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A few years ago, a novel multiturn extraction scheme was proposed, based on particle trapping inside

stable resonances. Numerical simulations and experimental tests have confirmed the feasibility of such a

scheme for low order resonances. While the third-order resonance is generically unstable and those higher

than fourth order are generically stable, the fourth-order resonance can be either stable or unstable

depending on the specifics of the system under consideration. By means of the normal form, a general

approach to control the stability of the fourth-order resonance has been derived. This approach is based on

the control of the amplitude detuning and the general form for a lattice with an arbitrary number of

sextupole and octupole families is derived in this paper. Numerical simulations have confirmed the

analytical results and have shown that, when crossing the unstable fourth-order resonance, the region

around the center of the phase space is depleted and particles are trapped in only the four stable islands. A

four-turn extraction could be designed using this technique.

DOI: 10.1103/PhysRevSTAB.12.024003 PACS numbers: 05.45.�a, 29.27.Bd

I. INTRODUCTION

A novel type of extraction based on particle trapping
inside stable islands of the horizontal phase space was
proposed [1–4] in 2003. In this scheme the beam manipu-
lation is intrinsically linked with nonlinear beam dynam-
ics. The beam is swept through a nonlinear resonance and,
whenever the crossing is adiabatic, some particles can be
trapped inside the stable islands and then transported to-
wards higher amplitudes. At this stage, the beam extraction
proper can be performed.

Such an extraction mode is primarily aimed at replacing
the current continuous transfer (CT) extraction [5] from the
CERN Proton Synchrotron (PS) to the Super Proton
Synchrotron (SPS). The losses in the PS are highly re-
duced, if not completely suppressed, and injection match-
ing in the SPS is improved. A detailed account of the
expected optical mismatch at SPS injection for the CT
extraction mode was presented in Ref. [6], based on the
computation of equivalent optical parameters using the
second-order moments of the final beam distribution after
beam shaving (see, e.g., Ref. [7]).

A long measurement campaign was performed [8–12] to
assess the performance of the newly proposed method, and
a project was set up to implement it in the PS machine
[13]. The new extraction method was commissioned in
Summer 2008.

Further studies, however, have shown that the method
has a much broader scope, being applicable to resonances
other than the 1=4, which was the one selected for the
CERN-specific application [4]. In addition, since the
scheme can be time reversed, corresponding to a reversal
of the direction of the resonance crossing, yet another new
type of injection can be envisaged [14].
In the case of a stable resonance of order n, nþ 1

beamlets are generated, n corresponding to the beam
trapped into the stable islands and 1 to the beam core
remaining after the trapping process. The nþ 1 beamlets
at the end of the trapping process form two disconnected
structures in phase space. The first is a ribbon closing up
after n turns around the machine and the second, at the
center of phase space, closing up after one turn.
It is worth stressing that the longitudinal beam structure

has no impact on the transverse splitting. In this respect,
both bunched and continuous beam structures can be en-
visaged. Nonetheless, the longitudinal beam structure does
have an impact on the extraction losses due to the finite rise
time of the extraction kickers.
At the level of the beam extraction system proper a set of

kickers generates a fast bump, constant over the nþ 1
extraction turns, noting that the kickers’ strength must be
increased for the last turn. This necessary increase might
be a limiting factor of the scheme since it imposes higher
demands on the strength requirements. An unstable reso-
nance, for which there is basically no beam left at the
center of phase space, could therefore be advantageous.*diego.quatraro@cern.ch
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The prototype for such an unstable behavior is the third-
order resonance. Under a change of the betatronic tune
approaching the resonant value, the unstable fixed points
and the related separatrix shrink to zero. This implies that
whenever the exact resonant value of the tune is achieved
the closed orbit becomes unstable and particles in the
neighborhood of the origin will be repelled and pushed
towards higher amplitudes.

The case of the third-order resonance has been studied in
[4]. Since the third-order resonance is generically unstable,
there is no need to determine special conditions for the
strength of nonlinear magnetic elements to empty the
region around the origin of phase space during resonance
crossing. In applications to real machines—such as the PS
as SPS injector—the use of the third-order resonance
would produce only a three-turn extraction, which would
neither ensure a simultaneous optimization of the filling
time of the SPS nor a reduction of the transient effects,
such as beam loading in the SPS rf cavities.

Given these constraints, the fourth-order resonance
should be considered as it could be made unstable so as
to generate a four-turn extraction scheme, which would
certainly be more effective. This, however, implies deter-
mining a strategy to change the stability type of the reso-
nance, so that the separatrix related to the unstable fixed
points collapses to the origin when the transverse tune is
varied. The method proposed in this paper consists of
applying perturbation theory to the model representing
only the horizontal beam dynamics. This is justified as
the proposed extraction requires manipulating the trans-
verse beam distribution in only the horizontal plane. In
fact, provided the nonlinear magnetic elements generating
the stable islands are located in sections where the vertical
beta functions [15] are small compared to the horizontal
ones, the nonlinear coupling between the two transverse
planes can be safely neglected. The correctness of such an
approximation was based on the theoretical predictions
described in Refs. [1,4] and tested repeatedly during ex-
perimental campaigns [8–12]. The Hamiltonian descrip-
tion of the nonlinear motion of a particle beam in a circular
accelerator and its confirmation by experiment was de-
scribed in a number of key papers reporting on studies
performed at the Tevatron [16], and at the Indiana
University Cyclotron Facility (IUCF) cooler ring [17].
The approach described in this paper is therefore based
on solid theoretical and experimental foundations.

The properties of the dynamical system are best studied
using the Hamiltonian function, as its structure permits the
determination of the coefficients which rule the stability of
the resonance as well as the free parameters, e.g., strength
of the nonlinear magnetic elements, that can be best used to
control the relevant terms in the Hamiltonian.

The best way to perform such an analysis is probably the
normal form as it enables the generation of the so-called
interpolating Hamiltonian starting from the polynomial

one-turn map, which, for a circular accelerator, can be
easily constructed for either the nonresonant or resonant
or quasiresonant case [18] retaining the essential features
of the original system. The literature on the normal form is
wide, ranging from the mathematical papers on the foun-
dations (see, e.g., Refs. [19–21]) to those dealing with
applications to particle accelerators (see, e.g., Refs. [22–
24]), including the reviews [18,25].
The detailed analysis of the problem and of the proposed

solution is presented in Ref. [26]. In this paper, a brief
summary of the approach will be presented in Sec. II
together with a discussion on how to make a resonance
unstable. The model used in the numerical simulations is
described in Sec. III, while the results are discussed in
Sec. IV. A by-product of this study is a potential solution to
the issue of equally sharing the intensity between the five
beamlets in the case of the stable fourth-order resonance;
this aspect is also discussed at the end of Sec. IV. Finally,
some conclusions are drawn in Sec. V. Some key results of
the normal form theory are reported and discussed in
Appendix A together with the proof of the main analytical
results used in this study.
For the sake of completeness, it is worth pointing out

that, while the use of nonlinearities to act on the transverse
parameters of particle beams is rather new, manipulations
in the longitudinal plane have been described in the litera-
ture during the 1990s (see, e.g., Ref. [27] where the longi-
tudinal dynamic is used to induce amplitude growth in the
transverse plane for crystal channeling).

II. STABILITY CHANGE OF RESONANCES

In this section, the proposed method of controlling the
stability type of the transverse resonance is presented. As
already mentioned in the Introduction, such an approach is
based on normal form theory, whose features relevant to
this study are reported in Appendix A. The starting point is
a generic 2D symplectic polynomial map,

x

px

 !
nþ1 ¼ Rð!Þ x

px þ gNðxÞ
� �

n
; (1)

where ðx; pxÞ are the Courant-Snyder canonical coordi-
nates [15], Rð!Þ is a rotation matrix,! ¼ 2�� is the linear
frequency, and gNðxÞ is a polynomial function of order N
in x.
The idea behind the normal form is to construct a change

of variables, defined by a polynomial function, in such a
way that in the new coordinates the symmetries of the
original system are immediately visible in the transformed
map U (the so-called normal form). The properties of the
map U are linked to those of the frequency !, and, in
particular, whether it is rational or irrational. As the mapU
is computed via a perturbative scheme, only a truncated
approximation to the true function is available. However,
the dynamics induced by the normal form cannot be
studied using a truncation, as in general it is not symplec-
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tic, but it is possible to construct a time-independent
Hamiltonian whose flow interpolates the phase space tra-
jectories of U at integer times. Such a Hamiltonian, called
the interpolating Hamiltonian, is a constant of motion and
the curves of constant energy interpolate the orbits of the
normal form. The general form of this function is presented
in Appendix A, while the details of the derivation can be
found in Ref. [18]. For the purposes of this paper, the
frequency will be assumed to be next to a rational value
in order to simulate the resonance crossing under consid-
eration. This situation corresponds to the so-called quasire-
sonant case, where! ¼ 2�ðp=qþ �Þ, with p, q 2 Z, and
� 2 R. Assuming q ¼ 4 (the actual value of p is not
relevant for this form of the Hamiltonian), then the dy-
namic is governed by

Hð#; �Þ ¼ ��þ�2�
2 þA�2 cos4# þ�4

3
�3 þOð�3Þ;

(2)

where action-angle variables ð#; �Þ have been introduced
(see Appendix A for some comments on the properties
of �).

The essence of the dynamics of the original system can
be extracted from such a Hamiltonian. In particular, the
geometrical characteristics of the orbits, such as fixed
points and their stability, separatrices, and nonlinear tune
can be investigated. The terms independent on the angle
are responsible for the change of frequency in phase space
(the so-called detuning with amplitude). The terms depen-
dent on the angles introduce a distortion of the phase space
which gives rise to fixed points, both stable and unstable.
The latter are linked by separatrices, which can reach the
origin of phase space for � ¼ 0, thus changing the stability
type and making it unstable. Therefore, particles are re-
pelled towards higher amplitudes, where the stable islands
can eventually trap them when the resonance is crossed.

By inspecting Eq. (2), the strategy to obtain a change of
the stability type of the origin requires setting the coeffi-
cient�2 to zero. By doing so, the lowest-order term in � is
the resonant one when � ! 0. In Appendices B, C, and D
the details of the computations of the nonresonant term�2

are reported taking into account not only its dependence on
the strength of the nonlinear elements, but also the phase
advance between them. This information is used to control
�2 during the resonance crossing process.

It is worthwhile pointing out that the proposed approach
to changing the stability type of the fourth-order resonance
can be generalized to higher-order resonances as well. In
fact, from the general form of the interpolating Hamil-
tonian (reported in Appendix A) in Eq. (A21) it is possible
to show that whenever all nonresonant terms up to order
q=2 in � are set to zero, then the order q resonance
becomes unstable, as all the �-dependent terms are zero
and the first nonzero term for � ¼ 0 is the resonant one.
Although possible on paper, such an approach would

hardly be feasible in a real machine. Indeed, it can be
shown (see Ref. [18]) that the terms �2j, j > 1 depend

linearly on the strength of high-order magnets (decapoles
or higher) and nonlinearly on the strength of sextupoles
and octupoles. The use of high-order nonlinear magnets
has the advantage of reducing the conditions�2j ¼ 0, 1 �
j � q=2 to a set of linear equations. On the other hand, the
challenge is then shifted to the construction of such mag-
nets. Alternatively, the use of families of sextupole and
octupole magnets relies on finding a robust solution to the
system of q=2 highly nonlinear equations, which, while
certainly possible on paper, seems rather unlikely for a real
machine.

III. MODEL

The model chosen for studying the adiabatic capture
process consists of the composition of two polynomial
symplectic maps, namely,

x

px

 !
nþ1 ¼ Rðc 2Þ x

px þ k3;2x
3

� �
�

Rðc 1Þ x
px þ k2;1x

2 þ k3;1x
3

� �
n

;

(3)

where ðx; pxÞ are Courant-Snyder phase space coordinates,
Rð’Þ is a rotation matrix of an angle ’, k2;1, k3;1, and the

operator � represents the composition of functions. The
strengths of one sextupolar and two octupolar elements are
indicated with k3;2, respectively. They are defined as

kn ¼ L

ðB�Þ
dnBy

dxn
; (4)

where L is the length of the magnetic element, (B�) is the
magnetic rigidity, and By is the vertical component of the

magnetic field. Without any loss of generality the sextupo-
lar strength can be set to one, as it is always possible to
define rescaled coordinates such that the coefficient of the
quadratic term in Eq. (3) equals one [4,18] and the k3;i are

also transformed into k̂3;i. It is worth emphasizing that the

new rescaled coordinates are dimensionless and such a
rescaled map is used for all numerical simulations pre-
sented in this paper.
The underlying physical model is a circular machine

with a set of sextupoles and octupoles located at the same
longitudinal position and a second octupole located at a
different position. Two independent octupoles are needed
to act on the coefficient�2 and, at the same time, to change
the stable islands’ parameters. This would also be the
minimal requirement in view of an experimental test,
e.g., at the CERN PS. During the iteration of the map the
value of c 1 is kept constant, letting c 2 vary with n, so as to
set ! ¼ 2�� ¼ c 1 þ c 2 to the actual value of the linear
frequency of the system.
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As already mentioned, the computation of the nonreso-
nant term�2 required for the resonance stability control is
shown in Appendices B, C, and D, indeed for a more
general case than the map (3). In fact, the composition of
M polynomial maps of the form

x

px

 !
nþ1 ¼ Rðc jÞ x

px þ k2;jx
2 þ k3;jx

3

� �
n

(5)

is considered, and the model describes a machine whereM
sextupoles and octupoles are installed reflecting the con-
figuration of the CERN PS machine. Each main dipole
features a set of additional coils, the so-called pole face
windings and the figure-of-eight loop, that generate higher-
order components to enable control of the machine work-
ing point (see Refs. [28,29] for more details and Fig. 1 for a
sketch of the PS main magnet together with the configu-
ration of the additional coils). It turns out that these com-
ponents include sextupolar as well as octupolar magnetic
multipoles [30]. This more realistic model is used here
only to derive the general expressions for �2 as a function
of the nonlinear parameters of the system, but not for
numerical simulations. Clearly for M maps, ! ¼P

M
i¼0 c i is the global tune.

For the rescaled version of the map (3) the condition
�2 ¼ 0 corresponds to

3 cot

�
!

2

�
þ cot

�
3!

2

�
þ 6ðk̂3;1 þ k̂3;2Þ ¼ 0; (6)

as a consequence of Eq. (D4). Therefore, the strength of the
nonlinear elements can be either a function of !, such that
�2 is set to zero throughout the whole resonance crossing
process, or a constant such that�2 ¼ 0 is fulfilled only for
the resonant value of the tune. For the model used in the

numerical simulations the values c 1=2� ¼ 0:62, k̂3;1 ¼ 1,

and k̂3;2 ¼ �4=3 were used, retaining the option of con-

stant nonlinear strengths.
A typical sequence of phase space topology obtained

during the resonance crossing process is shown in Fig. 2.
By changing the tune, the separatrices related to the hyper-
bolic fixed points shrink towards the origin, making the
resonance unstable.

IV. NUMERICAL SIMULATIONS

The numerical simulations were performed using the
model of Eq. (3) using a Gaussian distribution of particles

�ðx; pxÞ ¼ 1

2��2
e�ðx2þp2

xÞ=ð2�2Þ; �2 ¼ �x;0 (7)

with �x;0 the emittance of the initial Gaussian distribution

in the normalized coordinate system. The tune �ðnÞ is
changed with time as a polynomial function fk of order
k, where the key parameters are �s, �r, and �f, the starting,

resonant, and final tune values, respectively. The turn at
which the resonance is crossed and the total number of
turns involved in the capture process are indicated by n1,
and N. The order of the polynomial might be changed

FIG. 1. Sketch of PS main magnet (upper) and of the five circuits used to control the tunes and the chromaticities (lower).
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FIG. 3. (Color) Evolution of the initial distribution during the resonance crossing process.

FIG. 2. Phase portrait of the dynamical system described by Eq. (3) as the linear tune � is changed and approaching the resonant
value � ¼ 1=4 from above.
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before and after n1 with the constraint, however, that
�0ðn1Þ ¼ 0 in order to achieve a smooth transition at the
exact resonance crossing. Henceforth, we refer to an i� j
curve if the polynomial curve is of the ith order before the
resonance crossing and of the jth order afterwards.

Typically, 2� 106 particles are tracked for about 5�
104 iterations of the map (turns), with �s ¼ 1:253, �r ¼
1:25, and �e ¼ 1:248, where the resonance crossing occurs
for n1 ¼ 3:5� 104. An example of the splitting process is
shown in Fig. 3 and the corresponding tune variation is
reported in Fig. 4. While the separatrices collapse towards
the origin, when the tune is varied towards the resonant
value, the particles are pushed towards the stable islands
and trapped inside. At the very end of the process (lower
left plot), the islands are also moved towards higher am-
plitudes. During the whole process no particle loss is
observed. While no detailed aperture model is used in the
numerical simulations every particle’s coordinate is
checked at each turn and, whenever it is outside the square
½�1; 1� � ½�1; 1� in the phase space, the particle is con-
sidered lost.
The particles left near the origin of phase space are

perturbed by the separatrix crossing and the final distribu-
tion is far from the initial Gaussian. Furthermore, around
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FIG. 4. (Color) Tune variation used for the splitting presented in
Fig. 3. The tune curve is of type 2� 3.
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FIG. 5. (Color) Fraction of trapped particles as a function of the initial emittance. Six types of tune curves are used (marked on top of
each plot). The value of the factor h for the beam core after splitting is also given.
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the origin the adiabatic condition tends to be violated as the
nonlinear frequency of motion tends to zero. Therefore, the
fraction of particles left there is very sensitive to the time
dependence of the tune.

In Figs. 5 and 6 the fraction of the trapped particles in the
resonance islands and their relative emittances �x=�x;0 are,
respectively, shown as functions of the emittance �x;0 of the
initial Gaussian distribution equation (7). As the curves are
the same for the four islands, only one is shown in the plot.
For the particles remaining close to the origin of the phase
space, the so-called halo parameter h [31] defined as

h ¼ hx4i
hx2i2 � 2 (8)

is shown in Fig. 5. The bigger the � the greater is the
fraction of beam trapped in the resonance islands. This is
true for every type of tune curve, even though the overall

variation of the fraction of trapped particles versus the
emittance of the initial distribution is not large. The figure
also shows clearly that the higher the order of the poly-
nomial the smaller is the fraction of beam left in the center.
For the curve 1� 1, � 10% of the beam is left in the core
distribution for the largest emittance. The best result is
obtained for the curve 2� 3 with a fraction of � 4%
remaining. The huge value of the halo parameter indicates
that what is left at the origin is strongly perturbed and the
distribution features very heavy tails.
The final beamlets emittance decreases steadily with

increasing initial emittance, and also with the adiabaticity
of the tune curve. The smoother the resonance crossing, the
smaller is the relative beamlet emittance. In all cases,
however, the final beamlet emittance is never smaller
than one-half of the initial value. This indicates that the
interaction between the beam distribution and the separa-
trix is inducing some emittance blowup. Therefore, the
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FIG. 6. (Color) Relative islands emittance as a function of the initial emittance. Six types of tune curves are used (marked on top of
each plot).

GENERATING UNSTABLE RESONANCES . . . Phys. Rev. ST Accel. Beams 12, 024003 (2009)

024003-7



expected reduction of the initial emittance by about a
factor of 4 (due to the beam sharing in four islands) does
not seem to be possible.

A set of numerical simulations was performed to assess
the dependence of the fraction of trapped particles on the
total turn number N over which the tune variation �� ¼
�f � �i is performed and the� of the initial distribution. A

tune curve of type 1� 1 was used for this study. The
dependence on � is perfectly fitted by an exponential
function, while that on N is a linear function and the
combined result gives Ncore=Npart ¼ AðNÞe�c� with

AðNÞ ¼ aþ bN, where Npart stands for the total number

of particles. The numerical results and the fitted curves are
shown in Fig. 7. The excellent agreement between the data
and the fit function is clearly visible. From the numerical
simulations it is also clear that the parameter c does not
depend on N. Nevertheless it is still possible that the non-
linear parameters of the system, determining the islands’
size and position, have an impact on the parameter c. The
fit values are listed in Table I.

In the numerical simulations presented so far, the con-
dition �2 ¼ 0 was imposed only for the resonant value of
the tune. Comparisons with simulations performed with
�2 ¼ 0 throughout the whole process showed a further
decrease of the fraction of particles left in the center to
� 0:5%. This shows that the intensity sharing is affected
by the phase space topology mainly during the stage of
resonance crossing, the rest of the tune variation serving
only to displace the beamlets to higher amplitudes.

An additional test was performed to study the impact of
setting �2 ¼ � with � a small positive quantity. The
condition �2 ¼ 0 is required for the separatrices to pass

through the origin of phase space, thus making the reso-
nance unstable. The whole process of beam splitting, how-
ever, relies not only on the topology of the phase space, but
also on the way the time dependence is generated. The key
issue is the adiabaticity of the process. It is clear that such a
property is lost in a small neighborhood of the origin, as the
particle’s frequency tends to zero so that the tune variation
can never be slow with respect to the transverse dynamics.
This explains why some particles are always left almost
unaffected by the resonance crossing. Therefore, it seems
reasonable that a small deviation to the condition �2 ¼ 0
should have a negligible impact on the final beam parame-
ters. Furthermore, this numerical test could give indica-
tions of the accuracy required for controlling �2 in a
experimental test. The figure of merit of this test is the
fraction of particles left in the core, which is shown in
Fig. 8. A parabolic behavior is clearly visible and it can be
fitted very accurately. The minimum for Ncore=Npart is

achieved for slightly positive values of �. Again the fit
values are listed in Table I.
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TABLE I. Fit parameters for the scaling laws determined with
the numerical simulations.

Relation a b c

Ncore=Npart ¼ ðaþ bNÞe�c� 131.16 �1:8� 10�3 22.26

Ncore ¼ aþ b�þ c�2 4.78 �9:68 253.12
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FIG. 8. (Color) Fraction of particles remaining in the beam core
as a function of �. The fitted parabola is also shown. The
numerical simulations are performed with � ¼ 0:08 for the
initial distribution.
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Interestingly enough, one could use this scaling law to
find the value of �2 for which the intensity is equally
shared between the four beamlets and the center core. As
already mentioned this is a crucial point for a five-turn
extraction. From the fit results the 20% sharing is obtained
for � � 0:265. Numerical simulations confirmed this find-
ing showing that for such a value of � and for an initial
� ¼ 0:08 the actual sharing is 20.3% in the islands and
19.7% in the core with a tune curve of type 2� 3. The
corresponding phase space portrait is shown in Fig. 9. This
result confirms that the analytical approach can shed some
light on the detail of the beam splitting and that it can be
extremely useful for the overall optimization of the pro-
cess. In particular, it will be used for the definition of the
optimal parameters values in the case of a five-turn extrac-
tion with the aim of achieving a perfect sharing of the
intensity among the various beamlets.

V. CONCLUSIONS

In this paper the use of the normal form to study the
change of the stability type of a nonlinear resonance was
presented. A general framework was considered so that the
proposed approach could be applied not only to a simpli-
fied model representing the 2D nonlinear betatronic mo-
tion, but also to a more realistic one with a set of M

sextupoles and octupoles. The more realistic model was
defined taking into account the characteristics of the CERN
PS machine.
Numerical simulations have shown that the fourth-order

resonance can indeed be turned into an unstable resonance.
This allows the center of phase space to be emptied while
slowly varying the tune through the resonant value. The
feasibility of a four-turn extraction design based on beam
trapping in stable islands is therefore confirmed.
The dependence of the final beam parameters of the four

generated beamlets on the type of resonance crossing was
studied in detail. Different types of tune curves were tested
and a clear dependence of the fraction of particles left in
the center of the phase space on the exponent type was
observed. The dependence on the sigma of the initial beam
distribution was also studied. Furthermore, for a linear
sweep through the resonance, the functional dependence
of the final beam distribution on the crossing speed was
derived.
Finally, the generalization of the condition used to make

the fourth-order resonance unstable led to the interesting
result that the control of the intensity sharing between the
outer beamlets and the central core can be achieved by an
appropriately chosen positive value of �2. Hence, during
the resonance crossing, the sextupoles and octupoles
should be controlled so as to provide the correct value of

FIG. 9. Phase portrait of the dynamical system [Eq. (3)], corresponding to � ¼ 0:265, as the linear tune � is changed and
approaching the resonant value � ¼ 1=4 from above.
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�2. This is of paramount importance for improving the
performance of the proposed five-turn extraction being
commissioned at the CERN PS.
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APPENDIX A: NORMAL FORM THEORY

In this Appendix, a brief review of the main concepts of
the normal form theory is presented, limiting the descrip-
tion to the 2D case. The starting point is a generic sym-
plectic polynomial map in the form of Eq. (1) using real
Courant-Snyder canonical coordinates. It is customary to
transform it to complex coordinates ðz; z�Þ via the matrix T

z
z�

� �
¼ T

x
px

� �
¼ 1 �i

1 i

� �
x
px

� �
: (A1)

Then, the map reads

z0 ¼ Fðz; z�Þ ¼ ei!zþ XN
n¼2

Xn
j¼0

fj;n�jz
jz�n�j; (A2)

where

fj;n�j ¼ �iei!
n!

2jj!ðn� jÞ!gN;j (A3)

and gðxÞ ¼ PN
j¼2 gN;jx

j is the polynomial function repre-

senting the nonlinear component of the map (1), with
gN;2 ¼ 1.

The polynomial function defining the change of varia-
bles is such that in the new coordinates the symmetries of
the original system are apparent in the transformed map U
(the so-called normal form). Formally, this is obtained by
constraining the following diagram to commute

which corresponds to solving the functional equation,

F ��ð�; ��Þ ¼ � � Uð�; ��Þ; (A5)

where the operator � represents the composition of func-
tions, e.g.,

F ��ð�; ��Þ ¼ F½�ð�; ��Þ;��ð�; ��Þ�: (A6)

The two unknown polynomial functions � and U are ex-
pressed in terms of their coefficients as

z ¼ �ð�; ��Þ ¼ �þ X
n�2

Xn
j¼0

�j;n�j�
j��n�j;

�0 ¼ Uð�; ��Þ ¼ ei!�þ X
n�2

Xn
j¼0

uj;n�j�
j��n�j;

(A7)

where � has been chosen tangent to the identity trans-
formation. By solving Eq. (A5) order by order, the recur-
rence relations for �j;n�j, uj;n�j are found, provided some

additional constraints on the functional form of U are
imposed.
It is well known that the topology of the orbits of the

system (1) depends on the properties of !. Two cases are
possible.
(i) nonresonant if !=2� is irrational.—Then the orbit is

dense on a 1D torus (diffeomorphic to a circle) and ei!

generates the symmetry group Uð1Þ of continuous
rotations.
(ii) resonant if !=2� is a rational number p=q.—Then

the orbit consists of a discrete set of q points and the
transformation ei! generates the discrete subgroup of
Uð1Þ of angles 2�j=q with j ¼ 0; . . . ; q� 1.
A map U is in normal form if it is invariant with respect

to a group, usually generated by its linear part. This con-
dition has to be satisfied by each monomial �n ��m of U.
More explicitly, for a monomial of order n such a condition
reads

eið!þ2�kÞ�j��n�j ¼ ei!je�i!ðn�jÞ�j��n�j (A8)

with k 2 Z. Thus, the solution is given by

~! 	 ~k ¼ 0: (A9)

Assuming ~! ¼ ð!; 2�Þ and ~k ¼ ð2j� n� 1;�kÞ,
Eq. (A9) can be satisfied in two ways.
(i) When ! is nonresonant, then

~! 	 ~k ¼ 0 , ~k ¼ 0: (A10)

At order n the monomials ofUð�; ��Þ are only those of type
�j��n�j (A11)

and U reads

�0 ¼ ei!�þ u2;1�
2�� þ u3;2�

3��2 þ u4;3�
4��3 þOð�7Þ:

(A12)

Therefore, it is possible to express the nonresonant dynam-
ics in terms of an amplitude-dependent rotation. If the
action-angle variables ð#; �Þ are introduced, where

� ¼ ffiffiffiffi
�

p
ei# ! � ¼ ���; (A13)

the normal form can be rewritten as

�0 ¼ Uð�; ��Þ ¼ ei�ð�Þ�; (A14)

where �ð�Þ represents the frequency as a function of the
action variable and it can be expanded in a power series as
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�ð�Þ ¼ !þX
i�1

�2j�
j: (A15)

It is worth stressing that, in the original coordinates, �
reads

� ¼ x2 þ p2
x þ higher order terms (A16)

which is obtained by using the definition of � and Eq. (A7).
Hence, � corresponds to the Courant-Snyder invariant at
the lowest order.

By replacing the expansion (A15) in Eq. (A14), devel-
oping the exponential in powers of �, and comparing order
by order the analogous result obtained by transforming in
action-angle variables [Eq. (A12)], it is found that

�2 ¼ �ie�i!u2;1: (A17)

(ii) When ! ¼ 2p=q is resonant, then

~! 	 ~k ¼ 0 , ~k ¼ lðq;�pÞ; (A18)

where l is an arbitrary integer. In this case the monomials in
normal form depend on the resonance under consideration.
For the fourth order, q ¼ 4 and p ¼ 1 and the condition to
be fulfilled reads ð2j� n� 1;�kÞ ¼ lð4;�1Þ. For each
order n the monomials satisfying the previous condition
can be found and, up to order three, U reads

�0 ¼ ei!�þ u2;1�
2�� þ u0;3�

�3 þOð�4Þ: (A19)

It is worth noting that the term u2;1 is common between the

nonresonant and resonant case, while only the term u0;3 is
characteristic of the resonant normal form.

The computation of the term u2;1 is crucial to the method

presented in this paper, as it is proportional to�2, which is
used to vary the stability type of the resonance. Indeed, it
can be computed by using the fundamental equation (A5),
truncating it at order 3, and selecting all terms of the form
�2��. After some algebra, one finds

u2;1 ¼ f2;1 þ 2f2;0�1;1 þ f1;1ð��
1;1 þ�2;0Þ þ 2f0;2�

�
0;2;

(A20)

which is the main result used in the following Appendices.
For the quasiresonant case the dynamics induced by

Uð�; ��Þ cannot be studied using a truncation as it is not
symplectic. To overcome this, it is possible to construct a
time-independent Hamiltonian flow that interpolates the
phase space trajectories of U at integer times. Such an
interpolating Hamiltonian is a constant of motion and its
level lines interpolate the orbits of Uð�; ��Þ. The details
concerning the derivation of this function can be found in
Ref. [18]. For the aim of the study presented in this paper it
is enough to report the general form of the quasiresonant
Hamiltonian, which when transformed to action-angle var-
iables reads

Hð#; �Þ ¼ ��þ X½ðq�1Þ=2�

n¼1

�2n

nþ 1
�nþ1

� �e�i!

e�i�q � 1
u0;q�1�

q=2eiq#

� �ei!

ei�q � 1
u�0;q�1�

q=2e�iq#; (A21)

where q is the order of the resonance and ½	� stands for the
integer part of a real number. It is worth noting that
Hð#; �Þ is continuous in the limit � ! 0, and in this
case the features of the resonant case are recovered.
For the fourth-order resonance, q ¼ 4 and the expres-

sion (A21) reduces to (2), with the coefficientA given by

A ¼ �2�<
�

ei!

ei4� � 1
u�0;3

�
: (A22)

APPENDIX B: ANALYTICAL COMPUTATION OF
THE COMPOSITION OFA SET OF SEXTUPOLAR

MAPS

In this Appendix the analytical form for the composition
of M quadratic maps, representing a machine with linear
elements andM sextupoles, is derived. By using the single-
kick approximation [18] and assuming the use of normal-
ized Courant-Snyder coordinates [15], the 2D map from
the jth to the (jþ 1)th sextupolar element reads

x0
p0
x

� �
¼ Rðc jþ1Þ x

px þ k2;jx
2

� �
: (B1)

The 2D matrix Rðc jþ1Þ represents a rotation of an angle

c jþ1, the relative phase advance between the two ele-

ments, and k2;j ¼ K2;j	
3=2
x;j =2 is the strength of the sextu-

pole weighted by the value of the optical beta function at
the location of the nonlinear element (see also Ref. [4]).
The arrangement of the set of sextupoles around the ma-
chine circumference is shown in Fig. 10, where kn;j stands

for the coefficient of the jth nonlinear 2ðnþ 1Þ-polar
element. The computation of the coefficient �2 requires
truncating the perturbative series to the third order accord-
ing to Eqs. (A12), (A17), and (A20).
Assuming that c 0 ¼ 0 and with the simplified notation

kj ¼ k2;j and �n ¼ P
n
i¼0 c i it is possible to prove the

following.
Theorem 1.—The composition of M quadratic maps of

type (B1) in complex coordinates ðz; z�Þ is given, up to
third order, by
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z0 ¼ ei!
�
z� i

4

XN�1

n¼0

kn expð�i�nÞ

� ½expði�nÞzþ expð�i�nÞz��2

� i

4

XN�1

m¼0

km
Xm
j¼0

kj expð�i�mÞ sinð�m ��jÞ

	 ðexpði�mÞzþ expð�i�mÞz�Þ
� ½expði�jÞzþ expð�i�jÞz��2

�
: (B2)

Proof.—The statement is proved by induction. The
proposition P1 is trivially true. Then, assuming the propo-

sition PN holds true, it will be shown that PNþ1 is true. This
requires the computation of

PNþ1 ¼ eic Nþ1

�
z� i

4
kNðzþ z�Þ2

�
� PN (B3)

which reads

PNþ1 ¼ eic Nþ1PN � i

4
kNe

ic Nþ1½ð½PN��2 þ ½PN���2Þ2��3;

(B4)

where ½	�j represents the truncation of a polynomial at jth

order. It is seen that

½PN��2 ¼ eið!�c Nþ1Þ
�
z� i

4

XN�1

n¼0

kn expð�i�nÞ

� ½expði�nÞzþ expð�i�nÞz��2
�

½PN���2 ¼ e�ið!�c Nþ1Þ
�
z� þ i

4

XN�1

n¼0

kn expði�nÞ

� ½expði�nÞzþ expð�i�nÞz��2
�
:

(B5)

This implies also

½PN��2 þ ½PN���2 ¼ ðeið!�c Nþ1Þzþ e�ið!�c Nþ1Þz�Þ � i

4
eið!�c Nþ1Þ

XN�1

n¼0

kn expð�i�nÞ½expði�nÞzþ expð�i�nÞz��2

þ i

4
e�ið!�c Nþ1Þ

XN�1

n¼0

kn expði�nÞ½expði�nÞzþ expð�i�nÞz��2

¼ ðeið!�c Nþ1Þzþ e�ið!�c Nþ1Þz�Þ þ 1

2

XN�1

n¼0

kn sinð!� c Nþ1 ��nÞ½expði�nÞzþ expð�i�nÞz��2: (B6)

This result can be used to evaluate the truncation up to third order of the quadratic part of the maps, which is essential to the
computation of the composition of the N þ 1 maps

½ð½PN��2 þ ½PN���2Þ2��3 ¼ ðeið!�c Nþ1Þzþ e�ið!�c Nþ1Þz�Þ2 þ XN�1

n¼0

kn sinð!� c Nþ1 ��nÞ½expði�nÞzþ expð�i�nÞz��2

� ðeið!�c Nþ1Þzþ e�ið!�c Nþ1Þz�Þ: (B7)

The previous results can be combined to give

PNþ1 ¼ eic Nþ1PN � i

4
kNe

ic Nþ1

�
½expði�NÞzþ expð�i�NÞz��2 þ

XN�1

n¼0

kn sinð!� c N ��nÞ

� ½expði�nÞzþ expð�i�nÞz��2ðeið!�c Nþ1Þzþ e�ið!�c Nþ1Þz�Þ
�
; (B8)

so that

FIG. 10. Sketch of a machine circumference with the arrange-
ment of several nonlinear lattice elements representing either
sextupoles or octupoles.
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PNþ1 ¼ ei!
�
z� i

4

XN
n¼0

kn expð�i�nÞ½expði�nÞzþ expð�i�nÞz��2 � i

4

XN
m¼0

km
Xm
j¼0

kj expð�i�mÞ sinð�m ��jÞ

� ½expði�mÞzþ expð�i�mÞz��½expði�jÞzþ expð�i�jÞz��2
�
: (B9)

Therefore, PNþ1 is true and hence PN is true 8 N. h

APPENDIX C: ANALYTICAL COMPUTATION OF
THE COMPOSITION OFA SET OF OCTUPOLAR

MAPS

In this Appendix the composition of M maps represent-
ing the effect of octupole nonlinearities in the single-kick
approximation [18] is described. As in Appendix B, nor-
malized Courant-Snyder coordinates [15] are used and the
2D map from the jth to the (jþ 1)th octupolar element
reads

x0
p0
x

� �
¼ Rðc jþ1Þ x

px þ k3;jx
3

� �
: (C1)

In the following the notation 
n ¼ k3;n will be used. The

sequence of nonlinear magnetic elements can be repre-
sented as in Fig. 10. The element indicated with k0 repre-

sents a single sextupole, while the other elements are
octupoles. Under these assumptions, the following result
holds.
Theorem 2.—The composition ofM cubic maps of type

(C1) in complex coordinates ðz; z�Þ plus one single qua-
dratic map of type (B1) is given, up to third order, by

z0 ¼ ei!
�
z� i

4
ðzþ z�Þ2 � i

8

XN�1

n¼0


n expð�i�nÞ

� ½expði�nÞzþ expð�i�nÞz��3
�
: (C2)

Proof.—As for the previous proposition, the theorem is
proved by induction. The proposition P1 is trivially shown
to hold true. Then, one has to show that PN true implies
PNþ1. It is clear that

PNþ1 ¼ eic Nþ1

�
z� i

8

Nðzþ z�Þ3

�
� eið!�c Nþ1Þ

�
z� i

4
ðzþ z�Þ2 � i

8

XN�1

n¼0


n expð�i�nÞ½expði�nÞzþ expð�i�nÞz��3
�

¼ ei!
�
z� i

4
ðzþ z�Þ2 � i

8

XN�1

n¼0


n expð�i�nÞ½expði�nÞzþ expð�i�nÞz��3
�

� i

8

Ne

ic Nþ1½eið!�cNþ1Þzþ e�ið!�cNþ1Þz��3

¼ ei!
�
z� i

4
ðzþ z�Þ2 � i

8

XN�1

n¼0


n expð�i�iÞ½expði�nÞzþ expð�i�nÞz��3

� i

8

Ne

ið�!þc Nþ1Þ½eið!�c Nþ1Þzþ e�ið!�c Nþ1Þz��3
�
: (C3)

The substitution ! ¼ P
Nþ1
i¼0 c i ¼ c Nþ1 þ

P
N
i¼0 c i gives the final result:

PNþ1 ¼ ei!
�
z� i

4
ðzþ z�Þ2 � i

8

XN
n¼0


n expð�i�nÞ½expði�nÞzþ expð�i�nÞz��3
�
: (C4)

Therefore, PNþ1 is true and, hence, PN is true 8 N. h

APPENDIX D: ANALYTICAL COMPUTATION
OF �2

In this Appendix the computation of the first nonreso-
nant term is carried out based on the results of the previous
Appendices. First, the situation assumed in Appendix C
will be considered. It can be observed that the octupolar
nonlinearities do not contribute to the second order part of
Fðz; z�Þ, which is determined by the single quadratic map.

The coefficients can be found in Ref. [18], namely,

f2;0 ¼ � i

4
ei! f1;1 ¼ � i

2
ei! f0;2 ¼ � i

4 e
i!;

�2;0 ¼ 1

8

�
� cot

�
!

2

�
þ i

�
�1;1 ¼ 1

4

�
cot

�
!

2

�
þ i

�

�0;2 ¼ 1

8

�
cot

�
3!

2

�
þ i

�
: (D1)

The only relevant third-order contribution is
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f2;1 ¼ � 3

8
iei!

XN�1

n¼0


n: (D2)

It is worthwhile pointing out that the term f2;1 does not

depend on the phase advance between the octupoles.
Therefore, by direct application of Eqs. (A20) and (C2)
one finds

u2;1 ¼ � i

16
ei!

�
3 cot

�
!

2

�
þ cot

�
3!

2

�
þ 6

XN�1

n¼0


n

�
;

(D3)

and then

�2 ¼ � 1

16

�
3 cot

�
!

2

�
þ cot

�
3!

2

�
þ 6

XN�1

n¼0


n

�
: (D4)

In the case of the fourth-order resonance, ! ¼ �=2, the
condition �2 ¼ 0 reads

XN�1

n¼0


n ¼ �1=3: (D5)

The case of an array of sextupoles is more involved as
the contributions to the second order of Fðz; z�Þ have
complex expressions which depend on the phase advance
between elements. Using the following notation,

�þj ¼
XN�1

n¼0

kne
ij�n ¼ ���j; (D6)

and by direct application of Eq. (A5) and the result of
Appendix B, the following holds:

f2;0 ¼ � i

4
ei!�þ f1;1 ¼ � i

2
ei!��

f0;2 ¼ � i

4
ei!��3 and �2;0 ¼ f2;0

e2i! � ei!

�1;1 ¼ f1;1
1� ei!

�0;2 ¼ f0;2
e�2i! � ei!

:

(D7)

Straightforward application of the functional equation
(A5) gives, after some lengthy algebra,

f2;1 ¼ � i

4
ei!

XN�1

m¼0

km
Xm
j¼0

kj expð�i�mÞ sinð�m ��jÞ

� ½expð2i�jÞ expð�i�mÞ þ 2 expði�mÞ�

¼ � i

4
ei!

XN�1

m¼0

km
Xm
j¼0

kj sinð�m ��jÞ

� fexp½2ið�j ��mÞ� þ 2g: (D8)

By direct substitution into Eq. (A20) one obtains

u2;1 ¼ � ei!

8

�
�8e�i!f2;1 þ�þ��

�
3i

2
cot

!

2
� 1

2

�

þ�þ3��3

�
i

2
cot

3!

2
þ 1

2

��
; (D9)

where the relation ðeik! � 1Þ�1 ¼ �1=2� i=2 cotðk!=2Þ
was used. The final results reads

u2;1 ¼ � i

8
ei!

�XN�1

m¼0

km
Xm
j¼0

kjf3 sinð�m ��jÞ

þ sin½3ð�m ��jÞ�g þ�þ��
�
3

2
cot

!

2

�

þ�þ3��3

�
1

2
cot

3!

2

��
: (D10)

The use of the fundamental relation (A17) allows the
determination of �2.
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