZv � ZfÞ� ¼ 1

c

�
Zf þ Ic

Ia
ðZv � ZfÞ

�
;

(5)

where Zf, the flow impedance [21], is the effective wave

impedance associated with the distance between the anode
and the location of the electron sheath (or the centroid of
the sheath if the sheath has non-negligible thickness). If the
electron sheath is close to the cathode, the flow impedance
approaches the vacuum impedance. For the PIC simula-
tions presented in Sec. III, the average flow impedance was
calculated to be roughly 0.95 of the vacuum impedance,
and the cathode current is 0.9 of the anode current. The
inductance per unit length calculated by Eq. (5) with those
values is thus 0.995 of the vacuum value. It is therefore
reasonable, in this case, to neglect the flux reduction due to
the electron flow current. This will be used as a simplifying
assumption when deriving the impedance profiles below. It
is commonly assumed that the effective inductance per unit
length is related solely to the flow impedance in a MITL by

L0 ¼ Zf

c
; (6)

however, Eq. (6) is generally incorrect and substantially
underestimates the inductance when the electron flow is a
small fraction of the total current.

The expression for the electron flow current can be
related to the MITL’s self-inductance through a substitu-
tion for the line voltage, which is equivalent to the enclosed
inductance, as a function of position, scaled by the time
derivative of the anode current,

IeðsÞ � LðsÞ2ð _IaÞ2
2IaZvðsÞ2

¼ ð _IaÞ2
2c2Ia

�
L

L0

�
2
; (7)

where the vacuum wave impedance, Zv, has been ex-
pressed in terms of the enclosed inductance given in
Eq. (1). Here the diacritic marks above Ia and L denote
time derivatives and spatial derivatives, respectively.
Assuming that the electromagnetic transit time of the
system is short in comparison to the rise time of the current
pulse, i.e. dIa=ds � 0, the change in the electron flow
current along the line is then given by

@Ie
@s

¼ ð _IaÞ2
c2Ia

�
L

L0 �
L2L00

ðL0Þ3
�
: (8)

Dividing Eq. (8) by the total electron flow current yields
the fractional change in the electron flow current with

respect to position, which is defined as the retrapping rate,

� ¼ 1

Ie

@Ie
@s

¼ 2
ðL0Þ2 � L00L

LL0 : (9)

This is the fractional rate (per unit distance) at which the
electron flow current is changed in the direction of the
power flow. While this parameter could, in general, be a
function of position, it is defined here to be spatially
invariant to maintain an adiabatic change in the electron
flow. For configurations that have reducing electron flow,
the maximum adiabatic reduction in electron current oc-
curs with the highest stable constant flow reduction over
the longest possible distance. Equation (9) is a nonlinear
differential equation that describes the inductance of the
transmission line as a function of both position and the
retrapping rate of the vacuum electrons to the cathode. The
closed form solution of Eq. (9), assuming a constant �, is
readily obtained through an exponential substitution,
which results in the following inductance profile:

Lðs; �Þ ¼ C2ð�Þ exp
�
� 2C1

�
exp

�
��

2
ðs� s0Þ

��
; (10)

where

C1 ¼ Zvðs0Þ
L0c

; (11)

C2ð�Þ ¼ L0 exp

�
2Zvðs0Þ
cL0�

�
: (12)

Although this expression possesses a singular point at � ¼
0, the inductive profile for a constant reducing flow rate
exists as a special solution whose asymptotic behavior is
not accessible from the general solution. This solution can
be obtained either by substituting � ¼ 0 directly into
Eq. (9) and solving the resulting ordinary differential
equation or by taking the limit of Eq. (10) as � approaches
zero,

lim
�!0

Lðs; �Þ ¼ L0 exp

�
Zvðs0Þðs� s0Þ

L0c

�
: (13)

Equations (10)–(13) thus constitute the complete solution
of Eq. (9), and provide a unique inductive profile for a
chosen retrapping rate. The vacuum inductance at any
distance from the load is therefore influenced by the chosen
retrapping rate which in turn sets the fractional change in
the magnitude of the electron flow per unit length, as it
varies with position. The vacuum impedance of the line
appears within the constants of integration and depends
upon the geometry of the A-K gap. This relationship allows
for the gap spacing, as a function of position, to be ex-
pressed directly in terms of the retrapping rate; this will be
demonstrated for a radial disk configuration below.
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1. Constant electron flow

If the vacuum electrons are inhibited from reaching
either the anode or the cathode, then the lowest inductance
case corresponds to a uniform electron flow distribution in
the power flow direction. This is the case of constant
electron flow, or a zero retrapping rate. The inductive
profile for a zero retrapping rate, � ¼ 0, is given by
Eq. (13). The vacuum impedance in the numerator of the
exponential function’s argument depends upon the geome-
try of the MITL. For a radial disk transmission line, the
local wave impedance is given by

ZvðrÞ ¼ 1

2�

ffiffiffiffiffiffi
�0

"0

s
g

r
; (14)

where g is the distance across the A-K gap at radius r. The
impedance profile corresponding to a constant electron
flow within this geometry, denoted by Zv0ðrÞ, can be ex-
pressed as a function of radius, solely in terms of the
transmission line’s geometrical constants and the induc-
tance of the load, by substituting Eq. (13) into Eq. (1) and
setting s ! r,

Zv0ðrÞ ¼ c
@L

@r
¼ �0

2�

g0
r0

exp

�
�0

2�

g0ðr� r0Þ
L0r0c

�
; (15)

where the term Zvðs0Þ in Eq. (13) has been replaced with

Eq. (14), evaluated at r ¼ r0, and �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0="0

p
.

2. Reducing electron flow

For a positive retrapping rate, the analytical model pre-
dicts a decreasing electron flow current in the direction of
power flow. This can be regarded as the ideal case; elec-
trons experience an increase in their total energy as they
drift through an increasing magnetic field exclusive of
energy loss considerations. Larger retrapping rates corre-
spond to a greater reduction of the electron flow current
near the load, and that current is generally returned to the
cathode conductor during the current rise. Realistically,
however, the degree to which the electron flow can be
returned to the cathode will be limited by the accumulation
of excess space charge within this region [22,39].

The impedance profile resulting from a nonzero retrap-
ping rate must be derived from the general solution given
in Eq. (10). As an example, assume that there is an appre-
ciable change in the electron flow versus position such that
the amplitude of the current is attenuated by a factor of 1=e
for every meter traversed in the direction of power flow, i.e.
� ¼ 1 m�1. The constants of integration, in a radial ge-
ometry, simplify to

C1 ¼ Zvðr0Þ
L0c

; (16)

C2 ¼ L0 exp

�
2Zvðr0Þ
L0c

�
; (17)

where the local wave impedance, Zvðr0Þ, is given by
Eq. (14). Using these constants of integration, the vacuum
wave impedance for the � ¼ 1 m�1 reducing flow profile,
Zv1ðrÞ, is given by the following expression:

Zv1ðrÞ ¼ �0

2�

g0
r0

exp

�
�0

�

g0
cL0r0

� �0

�

g0
cL0r0

� exp

�
� 1

2
ðr� r0Þ

�
� 1

2
ðr� r0Þ

�
: (18)

B. A-K gap profiles

In order to design the geometrical profile for a particular
flow rate, the gap spacing versus radius must be extracted
from either Eq. (15), for constant electron flow, or Eq. (18),
for the � ¼ 1 m�1 radially reducing flow. Substituting
either of these expressions into Eq. (14) eliminates the
characteristic impedance term and defines the gap spacing
by a unique one-dimensional function possessing three
parameters: the radius of the minimum gap spacing, r ¼
r0, the minimum A-K gap spacing, g ¼ g0, and the induc-
tance, L0, of the cavity inside the minimum gap. When
these parameters are fixed, the gap profile (and maximum
gap spacing located at the outer perimeter of the disk) will
vary for each retrapping rate. If it were desired to set the
location and size of the maximum gap, the minimum gap
spacing would become a function of the retrapping rate.
The gap profiles for two separate retrapping rates are

given in Fig. 2. In each of these cases, the maximum gap
spacing is constrained (32.6 mm at a radius of 46 cm). The
minimum gap spacing is shown to grow larger with an

FIG. 2. (Color) The A-K gap spacing as a function of radius for a
radial disk MITL, plotted for 0:05 m 	 r 	 0:46 m. The induc-
tance of the load is 51.2 nH; the maximum gap spacing is
32.6 mm and is located at the edge of the anode disk (r ¼
0:46 m). The bottom curve represents the curvature of the anode
which corresponds to a radially constant electron flow profile.
The concave curvature of the anode becomes more pronounced
for larger retrapping rates. The � ¼ 1 m�1 curve represents an
anode profile which results in 1=e scaling of the electron flow
current for every meter towards the load.
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increase in �. Figure 3 illustrates the calculated electron
flow given some typical parameters. In this particular
example the forward voltage wave is 5 MV peak with a
total line current that rises to ffi 300 kA within a 20 ns
interval. The inductance of the load cavity is set to 51.2 nH

for each of the profiles. As the retrapping rate increases, the
relative radial decrease in the magnitude of the electron
flow toward the load becomes more dramatic. The imped-
ance profiles for constant and reducing flow are shown in
Fig. 4. These impedance profiles illustrate that a decrease
in the electron flow current at the load comes at the cost of
increasing the self-inductance of the MITL. In this particu-
lar case, decreasing the electron flow current by 32% at
r ¼ 0:05 m (Fig. 3) corresponds to an increase of 10% in
MITL inductance (Fig. 4). For reference, decreasing the
electron flow 32% with a constant fractional MITL imped-
ance increase would require a 21% impedance (and there-
fore MITL inductance) increase. In the PIC simulation,
covered in Sec. III, the average flow impedance over the
radial span of the MITL was calculated to be roughly 0.9 of
the vacuum impedance. Because of the small electron flow
and the high flow impedance, the vacuum inductance
accurately determines the voltage, meeting the assump-
tions of the model.

III. PARTICLE-IN-CELL SIMULATIONS

The simulations supporting this work were performed
using the finite difference-time domain (FDTD), 3D elec-
tromagnetic, PIC code QUICKSILVER [55]. This code uti-
lizes standard FDTD field-solvers and electromagnetic
‘‘particle-pusher’’ PIC algorithms [56] to resolve the
time-dependent electrodynamics within the disk MITL.
The magnetic induction within the line is modeled self-
consistently and influences the electron trajectories within
the A-K gap. QUICKSILVER does not possess models for
radiation, neutral particle physics, or classical charged
particle collisions and therefore cannot account for elec-
tron energy lost as a result of these mechanisms; this is
consistent with the assumptions made in the development
of the simple 1D analytical model outlined in Sec. II A.
The conductor geometries for a typical radial disk MITL

simulation are shown in Fig. 1, where ðx1; x2; x3Þ !
ðr; �; zÞ. The curvature of the anode depends upon the
particular impedance profile under study. The conductors
are assumed to be cylindrically symmetric and extend
outward, with increasing radius, from the load to the inlet
of the transmission line feed. Previous PIC modeling of
similar geometries have demonstrated that the electron
flow is in effect azimuthally uniform [31]. Thus, 2D PIC
simulations were conducted in the r̂-ẑ plane and the total
electron current was calculated assuming cylindrical sym-

metry in the �̂ direction. This allowed for greater computa-
tional resolution while maintaining moderate time
intervals in which to conduct the simulations. To study
the effects of fielding actual current monitors (B-dot loops)
within this design, concentric annular grooves are included
(for housing the diagnostics) and are evenly distributed,
radially, along both the anode and cathode of the simula-
tion. Each groove consists of an extruded rectangular
channel within the conductor plate of a depth of 1 mm

FIG. 4. (Color) The vacuum impedance as a function of radius
for a radial disk MITL, plotted for 0:05 m 	 r 	 0:46 m. The
inductance of the load is 51.2 nH; the maximum gap spacing is
32.6 mm and is located at the edge of the anode disk (r ¼
0:46 m). For a strongly insulated transmission line it would be
expected that this impedance profile is close to the operational
impedance of the MITL.

FIG. 3. (Color) Magnitude of the analytically calculated electron
flow current as a function of radius for a radial disk MITL,
plotted for 0:05 m 	 r 	 0:46 m. The inductance of the load is
51.2 nH; the maximum gap spacing is 32.6 mm and is located at
the edge of the anode disk (r ¼ 0:46 m). The upper curve
represents the constant electron flow profile resulting from an
insulated line where electrons are not returned to the cathode
surface. The lower curve represents a positive retrapping rate
where the magnitude of the current is attenuated by a factor of
1=e with every meter towards the load from the power inlet. The
total anode current at this time is approximately 1.5 MA.
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and is characterized by an inner radius, ri, and outer radius,
ro, where ro � ri ¼ 1 mm is the 2D radial length of the
groove. The azimuthal symmetry of the grooves allows
them to be included in the 2D simulation and the rectan-
gular cross section avoids introducing stair-stepping per-
turbations within the electron sheath region. Initial
calculations and simulations (with and without the
grooves) revealed that the presence of these grooves was
negligible because of the short (subnanosecond) time scale
required for the grooves to fill with electrons.

Within the strongly insulated systems considered in this
article, particularly late in the pulse, the thickness of the
electron sheath near peak current is thin compared to the
A-K gap, as a result of the small ratio of the electric to
magnetic fields. Consequently, the simulation region along
the cathode conductor boundary, where the electron emis-
sion is initiated, is of particular importance as a result of its
relatively large simulated particle density. In order to re-
solve accurately the electron trajectories close to the cath-
ode, it is critical to utilize a sufficient number of simulation
cells. For the simulations described below, the electron
sheath thickness is approximately 1.2 mm late in the pulse.
Several simulations were conducted (varying the cell den-
sity in each case) to determine an appropriate gridding for
this region. A portion of these simulations were performed
into a resistive load such that the electron flow could be
equilibrated. These static simulations offer an advantage
over the use of an inductive load in that it aids in the
isolation of numerical problems within the simulation,
improving the resolution of some effects. It was deter-
mined that cell sizes with an axial length of 200 �m
(corresponding to six cells across the electron sheath)
provided adequate resolution across the electron sheath.
The remainder of the A-K gap (edge of the electron sheath
to the anode) utilized larger cells with a maximum axial
length of 428 �m (adjacent to the anode). The radial cell
sizes ranged from 740 �m to 1.07 mm; the smallest of
these were positioned over the current monitor grooves
along the cathode.

The initial boundary condition across the transmission
line inlet was generated from an experimental forward
voltage wave that supplied a potential of roughly 500 kV
over a pulse width of 50 ns. The analytical model presented
in this article was developed under the assumption that the
sheath thickness is thin compared with the distance across
the MITL A-K gap. Therefore, the amplitude of the simu-
lated driver pulse was numerically increased by an order of
magnitude, V ¼ 5 MV, reducing the effect of the electron
space-charge potential [12]. The load cavity for these
simulations possessed a load inductance, L0 ¼ 51:2 nH,
and was located just inside the radius of the minimum gap,
in conjunction with the initial design used in each of the
impedance profiles. The simulated particles, which consti-
tute the electron sheath current, were initiated via emission
cells, located along the cathode surface, and modeled using

a standard SCL emission algorithm [57]. Initially these
cells are nonemitting but are activated when the electric
field normal to the conductor boundary exceeds a prede-
termined threshold value, which was set to 200 kV=cm. In
the high-voltage simulations presented here, the average
electric field quickly exceeds commonly used thresholds
for bare metal surfaces [58] and so the value of the emis-
sion threshold is not critical.
Two-dimensional PIC calculations were conducted for a

constant flow profile, � ¼ 0, a reducing flow profile, � ¼
1 m�1, and a substantially decreasing electron flow profile,
� ¼ 3:7 m�1. This wide range in retrapping rates, �, was
necessary to construct a comprehensive picture of the
radial electron flow near different operating regimes.
Inlet voltage and current from a high-voltage simulation
is shown in Fig. 5. The radial flow profiles generated by
these simulations are compared with model predictions in
Fig. 6. The simulated electron flow current was determined
from the anode and cathode currents, i.e. Ia � Ic, which
were calculated using magnetic field measurements along
the surface of the electrodes at several discrete radial
locations. The theoretical model developed in Sec. II pre-
dicts that the electron flow current for any given retrapping
parameter, �, will be of the form:

IeðrÞ ¼ Ie:rmax
exp½�ðr� rmaxÞ�; (19)

where Ie:rmax
is the maximum electron flow current for a

reducing flow profile and rmax is the maximum radial
length of the diskMITL. The simulation values corroborate

FIG. 5. (Color) Inlet voltage and current for the high-voltage
simulation. The oscillations starting at 50 ns are due to electron
instability as electron drift velocity slows due to stable or falling
voltage and increasing currents. The vacuum-flowing electron
current at 55 ns is 65 kA, or 4.3% of the total current at that time.
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the theoretical predictions to a great extent. The change in
retrapping rates partitions Fig. 6 into three distinct sec-
tions. The upper curve represents the constant electron flow
design, � ¼ 0, while the middle � ¼ 1 m�1 curve is
shown to decrease the relative flow current to 1=e (37%)
for every meter in the power flow direction. The lower� ¼
3:7 m�1 curve represents an aggressive retrapping rate that
is characterized by a relative change in electron flow of 1=e
for every 27 cm in the power flow direction. The separation
between the curves illustrates the relative decrease in
electron flow at inner radius for higher retrapping rates.
The simulated electron flow curves vary somewhat from
the model prediction because of temporal fluctuations in
the simulation electron flow current.

A simulation result showing the simulated retrapping
rate for the constant-impedance profile is shown in Fig. 7.
This curve predicts an approximately zero retrapping rate
(as designed) within the time interval of 42 to 54 ns; this
corresponds to times when voltage was high enough to
cause electron emission, and electron flow was predomi-
nately parallel to the cathode surface, satisfying the as-
sumptions of the analytical model. The largely temporally
independent retrapping rate validates one important model
assumption: while the magnitude of the electron current
varies greatly, the fractional electron flow is largely con-
stant with the so-tailored profile.

Figure 6 demonstrates the ability to tailor the electron
flow current through a predetermined impedance profile, as

postulated by the model. The model assumes only that
excess electron charge reaches an electrode (either the
anode or the cathode). Flow current returning to the cath-
ode (with small electron kinetic energy) is desirable for
efficiency and damage reduction reasons. Examination of
the charge density within the A-K gap, Fig. 8, reveals that
the electron flow becomes more turbulent as the retrapping
rate is increased. If the impedance profile is aggressive
(� 
 1 m�1), the corresponding buildup of space charge
can enable the electron sheath to detach from the cathode
and develop into a sheared vortex structure [39,59]. The
radial electric field associated with this excess charge can
provide vacuum-flowing electrons with the necessary
transverse momentum needed to transit the A-K gap and
strike the anode [22]. Thus, aggressive retrapping rates can
result in electron current to the anode, which is undesirable
in most situations. If the transverse current related to this
process is capable of initiating an anode surface plasma,
the resulting ion emission will limit the reduction in the
electron flow current. In high linear current density appli-
cations, Ohmic heating of the anode surface becomes the
dominant factor in the formation of this anode plasma
[33,34].
The mean position of the cathode space charge is illus-

trated in Fig. 8 and its separation from the anode is asso-
ciated with the flow impedance of the MITL [21]. For
strongly insulated systems, this value is close to the vac-
uum impedance of the line, resulting from an electron
sheath close to the cathode surface. The mean position of
the electron sheath extends (from the cathode) further into
the A-K gap at radial positions within the vicinity of a
vortex. As the retrapping rate increases, these protrusions

FIG. 7. (Color) Retrapping parameter, �, versus time for a high-
voltage constant electron flow profile. The plateau region of the
curve represents the time period of electron flow predominately
parallel to the cathode conductor surface. Within the numerical
fluctuations, the retrapping rate is essentially constant over the
time of interest, although the magnitude of the electron flow is
changing significantly.

FIG. 6. (Color) Simulation electron flow for the � ¼ 0, 1, and
3.7 per meter radial profiles at high voltage (i.e., V ¼ 5 MV).
� ¼ 0 represents constant electron flow.� ¼ 1 m�1 represents a
reduction of electron flow which decreases as 1=e for every
meter towards the load. � ¼ 3:7 m�1 represents the highest
retrapping rate evaluated.
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within the radial profile of the charge centroid become
more pronounced near the load.

IV. DISCUSSION

In this article, an analytic technique for geometrically
encoding an impedance profile into the conductors of a
strongly insulated MITL, feeding an inductive load, has
been developed. For a radial disk configuration, the self-
inductance of the transmission line is expressed as a radial
function centered at the load, and impedance profiles are
derived analytically in terms of the fractional change in the
electron flow current with respect to radius. When the
vacuum electrons are permitted to return to the cathode
conductor (or reach the anode), this fractional change in
the flow defines a relative retrapping rate which predicts a
radial decrease in the electron flow current in the direction
of the power flow. For a desired reduction in electron flow
current at the load, these impedance profiles optimize the
MITL’s self-inductance resulting in only a slight increase
in the total vacuum inductance of the system. In many

cases, a tailored MITL profile will have lower inductance
for a given electron current at its output than would either a
constant-impedance or constant-gap MITL profile.
The model presented in Sec. II ignores closure of the

MITL’s A-K gap and assumes that the local electron flow
current operates at values that are consistent with the local
application of the 1D pressure-balance model developed in
Ref. [15]. PIC calculations, given in Sec. III, confirm that
the model is accurate under these assumptions when the
disk MITL is operated at sufficiently high voltages, V >
2 MV. These simulations establish that the electron flow
current at the load can be further reduced through an
increase in the analytical model’s retrapping rate, �. As
this retrapping rate is increased, however, simulations
demonstrate that the corresponding impedance profiles
result in the further accumulation of space charge, even-
tually leading to the formation of electron vortices. These
vortices, which facilitate the axial transfer of electrons to
the anode surface, are shown to intensify for larger retrap-
ping rates, thus limiting the useful aggressiveness of a
reducing flow design.

FIG. 8. (Color) Charge density [C=m3] for the � ¼ 0, 1, and 3.7 per meter radial profiles at high voltage (V ¼ 5 MV). The overlay of
the mean position of the cathode space-charge illustrates the flow impedance of the MITL. This line is seen to ripple in the vicinity of
electron vortices. As the retrapping rate increases, these vortices become more pronounced near the load.
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