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Knowledge of the three-dimensional structure of a charged particle beam bunch is essential for

understanding its evolution and for initializing computer simulations, especially when space charge is

involved. This paper presents a novel experimental method for time-sliced mapping of the transverse

phase space of a space-charge dominated beam based on tomographic principles. The combination of a

high precision tomographic diagnostic with fast imaging screens and a gated camera are used to produce

phase-space maps of two beams: one with a parabolic current profile and another with a short perturbation

atop a rectangular pulse. The correlations between longitudinal and transverse phase spaces are apparent

and their impact on the dynamics is discussed.
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I. INTRODUCTION

A high brightness and low emittance beam is an a priori
requirement for x-ray free electron lasers (FELs) [1],
brighter-luminosity high-energy colliders [2], energy re-
covery linacs [3], and Spallation Neutron Sources [4]. For
these applications, longitudinal stability is a fundamental
requirement. Density modulations in the injection region,
produced, for example, by modulations in the drive laser of
a photoinjector or from space charge in the gun [5], can be
converted at low energy by space-charge forces into energy
modulations [6], which are then frozen-in as the beam gets
accelerated into ultrarelativistic velocities [7–9]. These
modulations in energy can reappear further downstream
in doglegs or compression chicanes [10] and possibly lead
to unwanted coherent synchrotron radiation [11]. To miti-
gate these effects, novel methods have been proposed
[7,12] and attempted [13] for creating an ellipsoidal
beam bunch in which the line charge density is parabolic.
In such beams, the space-charge forces are linear both
longitudinally and transversely. Besides the linear space-
charge forces, such a bunch has the advantage of being
shape preserving [14]. For proton and ion beams, longitu-
dinal stability is at least as important since the beam spends
a longer part of its life in the low-energy region where
space-charge forces are strong [15].

It is important to bear in mind that the actual beam
distribution is in reality three dimensional, hence any in-
vestigation of longitudinal stability needs to account for
possible correlations between the transverse and longitu-
dinal dynamics, evidence of which has been reported in
previous studies [15–20]. Recent experiments [21] using
time-dependent imaging techniques demonstrated, in fact,
that the transverse beam distribution is affected by longi-

tudinal perturbations and vice versa. However, these pre-
vious studies measured the beam only in configuration
space, and any knowledge of phase space was inferred
from simulations. Characterization of the time-resolved
transverse phase space is furthermore important [22], as
it allows the tuning and verification of the photoinjector
properties. An example of this is emittance compensation
[23,24], a process which is used to correct for the correla-
tion between the phase-space angle and the longitudinal
position of slices.
A key requirement for addressing such issues, therefore,

is the ability to measure the detailed three-dimensional
structure of the beam distribution. This information is
furthermore crucial for initializing computer simulations.
In Ref. [21], for example, the simulations were provided
with initial conditions for beam current, mean energy,
energy spread, and transverse radius—all as a function of
time along the bunch. However, the authors had to make
educated guesses about the time variation of the transverse
beam slope and emittance, based on time-integrated mea-
surements. Being able to directly measure these quantities
will considerably enhance the predictive capability of the
simulations.
In this paper we report on a proof-of-principle experi-

ment for demonstrating the possibility of reconstructing
the time-resolved phase-space distribution by tomography
which provides us with far more information than a time-
sliced emittance. This work is motivated in large part by
the implementation of fast imaging techniques [21] on the
long solenoid experiment (LSE), which is a simple scaled
setup that uses high-current, low-energy electron beams to
experimentally model space-charge effects in higher-
energy ion accelerators and intense electron injectors.
The tomography algorithm we use is similar to that em-
ployed in Refs. [25–28], but has been adjusted to account
for the beam space charge [28] by assuming a uniform
beam density and hence linear space-charge forces. It is
worth noting that the tomographic measurements de-
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scribed herein employ beams that are more intense than
those described in any other tomographic measurement.

We report time-resolved phase-space maps for two
beams: a long rectangular pulse with a short perturbation
in charge density we deliberately introduce, and a para-
bolic beam bunch that is close to an ellipsoidal distribution.
The time resolution in both cases is of the order of a few ns,
which is much shorter than the beam bunch length (50–
100 ns) and therefore sufficient to study the beam dynam-
ics for our beam conditions. We show that time-resolved
tomography can provide entirely different phase-space
maps than the integrated version of the diagnostic. The
method we have developed can produce time-resolved
phase-space maps useful for initializing simulation codes
and optimizing the injection and transport of high-quality
beams downstream for future accelerator applications. We
emphasize that this work describes and demonstrates a new
methodology which can be applicable to any beam pulse
using imaging methods with the appropriate time resolu-
tion for the pulse duration.

The outline of this paper is as follows: In Sec. II we
review the tomographic algorithm. In Sec. III we describe
our experimental configuration. In Sec. IV we describe the
experimental results. Finally, we present our conclusions in
Sec. V.

II. PHASE-SPACE TOMOGRAPHY

Tomography is a methodology whose goal is the recon-
struction of a higherN-dimensional space from projections
at a lower (N � 1) dimension, e.g., reconstruction of a 2D
image from 1D profiles obtained at various angles. The
central methodology is based on the theorem due to Radon
[29].

Suppose that fðx; yÞ corresponds to the two-dimensional
distribution that we are interested to reconstruct. Let � ¼
x cos�þ y sin� (0 � � � �) be the equation of a line L
that is at a distance � from the origin and at an angle, �,
from the y axis. The line integral along L is defined as [30]

f̂ �ð�Þ ¼
Z
L
fðx; yÞds

¼
Z 1

�1

Z 1

�1
dxdyfðx; yÞ�ð�� x cos�� y sin�Þ:

(1)

f̂�ð�Þ is known as the Radon transform of the distribution
fðx; yÞ. A projection of fðx; yÞ is formed if we combine a
set of line integrals. The simplest projection is a collection
of ‘‘parallel’’ line integrals as is given by Eq. (1) for a fixed
� while � is varied. Then, several algorithms are available
to recover the original distribution from such projection
data, e.g., algebraic reconstruction technique, maximum
entropy tomography, filtered-backprojection algorithm
(FBA), etc. The FBA algorithm is the most common
method to reconstruct a two-dimensional image and is

the algorithm that we use and hence we describe along
the lines below. If Fðu; vÞ is the two-dimensional Fourier
transform of the function fðx; yÞ, then its inverse Fourier
transform is given by

fðx; yÞ ¼
Z 1

�1

Z 1

�1
Fðu; vÞej2�ðuxþvyÞdudv: (2)

By exchanging the rectangular coordinate system in the
frequency domain ðu; vÞ for a polar coordinate system
ðw; �Þ, Eq. (2) becomes

fðx; yÞ ¼
Z �

0

Z 1

�1
Fðw; �Þjwjej2�w�dwd�: (3)

Using the Fourier slice theorem [30], we can substitute the
one-dimensional Fourier transform of the Radon transform

at angle, �, S�ðwÞ ¼
R1
�1 f̂�ð�Þe�j2�w�d�, for the two-

dimensional Fourier transform Fðw; �Þ. Then Eq. (3) be-
comes

fðx; yÞ ¼
Z �

0

Z 1

�1
S�ðwÞjwjej2�w�dwd�: (4)

Furthermore, Eq. (4) can be simplified to

fðx; yÞ ¼
Z �

0
Q�ð�Þd�; (5)

where Q is given by Q�ð�Þ ¼
R1
�1 S�ðwÞjwjej2�w�dw and

often is called ‘‘filtered projection’’ [30]. Therefore, if a
number of parallel projections corresponding to angles
from 0 to � are known, the tomographic image reconstruc-
tion can be done by two steps: first, the filtered projections
Q are obtained and, second, the resulting projections for
each angle are added [using Eq. (5)] to form an estimate of
the distribution fðx; yÞ. The accuracy of the reconstruction
will depend on the number of projections and the corre-
sponding angular resolution between them.
Next we will relate the Radon transform to the beam

phase-space mapping. Suppose that �ðx0; x00Þz0 is the

phase-space distribution at a certain location z0 in the
beam line. If �ðx; x0Þz1 is the phase distribution at another

location z1 then by assuming that we have a linear system,
the particle motion at the two positions obeys

x
x0

� �
¼ M

x0
x00

� �
; (6)

where

M ¼ M11 M12

M21 M22

� �

is the transport matrix between z0 and z1. In the analysis we
will assume that between those two points at least one
magnet (quadrupole or solenoid) is present. Placing a
screen along the beam path at z1 provides a two-
dimensional projection of the four-dimensional phase-
space distribution fðx; x0; y; y0Þz1 which is given by
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gðx; yÞz1 ¼
ZZ

fðx; x0; y; y0Þz1dx0dy0: (7)

Integration of this distribution over y leads to the spatial
beam profiles along x:

cðxÞz1 ¼
Z

gðx; yÞz1dy ¼
Z �ZZ

fðx; x0; y; y0Þz1dydy0
�
dx0:

(8)

In Ref. [28] it was shown that a simple scaling equation
relates those beam profiles to the Radon transform,
�̂�;z0

ð�Þ of the transverse phase space �ðx0; x00Þz0 . That is

�̂ �;z0ð�Þ ¼ �̂�;z0
ðx=sÞ ¼ scðxÞ�;z1 ; (9)

where s is the scaling factor given by [25,28] s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

11 þM2
12

q
and � is the corresponding projection angle,

given by [25,28] tan� ¼ M12=M11. Therefore, by applying
Eqs. (1)–(5) and (9), tomographic techniques can recover
the transverse phase-space distribution of a beam using its
projections in configuration space. Those projections can
be obtained by means of varying the strength of the magnet
upstream of the imaging screen (and therefore modifying
the transport matrixM) which has the effect of rotating the
distribution in phase space through a given angle, �.

The technique is similar to a quad scan except that the
entire profile on a screen is collected for each magnetic
field strength, instead of simply a beam size. In contrast to
standard techniques, such as a double-slit phase-space
measurement, tomography does not occupy a long section
of beam pipe nor does it require additional hardware
beyond an imaging diagnostic downstream of one or
more magnets that can be scanned.

Tomographic techniques typically involve quadrupoles
to rotate the phase-space distribution [25,28]. However,
recently we have extended the standard tomographic
phase-space retrieval method to use solenoids [31], which
is advantageous for characterizing low-energy transport
systems and photoinjectors. Our reconstruction algorithm
successfully incorporated the effects of linear space-charge
forces and the resolution of the reconstructed transverse
phase space was extensively studied; it was concluded that
48 projections in total were required with solenoid fields
selected such that the angular resolution is less than 14�, to
achieve a sufficiently high resolution phase-space map. A
comparison of the tomographic reconstructed phase space
with simulation code results showed good agreement for an
emittance and space-charge dominated beam. To quantify
this agreement, the values of the 4� rms emittances for
both beams were calculated from their phase spaces. It was
found that for a beam without space charge the agreement
is superior and in the presence of space charge there is a
maximum 10% error in the emittance calculated by tomog-
raphy [31].

In our present experiment, we employ the same ap-
proach described in Ref. [31] to recover transverse beam
phase space. The only difference is the combined use of
fast phosphor screens and a gated camera (described in the
next section) to map the phase space in narrow (3–10 ns)
longitudinal (time) slices within the beam pulse. We note
that, for faster time resolution, optical transition radiation
(OTR) or Cherenkov generating screens can be employed
for imaging by using sub-ns gated or streak cameras. We
will present 3 ns time-resolved phase-space maps here to
illustrate the method, since this resolution is sufficient to
show dynamical changes in the beam profile and transverse
phase space for our beam conditions and well illustrates the
method.

III. EXPERIMENTAL SETUP

The experiment was carried out on the long solenoid
experiment (LSE) at the University of Maryland [21]
which is illustrated in Fig. 1. Our transport line consists
of a thermionic electron gun, two short solenoids, S1 and
S2, and a phosphor screen located immediately down-
stream of the solenoids. The electron gun is a variable-
perveance gridded gun which can produce a wide range of
beam parameters and its energy varies from 1–5 keV.
Parameters that used for our experiment as well design
details about the LSE configuration are demonstrated in
Table I. The cathode has a Pierce geometry and a planar
configuration consisting of the heater, cathode, and grid.
The radius of the cathode is 4 mm and a 3.2 mm diameter
aperture (at z ¼ 0 cm), 22 mm downstream from the cath-
ode is used to control the beam current that is measured by

(a)

S1 S2

Aperture Screen (LC1)
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Bergoz coil
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FIG. 1. (Color) Experimental configuration of the LSE:
(a) Schematic layout; (b) actual configuration.
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a Bergoz fast current transformer (FCT). The beam size is
controlled by the two solenoids, S1 and S2. As described in
Ref. [31], for our tomographic reconstruction we varied the
magnetic field strengths of those two solenoids incremen-
tally and obtained a beam image for each setting at a
phosphor screen location (at a diagnostic chamber we
call LC1). Then, the spatial beam profiles were obtained
using Eq. (8) and related to phase-space projections by
Eq. (9). By adjusting the transfer matrices [28] in the
algorithm, the phase-space maps can be constructed for
either the initial beam distribution at the aperture or for the
location at the screen. In this paper we show both results.
The phase spaces shown in this study are recovered for the
default solenoid strength settings illustrated in Table I.

In order to achieve time-dependent phase-space maps
within our beam pulse, we employ imaging screens con-
sisting of a fast ZnO:Ga phosphor deposited on a quartz
plate produced by Lexel Imaging Systems, Inc. The phos-
phor is inorganic and emits in the near UV with peak close
to 390 nm (equivalent to 3.2 eV) and the decay time is
2.4 ns. Previous experiments [21] demonstrated that the
fast phosphor has a linear response to the charge impinging
on it. A variable gate, intensified charged-coupled device
(ICCD) camera (PIMAX2; Princeton Instruments Inc.) was
used to capture the light generated from the screen within a
gate time as narrow as 3 ns. The PIMAX2 camera has an
image resolution of 512� 512 pixels and a 16-bit dynamic
range, which provides a very wide intensity range for
detecting even weak signals and halos.

To investigate the evolution of longitudinal perturba-
tions we intentionally produced density modulations close
to the beam source by modifying the electronics [6,32] of
our gridded electron gun [16]. In this type of gun, a grid
0.15 mm away from the cathode acts as a gate. Ordinarily it
is biased negatively relative to the cathode so as to suppress
electron emission. Periodically at 60 Hz, a positive pulse
(of 80 V amplitude) is applied to the grid to extract the
beam. Typically, we use a bias voltage of 35 V, which
means the grid-cathode potential is of the order of 80�
35 ¼ 45 V and the gun operates in space-charge-limited
saturation mode. By increasing the negative bias voltage to
55 V, the grid-cathode potential difference is reduced and

the gun operates in triode amplification mode, in which any
perturbation to the grid voltage waveform is translated into
a perturbation to the beam current. The grid-cathode pulse
voltage is generated by a pulser which is composed of an
external triggering circuit, a pulse forming line (PFL), a
2N3507 transistor, and a dc charging power supply. The
longitudinal perturbation is created by connecting a cable
at the middle of the PFL through a ‘‘T’’ connector. When
the gun is working in amplification mode, small changes in
the bias voltage produce large changes in the output cur-
rent. The parabolic beam is produced by applying a low-
pass filter to the rectangular, unperturbed grid pulse. A
more detailed description about the generation of those
perturbations can be found in Refs. [6,32].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we first discuss the results with the
rectangular pulse, and then with the parabolic pulse.

A. Rectangular pulse with perturbation

For this experiment we set the bias voltage to 55 V so as
to operate in the triode amplification mode. Note that,
although we are increasing the density of electrons within
the perturbation, our use of an aperture combined with the
beam dynamics inside the A/K gap result in a reduction of
beam current downstream due to scraping at the aperture
[16]. The current profiles, measured at the Bergoz FCT,
with and without perturbation are illustrated in Fig. 2. For
the experiment, the measured current without perturbation
of our 60 Hz, 5 keV beam was 25.0 mA and the pulse
length was 100 ns. The width of the perturbation was about

FIG. 2. (Color) Beam signal at the Bergoz showing the rectan-
gular beam with a negative perturbation. The red/black traces
show the beam current with perturbation on/off. The perturbation
aptitude is roughly 25% of that of the main beam. The camera
gates used were 10 ns (solid line) and 100 ns (dotted line).

TABLE I. Beam parameters and LSE design specifications.

Experimental details

Beam energy 5 keV

Location of S1 13.1 cm

Location of S2 29.5 cm

Effective length of S1 4.34 cm

Effective length of S2 4.24 cm

Magnetic field of S1 97.8 G

Magnetic field of S2 60.0 G

Location of Bergoz FCT 18.5 cm

Location of the screen (LC1) 43.0 cm
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7 ns, and its amplitude corresponding to about a 25%
reduction in beam current. We note that, due to the fact
that the perturbation is relatively long with respect to the
transverse dimension, the transverse forces experienced by
each slice of the beam are not expected to be affected
significantly by longitudinal variations in the beam
properties.

In order to cover the whole perturbation range and obtain
time-resolved images of the charge particle beam on the
screen, a 10 ns wide gate is applied to the ICCD camera
(along the solid line in Fig. 2). Each photo is the result of
50 frame integrations. As described in Sec. II, to recon-
struct the phase space, 48 beam photos at LC1 for different
solenoids settings where collected. Then, the same experi-
ment is repeated but with the perturbation turned off.

Figure 3 shows the tomographically reconstructed phase
space at the location of the aperture right at the gun exit
(z ¼ 0 cm). To reveal more details about the phase-space
distribution, we plot x0 � x� versus x, where � is the
phase-space slope defined by [22]

� ¼ �hxx0i
hx2i ; (10)

and hx2i and hxx0i are the second moments of the beam
distribution that are obtained from the measured phase
space. From the phase space, we can also extract the 2�

rms beam radius, X, the 4� rms emittance, ", and the
slope of the beam envelope, X0, defined as

X0 ¼ dX

dz
¼ 2hxx0iffiffiffiffiffiffiffiffihx2ip : (11)

Measurement of these parameters can be useful in cor-
rectly initializing simulation codes.
Table II indicates the initial measured values of� and X0

at z ¼ 0 obtained from the phase spaces in Fig. 3. It
suggests that the initial beam distribution is considerably
affected by the longitudinal perturbation. Specifically, the
measured phase-space slope, �, at the aperture is higher
when the perturbation is on (relative to the unperturbed
case). This result is consistent with previous experimental
measurements [21] showing that the perturbed beam ex-
pands faster transversely in the gun, resulting in a larger
beam slope at the gun exit. Furthermore, the beam emit-
tance is also higher in the perturbed beam. Note, however,
that the two emittances lie within the possible measure-
ment error of tomography, which is 10%, as described
previously.
Figure 4 shows images of the same distributions de-

picted in Fig. 3, but reconstructed at a plane 43 cm down-
stream (at the screen position in LC1). Table III illustrates
the corresponding beam parameters. The first row in Fig. 4
indicates the beam image on the screen (LC1) and the
second shows the corresponding tomographically recon-
structed phase spaces at that location when the perturbation
is off (left column) and on (right column). Interestingly, the
distributions look quite different. In configuration space
the beam sizes are not equal and the beam with perturba-
tion appears smaller, possibly due to the different space-
charge forces it experiences relative to the main beam as a
result of the difference in current. Note also, the different
structure in the phase space of the two distributions, in-
dicating hollowness when the perturbation is on that is not
seen otherwise. Such a density perturbation after interac-
tion with the external transport and accelerator environ-
ment can excite transverse space-charge waves [6].
A similar structure within the measured distributions

like that shown in Figs. 3 and 4 has also been observed
in Refs. [21,31]. Particle-in-cell simulations on Ref. [31]
revealed that such hollowness in the beam distribution

FIG. 3. Beam phase-space distribution in x-x0 within a 10 ns
gate centered around the perturbation, recovered by tomography
and backprojected to the gun aperture (z ¼ 0 cm). (a) Without,
and (b) with the perturbation. The subtracted slope� is shown in
Table II.

TABLE II. Beam parameters for the rectangular beam, mea-
sured from phase-space tomography at the aperture plane. Note
that X0 is the 2� rms beam radius, X0

0 is the slope of the beam

envelope [Eq. (11)], �0 is the phase-space slope [Eq. (10)], and
"0 is the 4� rms emittance. The subscript ‘‘0’’ indicates that
those measurements are conducted at z ¼ 0 cm.

X0

(mm)

X0
0

(mrad)

�0

(mrad=mm)

"0
(�m)

Perturbation off 1:6� 0:2 17� 2 6:5� 0:7 26� 3
Perturbation on 1:6� 0:2 21� 2 9:7� 1:0 30� 3
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most likely results partly from the nonuniform distribution
that beam possesses when it emerges from the gun cathode,
and partly from the aperture used to collimate the beam
(see Fig. 1). Note that simulations were initialized right at
the gun exit; however, we believe that a detailed analysis of
the problem requires simulations that include the electron
gun, a task that extends beyond the scope of the present
work.

The higher emittance measured for the perturbed case
could be due to the transverse mismatch caused by the
different initial conditions within the perturbation. A sec-
ond reason could be the gate window (10 ns) which is
larger than the width of the perturbation. Hence, the actual
phase space varies on a shorter time scale than the image
integration time. The experiments reported here were a first
test and proof-of-principle of time-sliced tomography.
Future experiments with a smaller gate width should be

able to address this issue in more detail and resolve the
relative contributions of the two causes.
To compare the time-sliced tomography results to ordi-

nary, integrated, tomography we repeat the experiment
described above but we increase the gate width to 100 ns
so as to encompass the entire beam pulse (the dotted line in
Fig. 2).
Figure 5 illustrates the beam distribution in configura-

tion space and phase space without perturbation [Fig. 5(a)]
and with perturbation [Fig. 5(b)] at LC1. We cannot dis-
tinguish between the two cases; either in configuration
space or in phase space. To quantify any differences, we
calculated the beam emittances and found that they differ
by less than 1%. Hence, in contrast to time-resolved mea-
surements, time-integrated measurements did not reveal
any significant differences in the transverse beam distribu-
tion when a beam was propagating with and without lon-
gitudinal perturbation. This observation highlights the
necessity of using appropriately fast diagnostics for study-
ing detailed phase space in rapidly varying beams.

B. Parabolic beam pulse

We now turn to the parabolic beam, whose physics is of
interest to the generation and transport of ellipsoidal
bunches as stated earlier. Following the discussion in
Sec. II, we produced a parabolic beam current profile by
applying the low-pass filter to the grid pulse. Our aim is to

TABLE III. Beam parameters for the rectangular beam, mea-
sured from phase-space tomography at LC1. The subscript s
indicates that those measurements are conducted at the screen in
LC1 (z ¼ 43 cm).

Xs

(mm)

X0
s

(mrad)

�s

(mrad=mm)

"s
(�m)

Perturbation off 5:7� 0:5 18� 2 7:4� 0:7 28� 3
Perturbation on 5:3� 0:5 17� 2 6:7� 1:0 37� 4

FIG. 5. Beam configuration space (top) and measured x-x0
phase space by tomography (bottom) reconstructed at the screen
location: (a) Without, and (b) with the perturbation. The sub-
tracted phase-space slopes, �, are 7:4 mrad=mm in both cases.
Images are obtained within a 100 ns gate encompassing the
entire beam.

FIG. 4. Beam configuration space (top) and measured x-x0
phase space by tomography (bottom) reconstructed at LC1:
(a) Without, and (b) with the perturbation. The subtracted slope
� is shown in Table III.
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map transverse phase space along several slices within this
pulse and study the correlations between longitudinal and
transverse dynamics.

For the experiment, the measured peak current of our
60 Hz, 5 keV beam was 23.5 mA, the pulse length was
60 ns, and the bias voltage was set at 60 V. Figure 6 shows
the longitudinal current profile from the signal at
the Bergoz FCT, as well as the position of the slices used
in our phase-space measurement (labeled as a, b, c, d, e,
and f).

By setting the ICCD camera gate window at 3 ns, and
moving it progressively from the beam head toward the
tail we can collect a number of beam images at the screen
(LC1), each corresponding to a 3-ns beam slice. Fig-

ure 7 (top) shows the resulting beam distribution in con-
figuration space for the six different slices (a, b, c, d, e, and
f). Each photo is the result of 55 frame integrations.
Examination of Fig. 7 indicates that the slices vary in
size. To illustrate this point we plotted the measured size
versus time in Fig. 8(a). The dashed line is the correspond-
ing measured beam size at the beam aperture. Note that all
slices at that point have radius equal to 1.6 mm, which is in
agreement with aperture radius. As the beam propagates
further away, because each slice has a different current, it
will evolve differently in the transverse direction. Thus, in
LC1 there will be a variation of beam size within the pulse,
and this is clearly depicted by the solid line in Fig. 8(a).
Following the procedure discussed in Sec. II, we scan

the solenoids (through a span of 177� in phase space) to
collect 48 beam photos from the screen and reconstruct the
phase space for each of the six slices. Figure 7 shows the
measured phase space by tomography in LC1. Both con-
figuration space images and the phase-space distributions
reveal a detailed structure that differs from slice to slice. As
discussed previously, part of the structure inside the phase
space arises from the nonuniform distribution at the gun
cathode. As pointed out in Ref. [31], such structure scales
with the beam intensity. Therefore, since each slice of the
parabolic bunch has a different current, the space-charge
forces experienced by each slice differ, and henceforth the
final structure of the phase space differs as well.
Furthermore, like the configuration space images, the

phase spaces depend on the position along the beam; both
exhibit symmetry about the peak of the pulse. Figure 8(b)
shows the measured beam emittance at LC1 as calculated
from those phase spaces (solid line). The dashed line
indicates the emittance measured at the aperture also by
tomography. Given that the tomography measured error is
about 10%, our results do not reveal any significant emit-
tance difference between the aperture and LC1. However,

FIG. 6. (Color) Signal collected at the Bergoz coil showing the
longitudinal current profile of the parabolic beam, and indicating
the approximate locations of the camera gates.

FIG. 7. Beam in configuration space (top) and in x-x0 phase space (bottom) for slices a, b, c, d, e, and f, reconstructed at LC1. Phase
spaces are generated using the initial conditions shown in Fig. 8.
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the emittances are higher at the edges with respect to the
center at both locations.

Another interesting observation is that not all the slices
have the same orientation. This becomes apparent when
we use Eq. (10) to calculate the slope of the phase space

[Fig. 8(c)]. Again the dashed line indicates the measured
slope at the aperture. From Fig. 8(c) we can deduce some
interesting physical insights: First, the slope is positive for
both locations, suggesting that the beam is expanding.
Second, like the emittance, the slope is varying rapidly
near the beam ends. There may be more than one cause for
this behavior. Note especially the rapid variation of the
beam current within the edge slices a and f in Fig. 6. Then,
as in the case of the perturbed rectangular beam, the phase-
space orientation can change within the image integration
gate, resulting in an apparent enlargement of the distribu-
tion in phase space. Furthermore, the tomography analysis
assumes a constant, ‘‘average,’’ current within each slice,
which is clearly not the case in the ends. One solution for
this problem would be to decrease the camera gate window
so that the variation in current within each slice is reduced.
Unfortunately, our present camera system is limited to a
minimum 3 ns gate.

V. CONCLUSION

In summary, in this paper we reported on a proof-of-
principle experiment for demonstrating the possibility of
reconstructing the time-resolved phase-space distribution
by tomography. Our results indicate that the transverse
distribution is affected by the longitudinal density pertur-
bations. We measured the detailed phase-space distribution
in high resolution and were able to determine the beam
initial conditions, such as the beam emittance, size, and
phase-space slope. We believe that knowledge of those
initial conditions in simulation codes can help to more
accurately predict the evolution of the beam. Using a
parabolic pulse we showed that the emittance is greater
along the beam ends than near the center. Unfortunately,
the camera gate is limited to 3 ns and, hence, it is unclear
whether this effect is an artifact due to the rapid variation
of current within those slices. However, our measurements
are consistent with that at the exit of the SPARC photo-
injector [20] where similar trends were observed for the
transverse phase space and emittance.
It should be noted that this tomography diagnostic is not

restricted to fluorescent screens. Hence, an interesting
thought is the possibility to generalize the tomography
technique described in this paper to high energy (5–
100 MeV range), short-pulse (sub-ps range) electron
beams such as needed in the injectors for short-pulse
x-ray FELs, for example, the Linac Coherent Light
Source [33]. It may be possible to apply slice tomography
to images collected by OTR [34], which has a sub-ps
response, in combination with a faster gated ICCD or using
a streak camera, if the beam is reproducible from shot to
shot. In the latter case, information about the 2D beam
distribution that is needed for tomography can be obtained
by performing scans along different directions across the
beam by suitably rotating or moving the input slit [35].

FIG. 8. Beam parameters measured in the experiment as a
function of time along the pulse, at the screen location:
(a) Beam size; (b) emittance; (c) slope of the phase space
[from Eq. (10)]. The solid line corresponds to measurements at
LC1 (z ¼ 43:0 cm) and the dashed line at the aperture (z ¼
0 cm).
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