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We demonstrated a method with practical value for the measurement and global compensation of a

complex coupling driving term C of linear difference resonance, using a turn-by-turn beam position

monitor (BPM) at the SPring-8 storage ring. The method is based on the perturbation theory with the

single-resonance approximation. The accurate complex C was obtained from coefficients of the eigen-

mode expansion of the coupled betatron oscillation observed near a target linear difference resonance. The

global compensation for the measured C was successfully carried out by determining optimal strengths of

the two independent correcting skew quadrupoles for generating a counterterm �C without using

empirical methods. Meanwhile, we then confirmed that the determined optimal strengths gave a minimum

vertical beam size by scanning the strength of the correcting skew quadrupole field. To demonstrate the

validity of our method, C was also measured while varying the strengths of the correcting magnets around

the optimal values to generate deliberate skew quadrupole error fields. We confirmed that the measured

values of C agreed with those coming from the deliberate error fields.

DOI: 10.1103/PhysRevSTAB.12.024002 PACS numbers: 29.27.�a, 41.85.�p

I. INTRODUCTION

Betatron coupling is one of the essentials for machine
performance in circular accelerators, such as electron stor-
age rings for high-brilliance light sources and particle
colliders of high luminosity. Strong coupling can induce
optics distortion, shift of betatron tunes, and excitation of
resonances. Accurate correction of the linear betatron cou-
pling is of primary importance to improve the brilliance for
a low-emittance light source. The correction also has a
secondary effect that the excitation of other nonlinear
resonances can be suppressed. For examples at the
SPring-8 storage ring, the excitation of skew sextupole
resonance (2�x � �y ¼ 62 near the user-time working

point) was successfully suppressed by correcting the linear
coupling resonance [1]. Furthermore, we also observed
that the global correction of the linear coupling reduced
impact on the vertical emittance of skew quadrupole error
fields coming from undulators.

If a certain equipment installed in the ring causes the
strong linear coupling, a local compensation of the skew
quadrupole error field near the equipment can be effective.
On the other hand, if the coupling comes from very weak
skew error fields distributed along the large ring, such as
the SPring-8 storage ring, the local compensation needs an
elaborate correction technique. Recently, at the Paul
Scherrer Institute Swiss Light Source, the precise error
analysis was performed by using the measured response
matrix, and an ultralow emittance coupling ratio of 0.05%
has been successfully achieved by applying a singular
value decomposition based local correction algorithm [2].

Skew quadrupole error fields can be generated by com-
plicated factors such as alignment errors of normal quad-
rupole magnets and vertical offsets of a closed orbit

distortion (COD) in normal sextupole magnets. Although
the skew error fields are usually weak, the coupled betatron
motions of a stored beam can be enhanced near a linear
difference resonance line. Under such conditions, the per-
turbation theory with the single-resonance approximation
is applicable, and the linear coupling can be corrected
effectively by global compensation of the coupling driving
term C.
Resonance driving terms were successfully measured by

the fast-Fourier-transform (FFT) analysis of the turn-by-
turn beam position monitor (BPM) data at the CERN SPS
and the BNL RHIC between 1999 and 2004 [3–6]. In
particular, this technique is a powerful tool to measure
the local sextupolar resonance driving terms [7]. The com-
plex driving term C of the linear coupling resonance has
been also measured by the envelope analysis of coherent
betatron oscillations excited by a horizontal kicker [8] or
the skew quadrupole modulation technique [9], in addition
to the FFT technique mentioned above. Also at the SPring-
8 storage ring, the complex C was measured by using the
coherent coupled betatron oscillations. We observed the
coherent oscillations near a target linear difference reso-
nance to improve the precision of the single-resonance
approximation. The accurate driving term C was extracted
from both the horizontal and vertical turn-by-turn BPM
signals by fitting procedure of the betatron motions ex-
panded into two eigenmodes for the single linear coupling
resonance.
For the global correction of the linear coupling, empiri-

cal methods of scanning two independent correcting skew
fields have been used to achieve minimum betatron tune
separation [10], minimum vertical beam size or maximum
beat period of the coherent betatron oscillations, etc.
However, these methods have no guarantee to correct the
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complex C properly, because two free parameters have to
be determined by one probe which gives us only the
absolute value of C. Using both the amplitude and phase
of the measured C, we can uniquely determine optimal
strengths of the two independent correcting skew quadru-
pole magnets without the empirical means. Our simple
correction technique for the linear coupling driving term
has the advantage of being quick and precise, and has the
practical significance for the machine tuning to improve
beam quality. More precise correction including other dis-
tant coupling resonances which have only a smaller effect
on the betatron motions will be realized by extending our
scheme, but it is not mentioned in this paper.

In Sec. II, we briefly review the coupled betatron oscil-
lation and the coupling driving term. The method of mea-
suring the complex C using a turn-by-turn BPM is
described in Sec. III. In Sec. IV, we describe how to
determine optimal strengths of the correcting skew quad-
rupole magnets using the measured value of C. A practical
scheme for the global compensation of C is also proposed,
and the validity of our method is demonstrated.

II. COUPLED BETATRON MOTION

We assume that small skew quadrupole magnetic com-
ponents are distributed as error fields along the circum-
ference of a circular accelerator. In such a case, the
horizontal (x) and vertical (y) betatron beam motions can
be coupled. The strong coupled motion appears near the
linear difference resonance �x � �y � qðintegerÞ. If the

skew quadrupole error fields are sufficiently small in com-
parison with the fields of main magnets composing a lattice
of the ring, we can treat the coupled betatron motions with
the Hamilton perturbation theory [10–13] under the single-
resonance approximation.

According to the perturbation theory, the x-y betatron
beam motions are expressed by the following formulas
[13]:

xðsÞ ¼ ðA1e
�2�i�1s=L þ A2e

�2�i�2s=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
�xðsÞ
2

s
ei�xðsÞ þ c:c:;

(1)

yðsÞ ¼ C

2

�
A1

�2

e2�i�2s=L þ A2

�1

e2�i�1s=L
� ffiffiffiffiffiffiffiffiffiffiffiffi

�yðsÞ
2

s
ei�yðsÞ

þ c:c:; (2)

where c.c. denotes the complex conjugate of the preceding
term, and �x;yðsÞ, �x;yðsÞ, A1;2, L, and s are the betatron

functions, phase advances, integration constants, circum-
ference of the ring, and beam path length, respectively. The
shifts �1;2 of unperturbed betatron tunes �x;y are written as

�1;2 ¼ 1
2ð��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ jCj2

q
Þ; (3)

where � ¼ �x � �y � q. The complex number C in

Eq. (2) is referred to as the coupling driving term and is
denoted by the following formula:

C ¼ 1

2�

Z L

0
KerrðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xðsÞ�yðsÞ

q
ei½�xðsÞ��yðsÞ�ð2�s=LÞ��ds

� jCjei�c ; (4)

where KerrðsÞ is the field strength of the distributed skew
quadrupole errors, and the� dependence of C is small near
the linear difference resonance where� is close to zero and
2�� � s=L � �x ��y. The absolute value and phase ofC

dominate the amplitude and phase of the coupled vertical
oscillation, respectively, induced from the horizontal
oscillation.

III. DERIVATION OF COUPLING DRIVING TERM
C FROM TURN-BY-TURN BPM DATA

We measured the coupling driving term C of the SPring-
8 storage ring using a turn-by-turn BPM system [14]. The
coherent betatron oscillations expressed by Eqs. (1) and (2)
were induced by pinging a single-bunch beam stored in the
storage ring in the horizontal direction with a pulsed bump
magnet for beam injection. The betatron oscillations were
then observed using the turn-by-turn BPMs located at
about every two cells of the storage ring. To increase
sensitivity in measuring the vertical oscillation induced
by the betatron coupling, we chose a working point near
the difference resonance line, where the single-resonance
approximation is sufficiently applicable.
Equations (1) and (2) are reduced to the following forms,

suitable to fit the measured turn-by-turn BPM data:

xn ¼ e�nDfAu cosð2�n�u þ�uÞ
þ Av cosð2�n�v þ�vÞg; (5)

yn ¼ e�nDfBu cosð2�n�u þ�uÞþBv cosð2�n�v þ�vÞg;
(6)

where the exponential damping factor e�nD comes from
the nonlinear filamentation of coherent betatron oscilla-
tions with a Lorentz tune distribution [15], �u and �v are
tunes of the eigenmodes ðu; vÞ, and n is the turn number.
Parameters Au, Av, Bu, Bv and �u, �v, �u, �v express
amplitudes and phases of the oscillations, respectively.
Note that the horizontal and vertical betatron oscillations
are given by the linear combination of two eigenmodes
ðu; vÞ. Free parameters in the fitting process are Au, Av, Bu,
Bv, �u, �v, �u �v, �u, �v, and D. Figure 1 shows an
example of the turn-by-turn BPM data with the fitted
curves. We can observe an amplitude modulation with
frequency j�u � �vj=Trev in the x and y directions, where
Trev is the revolution period. The modulation in the x and y
directions has a phase difference of 90�. This is typical of a
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coupling resonance where energies of the x-y betatron
oscillations alternate between two directions.

As other data analysis instead of the fitting procedure,
the FFT analysis can be also employed to obtain the
equivalent of the parameters Au, Av, Bu, Bv, �u, �v,
�u, �v, �u, �v mentioned above. In Fig. 2, the FFT
analyses of the horizontal and vertical turn-by-turn data
in Fig. 1 are shown as a typical example. In the amplitude
spectrum, we can see only two peaks corresponding to the
eigenmodes ðu; vÞ. This supports validity of the model
functions [Eqs. (5) and (6)] with the single-resonance
approximation. The phase spectrum has steep slopes
around the fractional tunes at the two peaks of the ampli-
tude spectrum. We note that the accuracy of an extracted
phase can be limited by this steeply inclined behavior,
since the width of a frequency bin is dominated by the
number of truncated data points from the turn-by-turn
BPM. Although the frequency resolution can be improved
by extending the original data by zeros, the proper zero-
region size will need to be estimated. We chose the
straightforward fitting analysis which does not need the
artificial means like the zero padding to solve the issue of
the frequency resolution.

The absolute value jCj was derived from the fitted
eigentunes �u, �v and amplitude parameters Au, Av, Bu,
and Bv. To show this, we first note that the amplitude
parameters can be expressed as

Au ¼
ffiffiffiffiffiffiffiffiffi
2�x

p jA2j; Av ¼ ffiffiffiffiffiffiffiffiffi
2�x

p jA1j; (7)

Bu ¼ jCj
ffiffiffiffiffiffi
�y

2

s
jA2j
�1

; Bv ¼ jCj
ffiffiffiffiffiffi
�y

2

s
jA1j
�2

: (8)

We then define � as

� � AuBv

AvBu

¼ �1

�2

¼ �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ jCj2p

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ jCj2p : (9)

FIG. 2. FFT analyses of the horizontal and vertical turn-by-
turn BPM data shown in Fig. 1. The turn-by-turn data are
truncated at 1024 turns. Filled and open circles with solid lines
show the amplitude and phase spectra, respectively. We see that
the amplitude spectrum has the two peaks corresponding to the
eigenmodes ðu; vÞ and the phase spectrum has the steeply
inclined behaviors around the fractional tunes at the two peaks.

FIG. 1. An example of the turn-by-turn BPM data (dots) measured at the working point ð�x; �yÞ ¼ ð40:3509; 18:3477Þ near the linear
difference resonance. The solid lines show the curves of Eqs. (5) and (6) fitted to the data.
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The eigentunes �u, �v for �> 0 can be written as

�u ¼ �x � �2; �v ¼ �y þ �2; (10)

and those for �< 0 as

�u ¼ �x � �1; �v ¼ �y þ �1: (11)

From Eqs. (10) and (11), we obtain

� ¼ �j�u � �vj
��

1� �

1þ �

�
: (12)

From Eqs. (9) and (12), we obtain the expression for jCj:

jCj ¼ j�u � �vj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
1þ �

1� �

�
2

s
: (13)

The phase �c of C was derived from the fitted phase
parameters�u,�v,�u, and�v which can be expressed as

�u ¼ �x þ�1 � 2��1

si
L
;

�v ¼ �x þ�2 � 2��2

si
L
;

(14)

�u ¼ �c þ�y þ�1 þ 2��2

si
L
;

�v ¼ �c þ�y þ�2 þ 2��1

si
L
;

(15)

where�1 and�2 show the phases of the complex numbers
A1 and A2, respectively, and si denotes the beam path
length at the ith BPM. From Eqs. (14) and (15), we obtain

�c ¼
8><
>:
�u ��u þ�x ��y � 2�� � si=L
or

�v ��v þ�x ��y � 2�� � si=L;
(16)

where we used design values for �x and �y of the unper-

turbed system.
The fitting was carried out for the data from each turn-

by-turn BPM, so we obtained as many experimentally
derived C values as the number of the BPMs. Since C is
independent of the path length si, we adopted the average
of the complex values C ¼ jCjei�c from all the BPMs as a
measured value of the coupling driving term. Figure 3
shows jCj and �c measured at several working points
near the linear difference resonance line. As expected,
the � dependence of C is small near the resonance line,
and we can see in Fig. 3 that the measured C does not
depend on the working points. By averaging the complex
C measured at all the working points, we obtained the
real part ReðCÞ ¼ �0:016 30� 0:000 06 and the imagi-
nary part ImðCÞ ¼ 0:000 72� 0:000 11, and con-
sequently jCj ¼ 0:016 31� 0:000 06 and �c ¼ ð0:4930�
0:0011Þ 	 2�.

IV. DETERMINATION OF FIELD STRENGTH OF
CORRECTING SKEW QUADRUPOLE MAGNETS

The SPring-8 storage ring is composed of 36 normal
Chasman-Green cells (CGCs) and four magnet-free long
straight sections (LSSs) of 27 m with matching sections
[16]. Two-family skew quadrupole magnets for the global
coupling correction are installed at the achromatic arcs
(ARCs) of the CGCs every two cells and at both ends of
all the LSSs. A compensation term CSK for the coupling
driving term C is obtained by replacing Kerr of Eq. (4) with
the strengths of the correcting skew quadrupole magnets of
the ARC and the LSS, and is denoted by the following
formula:

CSK ¼ 1

2�

�
KARC

NARC

X
j¼ARC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xðsjÞ�yðsjÞ

q
ei½�xðsjÞ��yðsjÞ�ð2�sj=LÞ�� þKLSS

NLSS

X
j¼LSS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xðsjÞ�yðsjÞ

q
ei½�xðsjÞ��yðsjÞ�ð2�sj=LÞ��

�
; (17)

where KARC and KLSS are the total integrated strengths of
the correcting skew quadrupole magnets of the ARC and
LSS, respectively, NARC and NLSS are the total number of
the skew magnets of the ARC and LSS, respectively. At the

SPring-8 storage ring, NARC ¼ 20 and NLSS ¼ 8. The
phase �x ��y in Eq. (17) approximately has a difference
of m� between the skew magnets in the adjacent two
ARCs or two LSSs, and a difference of ðmþ 1=2Þ� be-

FIG. 3. The absolute values (filled circles) and phases (open
circles) of C measured at several working points near the linear
difference resonance. We see that the dependence of the mea-
sured C on the working points can be neglected.

M. MASAKI et al. Phys. Rev. ST Accel. Beams 12, 024002 (2009)

024002-4



tween the skew magnet in the ARC and that in the LSS,
wherem is an integer. These phase differences indicate that
the first and second compensation terms of Eq. (17) are in
quadrature. Requiring CSK to be equal to �C, we can
uniquely determine the total integrated strengths KARC

and KLSS by solving a linear equation (17). We used design
values for the betatron functions �x;y, the phase advances
�x;y, and � in the unperturbed system. The distortion of
betatron functions has been corrected with auxiliary power
supplies to normal quadrupole magnets and found to
be sufficiently small, being about 2% by the response
matrix analysis [17]. As a result, we obtained KARC ¼
�0:001 63� 0:000 04 ðm�1Þ and KLSS ¼ 0:003 38�

0:000 01 ðm�1Þ using the measured value of C described
in Sec. III.
To check our results, we scanned the strengths KARC and

KLSS to minimize the vertical beam size �y. If the betatron

coupling makes a dominant contribution to �y, it is ex-

pressed by the following formula [10,13]:

�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 jCj2

�2 þ jCj2 �y�0

s
; (18)

where �0 is a natural emittance in the unperturbed system.
Equation (18) indicates that jCj also becomes minimum
when the minimum vertical beam size is realized. The
vertical beam sizes were measured by the x-ray beam
imager (XBI) [18] and the two-dimensional synchrotron
radiation interferometer (2D interferometer) [19] using
bending magnet radiation. These are shown in Fig. 4 as a
function of KARC and KLSS together with the absolute
values of C measured by the turn-by-turn BPM. We chose
a working point near the difference resonance to increase
the response sensitivity of the vertical beam size to the
skew fields. The skew field strengthsKARC andKLSS giving
the minimum vertical beam size were �0:001 48 ðm�1Þ
and 0:003 48 ðm�1Þ, respectively, where the measured jCj
also became minimum. The optimum strengths of the
correcting skew magnets determined from the complex C
are consistent with those giving the minimum vertical
beam size, but we can see a slight discrepancy between
the two results. Possible explanations of the discrepancy
are as follows: as the dominant linear coupling driving
term is compensated due to the correcting skew quadrupole
magnets, (i) effects of other distant coupling resonance or
higher-order resonance terms on �y grow relatively and

Eq. (17) is no longer applicable for the compensation of
such resonance terms, or (ii) effect of the correcting skew
quadrupole fields on the vertical dispersion contributing to
�y becomes not negligible, and consequently Eq. (18)

becomes inapplicable. The small discrepancy, however,
will not be essential for a practical coupling correction
scheme that we propose: the first step of the correction
scheme is to measure the complex coupling driving term C
using the turn-by-turn BPM; the second step is to set the
correcting skew field strengths KARC and KLSS to give the
counterterm �C; and the third step is to carry out the first
and second steps iteratively until the measured C con-
verges within the error of measurement.
Finally, to demonstrate the validity of our method, we

measured the complex C while the skew quadrupole field
strengths ðKARC; KLSSÞ were deliberately varied around the
optimum values. Figure 5 shows the comparison between
the experimental value Cexp measured using the turn-by-

turn BPM and the calculated value Ccal ¼ CSK þ C0 ob-
tained from Eq. (17) with the given skew quadrupole field
strengths. The offset C0 is the measured value of C at
KARC ¼ 0 and KLSS ¼ 0 shown in Sec. III. We can see
that Cexp agrees well with Ccal.

FIG. 4. Vertical beam sizes measured by the XBI (open circles)
and the 2D interferometer (filled circles), and jCj (crosses)
measured by the turn-by-turn BPM as a function of KARC and
KLSS. For both beam-size monitors of XBI and 2D interferome-
ter, the minimum vertical beam sizes are given when
ðKARC; KLSSÞ are (� 0:001 48 m�1, 0:003 48 m�1), where the
measured jCj also becomes minimum. The working point was
chosen at ð�x; �yÞ ¼ ð40:3818; 18:3451Þ, near the difference

resonance.
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V. SUMMARY

The complex driving term C for the linear coupling was
measured using the turn-by-turn BPM system at the
SPring-8 storage ring. The optimal strengths of the two-
family correcting skew magnets of the ARC and LSS were
directly determined for generating the counterterm �C
without using the empirical means. The determined
strengths were consistent with those obtained by minimiz-
ing the vertical beam size. We also proposed a practical
correction scheme of global coupling using the measured
C. The validity of our measuring and correcting method
was experimentally confirmed by comparing the measured
C as a function of the strengths of the correcting skew
quadrupole magnets with the calculated values. Since our
technique allows quick-and-precise measurement and
compensation of the driving term C, it will become a
practical tool for the proper feedback to the excitation
parameters of the two-family skew quadrupole magnets
in the global coupling correction.
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