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of transfer maps of energy degraders. The incorporation of the wedges into the optics of fragment

separators for next-generation exotic beam facilities, their optical effects, and the optimization of their

performance is studied in detail. It is shown how to place and shape the degraders in the system such that

aberrations are minimized and resolving powers are maximized.
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I. INTRODUCTION

Exotic nuclei are of interest in a wide variety of contexts
ranging from basic nuclear physics to medical applications
[1–3]. Several next-generation facilities that use high en-
ergy heavy ion driver accelerators for the production of
these isotopes in large quantities are presently under
commissioning, construction, or envisioned [4–7]. If the
production mechanism involves in-flight projectile frag-
mentation and/or fission of an energetic heavy ion beam,
fragment separators are used to capture, separate, and
transport the rare-isotope beams to experimental stations
[8–13]. Often, the optics of the fragment separators con-
sists of, perhaps several, high order achromatic imaging
stages that are necessary for a high purity separation. We
studied their optics in a previous publication [14]. It was
emphasized that the reaction kinematics induces a large
phase space volume of the exotic beam, which requires
accurate modeling of the dynamics and correction of aber-
rations. These requirements can be fulfilled to a large
extent by a high order achromat with some additional
constraints, as presented in [14]. The optics layout in
[14] was based on several symmetries that allowed design-
ing the fragment separator optics with a minimum number
of magnets, minimizing overall beam size, vertical beam
size in the dipoles, typically all aberrations to third order
below 1 mm in magnitude, reasonably low residual aber-
rations, and maximal decoupling of aberrations of different
orders. However, electromagnetic fields can be made dis-
persive in mass over charge ratio, but not separately mass
and independently charge dispersive. For isotope separa-
tion the so-called B�� �E� B� separation method is

invoked, which requires the utilization of shaped energy
degraders [15]. The energy degrader may be considered an
optical element, and its influence on the optics can be
studied by map methods [16]. In this paper we lay the
theoretical basis for the map methods approach to beam-
material interactions and present studies on the optical
effects of energy degraders in fragment separators and their
mitigation. We restrict ourselves to a one-stage separator
since the extension of the results to two-stage separators
or one-and-a-half-stage separators for gas cells are
straightforward.
The existence of the high order achromatic lattice, based

on symmetries, is an essential prerequisite for a high
performance fragment separator [14]. The full fragment
separator, which includes the energy degraders, in general
will not preserve these symmetries. This is mainly due to
the energy-loss process taking place in the regions of
beam-material interaction. Viewed as an optical element,
the map approach can capture the average energy loss of a
particle that is dependent on the projectile-target combi-
nation, the energy of the reference particle, the shape of the
energy degrader, and the initial conditions of the particle.
Overall, in suitable coordinates the map of the energy
degrader will be the map of a drift with energy having a
complex functional dependence on initial conditions. The
challenge is then to insert the energy degrader into the
optical lattice in such a way to not disturb the symmetries.
Unfortunately, this is not possible exactly, but an appro-
priate location, thickness, and shape can be chosen so that
most aberrations remain minimized. This statement will be
illustrated below both analytically and numerically.
Once the aberrations are minimized, the quality factors

that characterize the performance of the fragment separa-
tors are the various resolution and transmission properties.*erdelyi@anl.gov
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We study some of these in detail and draw some conclu-
sions regarding optimality. Of course, to study some of the
properties that are important in practice, for example,
separation purity, the map approach is not sufficient. The
interplay of beam optics and atomic and nuclear processes
in the performance must be studied by a hybrid map-
Monte-Carlo approach [17–19], and will be the subject
of a future publication. However, it is important to note
that the effects amenable to the map approach set the upper
bound for the performance of the fragment separators [20].
Hence, maximizing this upper bound is the subject of this
paper. The inclusion of the nondeterministic effects will
deteriorate some of the properties of the fragment separa-
tor, but the amount of deterioration is only weakly depen-
dent on the details of the optics.

The organization of the paper is as follows: in Sec. II a
second order analytic theory is presented. Section III con-
tains the arbitrary order numerical map computation pro-
cedure. Section IV illustrates the optical effects of the
wedge by some numerical examples, and presents some
studies of resolution of a fragment separator. Finally, we
conclude with a brief summary.

II. SECOND ORDER ANALYTIC THEORY

In suitable coordinates, the map of the energy degrader
is the map of a drift with different energy behavior. For the
purpose of the analytical theory we assume that the coor-
dinates used are ~z ¼ ðx; a; y; b; l; �Þ, where x, y are the
horizontal and vertical positions of a particle in the
beam, a, b are the ratios of transverse to longitudinal
momenta, l is related to the path length, and � is the
relative momentum deviation with respect to the reference
particle. In these geometrical coordinates the transfer map
of a magnetic system is invariant with respect to scaling
with rigidity; that is, if the magnetic fields are scaled by the
ratio of two rigidities the corresponding maps with respect
to the two reference particles having those rigidities are
identical. The map has six components, the first four being
the components of a drift, while the sixth (momentum)
component can be written generically to second order as

�f ¼ ð�jxÞwxi þ ð�jaÞwai þ ð�j�Þw�i (1)

þ ð�jxxÞwx2i þ ð�jxaÞwxiai þ ð�jaaÞwa2i
þ ð�jx�Þwxi�i þ ð�ja�Þwai�i þ ð�jbbÞwb2i
þ ð�j��Þw�2

i ; (2)

where ~zi are the initial and ~zf are the final coordinates.

Throughout the paper map elements with subscript w
denote map elements of the wedge.

We are interested to see if the symmetries used in
developing the optics solution for a fragment separator
without wedges in [14] are maintained or broken by the
introduction of the energy degraders in the system. We
refer to the details of the definitions and descriptions of
these symmetries to [14]. Clearly, the wedge maintains

midplane symmetry, but, in general, will break the time-
independence, mirror, and symplectic symmetries used in
designing the optics [14]. The question is whether it is
possible in special circumstances to regain some of the
properties of the mirror-symmetric symplectic system.
Because of energy loss, symplecticity is definitely lost
because the system fails to be Hamiltonian under these
circumstances. Fortunately, as shown in [14], symplecticity
enters explicitly in the optical design only at third order. Up
to second order, mirror symmetry alone determines the
layout. Then, the question is if it is possible to keep the
full system, including energy degraders, mirror symmetric.
This requires time reversal invariance; that is, if a particle
enters the degrader with �i and exits with �f, then back-

wards in time it would enter with �f and exit with �i along

the same trajectory. This is not impossible a priori since its
realization is not forbidden by any fundamental physics
law of energy loss of heavy charged particles in materials.
Because of beam-material interactions in energy de-

graders, the multiple Coulomb scattering induces some
detrimental stochastic effects. Therefore, the amount of
material in the beam line should be minimized to the extent
possible. As a consequence, ideally only one degrader
should be utilized per stage. According to the paragraph
above, it should be placed at a mirror-symmetric point of
the fragment separator. It follows that if a particle enters
the mirror-symmetrically placed degrader with �i then it
should exit the degrader with the same �i. In other words,
the energy degrader should preserve the existing dispersion
without the degrader. Looking at Eq. (1), it follows that this
requires two things: ð�jxÞw � 0 and xi should be �i de-
pendent, that is the degrader should be placed in a disper-
sive region of the beam line. ð�jxÞw being nonzero implies
that the degrader should have a thickness variation in the x
direction. Hence, the degrader must be wedge shaped. This
will also induce a nonzero ð�jaÞw. To second order, by
introducing an edge curvature, we can control ð�jxxÞw, and
by adjusting the thickness ð�j�Þw or ð�j��Þw to some
extent.
In order to see explicitly the aberrations of the full

system, the wedge map needs to be composed with the
rest of the lattice. The rest of the mirror-symmetric lattice
map, which is a second order achromat shown schemati-
cally in Fig. 1, was computed to second order in [14]. The
mapM up to the mirror-symmetric point (half the system)
is

xf ¼ �xi þ ðxj�Þ�i þ ðxjxxÞx2i þ ðxjaaÞa2i þ ðxjx�Þxi�i

þ ðxjyyÞy2i þ ðxjbbÞb2i þ ðxj��Þ�2
i ; (3)

af ¼ �ai þ ðajxaÞxiai þ ðaja�Þai�i þ ðajybÞyibi; (4)

yf ¼ �yi þ ðyjxyÞxiyi þ ðyjabÞaibi þ ðyjy�Þyi�i; (5)

bf ¼ �bi þ ðbjxbÞxibi þ ðbjayÞaiyi þ ðbjb�Þbi�i; (6)
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�f ¼ �i; (7)

followed by the reversed system. The map of the reversed
system can be computed by the well-known formula R �
M�1 �R, where M is the map of the forward system,
and R is a universal linear map that inverts the signs of a
and b. The map of the full system up to the achromatic
point is identity up to second order in the absence of the
wedge, regardless of the specific values of the aberrations
present in (3)–(7). For details, see [14]. Since the middle of
the system is dispersive and it is a mirror-symmetric point,
it satisfies all requirements set forth in the preceding para-
graphs for the location of the wedge. If we denote the map

represented by (3)–(7) byM, the map of a drift of length l
byMdðlÞ, and the map of the wedge byMw, the total map
of the system, including the wedge is

M tot ¼ R �M�1 �R �Md

�
� lw

2

�
�Mw

�Md

�
� lw

2

�
�M; (8)

where lw is the length (central thickness) of the wedge.
The composition can be performed analytically by
MATHEMATICA [21]. To first order, we obtain the following

transfer matrix:

Mtot ¼

1� ðxj�Þð�jxÞw ðxj�Þ½lw2 ð�jxÞw � ð�jaÞw� 0 0 ðxj�Þ½ðxj�Þð�jxÞw þ ð�j�Þw � 1�
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

�ð�jxÞw lw
2 ð�jxÞw � ð�jaÞw 0 0 ðxj�Þð�jxÞw þ ð�j�Þw

0
BBBBBB@

1
CCCCCCA
: (9)

There are two free parameters that we can choose: the
length and the opening angle of the wedge. These two
parameters can be used to simplify (9). In practice, due
to the reaction kinematics and target thickness, the initial
angles and energy spreads are large, while the primary
beam spots are very small. This entails that we should
use the two wedge parameters to minimize ðxjaÞtot and
ðxj�Þtot. The angle will determine ð�jxÞw while the length
lw will influence ð�j�Þw. ð�jaÞw will change too, but we
cannot control its value. Therefore, the fit of the angle and
length to satisfy simultaneously the following two equa-
tions (for a given beam-wedge combination),

lw
2
ð�jxÞw � ð�jaÞw ¼ 0; (10)

ðxj�Þð�jxÞw þ ð�j�Þw � 1 ¼ 0; (11)

determines the optimal wedge parameters from the point of
view of the optics. Hence, (9) simplifies to

Mtot ¼

ð�j�Þw 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

�ð�jxÞw 0 0 0 1

0
BBBBB@

1
CCCCCA: (12)

It is interesting to note that (10) is in fact a geometrical
condition that is always satisfied, independent of any detail
of the system. Its proof can be found in the Appendix. This
fact implies that the wedge maintains the imaging property
of the system at any thickness, and for a given thickness
one just needs to find the angle that cancels the total
dispersion. Therefore, the thickness remains a free parame-
ter that may be used to optimize other quantities such as the
resolution. Moreover, this condition serves as a check of
the numerical procedure for the computation of the wedge
map.
The transfer matrix (12) shows that it is not possible to

recover the identity map exactly when the wedge is in-
serted into a mirror-symmetric achromat. The system will
have magnification ð�j�Þw > 1 and will have an increased
momentum spread (proportional to the initial beam size).

FIG. 1. (Color) Layout of a one-stage separator. The map of the second half is given by symmetry operations. The full system is
designed to be a high order achromat when there is no wedge in the middle. The placement of the achromatic wedge at the mirror-
symmetric point of the system should disturb minimally the properties of the initial system.
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The determinant being equal to ð�j�Þw also entails an
increase in horizontal emittance. Again, fortunately the
initial beam size usually is very small, so the
momentum-spread effect is not very serious, but the emit-
tance growth could be considerable, depending on the case.

The second order part ofMtot is complicated. However,
under the realistic constraints of (10) and (11) and xi; yi !
0 the results simplify to

xf ¼2ðxjaaÞtota2i þ ðxja�Þtotai�i þ ðxjbbÞtotb2i
þ ðxj��Þtot�2

i ; (13)

af ¼2 0; (14)

yf ¼2 0; (15)

bf ¼2 0; (16)

�f ¼2ð�jaaÞtota2i þ ð�ja�Þtotai�i þ ð�jbbÞtotb2i
þ ð�j��Þtot�2

i ; (17)

where the xf elements in the total map are

ðxjaaÞtot ¼ ðxjaaÞ½1� ð�j�Þw� � l2w
4
ð�jxxÞwðxj�Þ

þ lw
2
ð�jxaÞwðxj�Þ þ ð�jaaÞwðxj�Þ; (18)

ðxja�Þtot ¼ lwð�jxxÞwðxj�Þ2 � ð�jxaÞwðxj�Þ2

þ lw
2
ð�jx�Þwðxj�Þ � ð�ja�Þwðxj�Þ; (19)

ðxjbbÞtot ¼ ðxjbbÞ½1� ð�j�Þ� þ ð�jbbÞwðxj�Þ; (20)

ðxj��Þtot ¼ ðxj��Þ½1� ð�j�Þ� þ ð�jxxÞwðxj�Þ3
þ ð�jx�Þwðxj�Þ2 þ ð�j��Þwðxj�Þ; (21)

and similarly complicated functions for ð�j � � �Þtot.
Out of the second order wedge map elements we can

control ð�jxxÞw only, by curving the edges. Equation (13)
implies that in principle we can cancel all xf aberrations by

judiciously selecting four aberration coefficients we can
control, namely ðxjaaÞ, ðxjbbÞ, ðxj��Þ (these three are
determined by the pure magnetic optics and may assume
arbitrary values according to the achromat theory), and
ð�jxxÞw. Solving the system of Eqs. (18)–(21) we obtain

ðxjaaÞ ¼ 1

ð�jxÞw
�
lw
4
ð�jxaÞw þ l2w

8ðxj�Þ ð�jx�Þw

� lw
4ðxj�Þ ð�ja�Þw � ð�jaaÞw

�
; (22)

ðxjbbÞ ¼ � ð�jbbÞw
ð�jxÞw ; (23)

ðxj��Þ ¼ 1

ð�jxÞw
�ðxj�Þ2

lw
ð�jxaÞw � ðxj�Þ

2
ð�jx�Þw

� ðxj�Þ
lw

ð�ja�Þw � ð�j��Þw
�
; (24)

ð�jxxÞw ¼ ð�jxaÞw
lw

� ð�jx�Þw
2ðxj�Þ þ ð�ja�Þw

lwðxj�Þ : (25)

Interestingly, if (22)–(25) are satisfied we obtain that all
energy aberrations vanish simultaneously, ð�jaaÞtot ¼
ð�ja�Þtot ¼ ð�jbbÞtot ¼ ð�j��Þtot ¼ 0. Therefore, in prin-
ciple the full system including the wedge can be made
completely aberration-free up to second order for a point-
like initial primary beam.
Unfortunately, there is no guarantee that the system of

equations always admits a unique solution [especially (24)
and (25) are difficult to realize in practice], and even if it
does, in principle it might be a different solution for each
projectile-beam combination. The difficulty in satisfying
(25) lies in the dependence of the left-hand side on the
right-hand side. Therefore, any change in the curvature will
change not only ð�jxxÞw but also ð�jxaÞw, for example.
Zeroing out (24) would require additional strong multi-
poles in the system. In case there is no solution canceling
exactly the aberrations numerical optimization can be em-
ployed to minimize them. The advantage of the numerical
optimization is that it can be easily extended to arbitrary
high orders. For the practical tuning of the fragment sepa-
rator, perhaps the simplest method is to notice that in
general lw is small and the range of typical values of
most wedge map elements is limited. Accordingly, (22)–
(25) for typical cases reduce to

ðxjaaÞ � �Oð1Þ; ðxjbbÞ � �Oð1Þ;
ðxj��Þ � �Oð1Þ; ð�jxxÞ � �Oð1Þ; (26)

where Oð1Þ denotes a number of the order of 1. Therefore,
one does not introduce very large aberrations if typically
the fragment separator is tuned so ðxjaaÞ, ðxjbbÞ, ðxj��Þ,
and ð�jxxÞ are roughly vanishing, but not exactly zero. If
some aberration coefficients in (22)–(25) cannot be made
small, then (18)–(21) give insight and help in finding an
optimum tune for the fragment separator. For example,
according to (18)–(21) a good alternative would be to fit
ðxjaaÞ and ðxjbbÞ to small negative values such that
ðxjaaÞtot and ðxjbbÞtot vanish, and the curvature to cancel
the effect of an arbitrary ðxj��Þ. Since ðxja�Þtot does not
involve second order aberrations due to the magnetic op-
tics, typically it assumes small values that may be ne-
glected. In Sec. IV we study the practical realizations
based on these solutions.
Obviously, the analytic theory gets very complicated at

third and higher orders and a numerical solution is the only
one feasible. In the next section we outline the algorithm
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for the arbitrary order wedge map computation in the
differential algebraic (DA) framework [16].

III. NUMERICAL COMPUTATION OF THE
ENERGY DEGRADER’S TRANSFER MAP

The analytic theory of the previous section gives useful
insight into the dynamics with wedges, but is formal in the
sense that it does not give the actual numerical values of
the wedge map elements and is limited to second order.
Over the years, in the nuclear physics community a lot of
effort went into writing computer codes that are able to
accurately compute the energy loss of heavy ions in mate-
rials. We use these results, cast them into differential
algebraic form, and use map inversion techniques to com-
pute the analog of (7) numerically to arbitrary order. One of
these codes that fits well into our algorithm is ATIMA. It
uses a spline interpolation for each projectile-degrader
material combination to compute the energy loss and strag-
gling [22]. Although it has huge data files, it is fast and
accurate and the piecewise polynomial interpolation makes
the evaluation of the energy-loss functions easy to imple-
ment in DA. In fact, we implemented the DA version of a
function that computes the range of a particle of initial
energy Ei in some material. If one is interested in the final
energy of the particle, after going through a material of
thickness T less than the range, the following implicit
equation for the final energy Ef needs to be solved:

range ðEiÞ � range ðEfÞ � T ¼ 0; (27)

where range ðEÞ is given by ATIMA.
To set up the DAversion of (27) we need two things: the

DA evaluation of the range function and a method to
evaluate the effective thickness seen by a particle. The
thickness will depend on the length and shape of the
wedge, and the initial conditions of the particle. By regard-
ing the entrance and exit edge of the degrader as curved
surfaces described by two polynomials, DA allows the
projection of the trajectory of an arbitrary particle onto
these surfaces and calculation of the distance between the
points, giving the required thickness. All along, the explicit
dependence on the particle’s initial condition is retained.
For more details we refer the reader to [23]. Therefore, the
DA version of (27) can be written as

range ½Ei;0ð1þ �iÞ� � range ½Ef;0ð1þ �fÞ� � Tð~ziÞ ¼ 0;

(28)

where Ei;0 and Ef;0 are the initial and final energies of the

reference particle (here � is the relative energy deviation).
In general, (28) is a complicated nonlinear multivariable
function of the form fð~zi; �fÞ ¼ 0 that needs to be solved

for �f. Assume that ~zi is n dimensional (it may contain

parameters such as mass and charge), and introduce the
n-dimensional identity operator In. Combining In and f
we obtain a nþ 1-dimensional operator that can be re-

garded as a map, N nþ1 ¼ ðIn; fÞ, and the following
equation is obtained:

N nþ1ð~zi; �fÞ ¼ ð~zi; 0Þ: (29)

By construction N nþ1 is origin preserving and has a
nonvanishing Jacobian determinant at the origin, hence
DA methods can be employed for the explicit inversion
to arbitrary order [16], and obtain

ð~zi; �fÞ ¼ N �1
nþ1ð~zi; 0Þ; (30)

from which we can read off the energy component of the
wedge map

�f ¼ ½N �1
nþ1ð~zi; 0Þ�ðnþ1Þth component: (31)

Since the other components of the wedge map are the same
as those of a drift length equal to the wedge thickness seen
by the reference particle, we have the algorithm for the full
wedge map. The algorithm was implemented in the code
COSY INFINITY [24].

We mention that if time of flight is of interest a similar
procedure for the DA-based spline evaluation of the time-
of-flight splines could be implemented. Also, if the equa-
tions of the motion of a particle in material are available, a
DA integration allows the computation of the wedge map
from first principles.

IV. NUMERICAL RESULTS AND APPLICATIONS
TO FRAGMENT SEPARATORS

In this section we provide a few numerical examples of
wedge maps, optical effects, aberrations induced, and
computation of optimal wedge parameters followed by
some studies of resolution in a proposed fragment separa-
tor for a next-generation exotic beam facility.

A. Energy degrader maps

The interesting component of the energy degrader map
is the energy component, which tells us how the energy of a
particle changes relative to a reference particle. As we
expect, this quantity will depend on the projectile-target
combination, the degrader thickness and shape, and parti-
cle initial phase space coordinates. To illustrate the main
features of this dependence, Table I summarizes the case of
132Sn particles incident on an aluminum wedge of 30% of
the range thickness at 200 MeV=u initial energy. The angle
and curvature is interpreted in the following way: if the
entrance shape of the degrader is regarded as a planar curve
sðxÞ ¼ c1xþ c2x

2, then the angle of the degrader is
2 arctanðc1Þ and the curvature is 2c2. The exit shape is
assumed to be described by the same coefficients. The
numbers c1 and c2 are called the shape coefficients in all
subsequent tables and plots. Also, unless otherwise noted,
the wedge materials are always aluminum.
Because of symmetry, for a homogeneous block ab-

sorber there are no ð�jxnymÞ terms since particles entering
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the degrader at different horizontal and/or vertical posi-
tions will see the same thickness. Particles entering with a
nonzero horizontal or vertical angle will see the same
thickness regardless of the sign of the angle, implying
that only those ð�janbmÞ terms appear in the map for which
n andm are even. Nonzero ð�j�nÞ terms always appear due
to the fact that energy loss is not a linear function of energy.

A nonzero angle will induce a position dependent energy
gradient, ð�jxÞ � 0, and will break the angular symmetry,

ð�jaÞ � 0. These two quantities are linked by (10). The
main effect of a nonzero curvature can be seen on ð�jxxÞ as
expected. Also, ð�jaaÞ is practically constant, independent
of shape.

B. Optics with absorbers

Once we know how to compute numerically the maps of
absorbers to arbitrary order, we can include them in the
layout of fragment separators according to the procedure
outlined in the previous sections and calculate the map of
the whole system, including absorbers. For all plots below,
the following initial phase space is used: 1 mm spot sizes
horizontally and vertically, �50 mrad divergence in both
planes, and �9% momentum spread.
First, the dramatic effects the wedges can have on the

optics if not shaped correctly are shown in Figs. 2 and 3.
The main linear effect of a zero angle is reflected in the
induced dispersion and, hence, the image width at the
location of the achromatic image in the absence of the
wedge (Fig. 2). Also, some of the aberrations become very
large (Fig. 3). Notice that all these effects are very weakly
dependent on the initial beam energies. Also, it is impor-
tant to note that all aberrations that become very large are
connected to large initial angles of particles. As we will
see, these are the main detrimental effects of the wedges
that cannot be removed completely even if the optics is
perfect and the wedges are shaped ideally.
Next, we fit the wedge angle to satisfy (11) and studied

the angle’s dependence on a variety of factors. Figure 4
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FIG. 2. (Color) Effect of not shaping the degrader: dispersion
introduced at the location of the no-wedge achromatic image.

TABLE I. Some wedge map elements that illustrate the effect of the shape on the map. The numerical values correspond to a
200 MeV=u 132Sn beam incident on an aluminum degrader of thickness equal to 30% of the tin beam range.

Case/map element ð�jxÞ ð�jaÞ ð�j�Þ ð�jxxÞ ð�jaaÞ ð�j��Þ
Zero angle and curvature 0 0 1.430 081 0 �0:135 956 �0:196 226
10 mrad angle, no curvature �1:298 587 �0:001 359 1.430 081 �0:498 455 �0:135 963 �0:196 226
10 mrad angle and 10�3 curvature �1:298 58 �0:001 359 1.430 081 �1:797 032 �0:135 966 �0:196 226
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FIG. 3. (Color) Effects of not shaping the degrader: large second and third order aberrations are generated at the no-wedge achromatic
image at 200 (left) and 400 (right) MeV=u energies.
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shows how the ideal wedge angle varies as a function of
incident energy of a 100Sn beam for three different wedge
thicknesses. We notice that the needed angle increases with
both energy and thickness. The same calculation for heav-
ier particles shows that the optimal angles increase with
mass too. Another way of presenting this information is to
plot the optimal angle as a function of thickness for fixed
initial energies. For 132Sn, Fig. 5 shows that at higher
energies larger angles are needed at any thickness and
the slope of the lines at different energies is different. It
is clear that at lower energies the angles needed become
very small, making the manufacturing of energy degraders
more difficult. The material of the energy degrader also
influences the value of the wedge angle. Figure 6 presents
the case of two kinds of wedges and many different inci-
dent beams. It is assumed that the beams have the same

energy of 200 MeV=u and the thickness of the wedges is
the same percentage of the given beam’s range, namely,
30%. We can conclude that heavier wedges mean smaller
angles and heavier beams also mean smaller angles.
However, the right choice of wedge material might be
mainly dictated by the atomic and nuclear processes hap-
pening in the wedges (the subject of a future publication).
As shown in Sec. II, once the optimal angle is found, the
main remaining effect of the wedge is the modified mag-
nification. Figure 7 presents the magnification for the case
of a 132Sn beam as a function of energy and wedge thick-
ness. Notice that the magnification always increases (it is
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FIG. 5. (Color) Optimal angle needed to maintain linear achro-
maticity for the case of a 132Sn beam at various wedge thick-
nesses and two different energies.
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unity in absence of the wedge), and grows faster than
linearly with thickness, while showing again a very weak
energy dependence. For realistic cases the magnification
can be as high as 2, which implies a corresponding factor of
2 blowup of the horizontal emittance in a potential second
stage of a fragment separator.

Once the linear part of the map, including the wedge
angle, is set it becomes interesting to study the effects of
higher order shaping of the wedges. In Table II is shown
that evaluating the map of the whole system to third order
and changing only the second and third order shape coef-
ficients of the wedge some aberrations can be reduced
significantly. In other words, the wedge shape may be
used to correct aberrations, namely, the nonlinear disper-
sions that become significant with the introduction of the
wedge. Recall that ðxj��Þtot and ðxj���Þtot are zero if the
wedge is absent. Also, some other aberrations, such as
ðxja��Þtot, that are connected to the nonlinear dispersions
are automatically reduced, but not completely canceled.
The residuals cannot be corrected by shaping the wedge.

C. Optimization of the system with energy degraders

Putting everything together, by designing the high order
achromat, shaping the wedge to third order to cancel
aberrations, and overall using every possible knob in the

system to minimize aberrations according to the method-
ology outlined in Sec. II, we arrive at a system that is
almost free of aberrations to third order, except a few
horizontal angle dependent aberrations that are due to
different wedge thicknesses seen by particles as a function
of incoming angles and the associated additional energy
loss. The fitting was done with four multipoles per cell
having superimposed quadrupole, sextupole, and octupole
components. There are four cells for one stage of the
separator. The quadrupoles and sextupoles are in a double
mirror-symmetric arrangement (four independent
strengths) and the octupoles have a single mirror-
symmetric arrangement (eight independent strengths)
[14]. To second order, the envelopes with and without
wedges are roughly the same. At third order, due to quite
strong octupole strengths needed, the horizontal off-energy
envelopes with wedges increase, somewhat reducing the
transmission. Unfortunately, we do not have an analytical
third order theory that would give insight into the reasons
of this; at third order we employ a straightforward numeri-
cal optimization. The magnitude and scaling with wedge
thickness of the remaining largest aberrations are presented
in Fig. 8 for two different energies. The weak energy
dependence holds here too. The corresponding shape co-
efficients needed to minimize aberrations are plotted in

FIG. 8. (Color) The largest remaining aberrations in the system after multipole correction and wedge shaping performed to third order.
All aberrations are initial horizontal angle dependent and become larger with increasing wedge thicknesses. The variation with energy
is small: 200 MeV=u case on the left and 400 MeV=u on the right.

TABLE II. Some map elements that illustrate the effect of the higher order shape of the wedge
on the map. The numerical values correspond to a 200 MeV=u 132Sn beam incident on an
aluminum degrader of thickness equal to 30% of the tin beam range.

Case/aberration [mm] ðxj��Þ ðxja��Þ ðxj���Þ
Wedge angle 18 �10 2

Wedge angle and curvature 0 1 11

Wedge angle, curvature and third order effect 0 1 0
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Fig. 9. Notice that at lower energies less curvature is
needed. Also, as a function of wedge material the curvature
varies with Z. Figure 10 presents the case of Al and Ta for
200 MeV=u beams. Although for lighter wedges and par-
ticles more curvature is needed, the absolute values are so
small as to make the manufacturing of the wedges at these
tolerances very difficult, requiring submicron machining
precision.

According to the method presented in Sec. II, the aber-
rations in the full system couple the aberrations of the
magnetic optics and those of the wedge. Minimization of
aberrations requires simultaneously setting the magnet
strengths and shaping the wedge appropriately. The ques-
tion arises that if one needs to do this kind of optimization
for each given rigidity of the beam. Although the magnetic
optics scaling with rigidity is well known (this requires one

to find the magnetic settings for one rigidity, and for all
other rigidities these settings are scaled by the new rigid-
ity), it is not obvious that the same scaling still holds true
for a system that includes energy degraders. Indeed, we
found that no exact scaling holds true in this case.
However, fortunately an approximate scaling holds, which
means that the setting of sextupoles as a function of rigidity
still follows roughly the same scaling law. This is illus-
trated in Table III, which presents the value of two geo-
metric aberrations at the dispersive image (mainly
determined by sextupole settings) needed by the magnetic
optics to cancel the same aberrations in the total system at
the achromatic image. Note that the approximate scaling
holds over a wide range of rigidities. On the other hand, the
shaping of the wedge needs to be done on a case-by-case
basis. More details can be found in [25].
In all studies up to this point we assumed symmetric

wedges in the sense that the entrance and exit shapes are
mirror symmetric of each other. Taking into account the
difficulty of manufacturing wedges at these tolerances and
the prices involved, a practical question arises whether
replacing the entrance shape with a face of no angle or
higher order coefficients and double the exit face parame-
ters would result in roughly the same map. Indeed, the
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FIG. 10. (Color) Scaling of the wedge curvature for the
200 MeV=u case as a function of Z for two different wedge
materials. The wedge thicknesses are 30% of the range in each
case.

FIG. 9. (Color) Wedge shape coefficients necessary for nonlinear dispersion correction of the cases shown in Fig. 8.

TABLE III. Some map elements that illustrate the scaling with
rigidity of magnet settings. The numerical values are the coef-
ficients required at the dispersive image for a 132Sn beam
incident on an aluminum degrader of thickness equal to 30%
of the tin beam range.

Aberration coefficient Value needed @

200 MeV=u 1500 MeV=u

ðxjaaÞ �0:9 �1:9
ðxjbbÞ �0:9 �1:9
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resulting maps differ insignificantly as long as the refer-
ence particles see the same thickness. This can the under-
stood by the geometrical arguments of the Appendix.

D. The resolving power of the fragment separator

The need for separating isotopes brings up the question
of resolution. Since we are interested in particles of certain
mass and certain charge, it follows that there are two kinds
of resolution: mass resolution for fixed charge state and
charge resolution for fixed mass. When both are allowed to
vary the best way to visualize what is going on is to plot a
cut in the mass and charge dispersion plane along which
isotopes are transmitted, hence selected. The resolving
powers will depend on the order of the map; at higher
order aberrations are included in the image width, decreas-
ing the resolving power. For the estimation of the nonlinear
resolving powers realistic initial conditions were used that
resulted from the fission of a 238U beam on a liquid lithium
target.

For insight, the linear resolving power can be computed
analytically from the transfer matrix. Using the notation of
the previous sections, it can be shown that the mass and
charge resolving powers, respectively, are given by

RA;Z ¼
��������
ðxj�A;ZÞtot
2x0ðxjxÞtot

��������
¼

��������
ðxj�Þð�j�A;ZÞw þ ðxj�A;ZÞð1� ð�j�ÞwÞ

2x0ð�j�Þw
��������; (32)

where ðxj�A;ZÞtot are the total mass and charge dispersions

of the full system, ðxjxÞtot is the magnification of the full
system, ðxj�A;ZÞ are the mass and charge dispersions, re-

spectively, of the first half of the fragment separator, and
2x0 is the initial horizontal beam size. We implicitly as-
sumed the unit magnification of the magnetic optics,

ðxjxÞ ¼ �1. Maximization of the resolution is equivalent
to maximization of (32). However, since ðxj�Þ> 0,
ðxj�A;ZÞ + 0, ð�j�A;ZÞw > 0, and ð�j�Þw > 1, and all

wedge map elements change with the thickness of the
wedge, it is not obvious which thickness maximizes reso-
lution. Indeed, it might happen that at certain thicknesses
the resolving power vanishes. In practice we noticed this to
be the case in certain energy regimes for the charge reso-
lution but not for mass resolution.
Figure 11 shows the resolutions at 400 MeV=u.

Aberrations reduce resolutions and tend to switch the slope
of the curve from a slope larger than one to a slope slightly
smaller than one at larger wedge thicknesses. However, for
the determination of the optimal thickness the resolving
power computed from the map must be folded with the
straggling, which could push the optimal thickness toward
smaller values. At lower energy both mass and charge
resolving powers increase monotonically with wedge
thickness (Fig. 12). Interestingly, the resolving powers
are almost invariant with respect to energy. While low
energy favors larger mass resolving powers, high energy
is better for charge resolution.
The similarity of the resolution data at 200 and

400 MeV=u suggest that it would be interesting to look
at the linear resolutions in a wider energy range to capture
the systematic variations of the resolving powers as a
function of energy. Interestingly, for three different wedge
thicknesses, Fig. 13 shows that around 300 MeV=u the
charge resolving powers vanish. An intuitive explanation
of the minimum resolution relies on the nature of the
energy-loss dependence on particle parameters. In the
absence of the wedge the system is achromatic and the
resolution is zero. That means that any two particles with
different rigidities due to different charge states and same
initial position will end up at the same final position at the
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FIG. 11. (Color) Mass (left) and charge (right) resolving powers for a 400 MeV=u 132Sn beam and Al wedge as a function of wedge
thickness evaluated at different map orders.
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achromatic image point. With the introduction of the
wedge into this achromatic system (such that the new
system maintains achromaticity), the relative rigidity dis-
persion of the particles will change in general after travers-
ing the wedge, introducing a net dispersion at the end of the
system. However, for certain energies and wedge thick-
nesses two competing effects cancel each other: on one
hand, the higher charge states are less rigid, so they bend
more and will see smaller thicknesses of the wedge than the
lower charge states. On the other hand, the charge depen-
dence of the energy loss implies that the higher charge state
has a larger energy-loss rate, effectively canceling the fact
that the particle goes through a thinner portion of the
wedge. The net effect is that in some cases the particles
will not change their relative rigidities leaving the wedge,
that in turn will not induce a net charge dispersion at the
end of the system. In other words, in these cases the wedge
becomes transparent to the system. Figure 13 shows when
this happens. Mathematically, the terms due to these two
competing effects are obvious from (32).
If both mass and charge are allowed to vary, the separa-

tion cut shape and orientation becomes worthwhile to
study. In the linear approximation the cut is obviously a
line in the ð�A; �ZÞ plane, and the slope is given by

ð�j�AÞw þ ðxj�AÞð�jxÞw
ð�j�ZÞw þ ðxj�ZÞð�jxÞw

: (33)

Interestingly, if nonlinearities are taken into account, at
least visually, the separation cut stays roughly a line.
Figure 14 presents the separation cut evaluated up to third
order map elements for the case of a 400 MeV=u 132Sn
beam and a 45% thickness aluminum wedge. Therefore,
one can look at the separation cut angle in the ð�A; �ZÞ
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FIG. 13. (Color) Mass (upper) and charge (lower) linear resolv-
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plane to illustrate the effect of the wedges. As before for
other quantities, the slope will depend on wedge thickness
and beam energy. Figure 15 shows several energy cases at a
variety of wedge thicknesses and wedge materials. It is
clear that, while at higher energies changing the wedge
thickness affects significantly the slope, at lower energies
the separation cut angle is almost constant for a wide range
of thicknesses. While the material of the wedge does
influence the cut angle a little bit, at lower energies this
influence is not sufficient. This result unfortunately implies
that some of the benefits of a second stage of separation
diminish at lower energies. Nonetheless, the total mass
resolving powers of two-stage separators will increase
with respect to single-stage separators given the right
bending orientation, which will improve overall the sepa-
ration purity.

Finally, to clarify the relationships among the resolving
powers and separation cut lines, note that in reality the
separation cut is not exactly a zero thickness line. Because
of the finite width of the selection slit particles having
slightly off-centered final x coordinates will be also se-
lected along separation cut lines with the same slope, but

slightly off centered as well. Therefore, in reality the
selection cuts consisting of the many lines form a separa-
tion cut band. It is easy to see that, if the slit width is set
according to the image width of the beam to be selected,
then the thickness of the separation cut band along the
mass and charge coordinate axes are inversely proportional
to the mass and charge resolving powers, respectively.
Hence, high resolving powers benefit the separation purity
even for two-stage separators where the separation cut
bands can be rotated. Of course, it is even more important
for one-stage separation. Finally, vanishing mass and
charge resolving powers are equivalent to separation cut
angles equal to 0� and 90�, respectively.

E. Summary and conclusions

Next-generation fragment separators will be crucial for
the success of future exotic beam facilities. These fragment
separators, besides the sophisticated magnetic optics, need
precise energy degraders in order to be able to deliver the
performance required of these instruments.
We developed a second order analytic and an arbitrary

order numerical procedure for the computation of wedge
maps. These maps may be included with the rest of the
system and, through composition, the map of the full
system can be computed, analyzed, and optimized. The
numerical procedure was implemented in an extended
version of the code COSY INFINITY. The analytic theory
gives insight into the design optimization of an achromatic
stage of a separator.
We derived the conditions necessary for maintaining

linear achromaticity. The optimal angle (thickness gradient
in the dispersive plane) can be easily fit, and we illustrated
its variation as a function of a variety of parameters. We
concluded that the main linear residual effect of the wedge
is an increased magnification and corresponding loss of
resolving power, and the associated increase in beam emit-
tance. We also proved that by introducing just the right
amount of wedge curvature and higher order effects all

FIG. 15. (Color) Separation cut angles at different energies of a 132Sn beam as a function of wedge material and thickness.
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FIG. 14. (Color) Separation cut including nonlinearities up to
third order. The origin corresponds to a 400 MeV=u 132Sn beam
and wedge thickness corresponding to 45% of the range.
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second order and most third order aberrations can be
canceled for a pointlike beam. Unfortunately, the required
machining precision for practical cases might be difficult
to achieve. Also, even for a perfect shaping some residual
aberrations are unavoidable, mainly due to particles’ hori-
zontal angle dependence of the effective thickness. We
noticed that the third order off-energy envelopes are larger
with wedge due to quite strong octupoles needed. We
studied the scaling of the remaining aberrations as a func-
tion of wedge thickness. We also found that an approxi-
mate scaling of the magnetic field strengths with rigidity
still holds for systems including energy degraders, but the
shaping of the wedges needs to be done on a case-by-case
basis.

Studies of mass and charge resolving powers and sepa-
ration cuts showed interesting behavior. Under certain
conditions the charge resolving power might vanish. In
general, thicker wedges maximize resolution (in the ab-
sence of stochastic effects). At fixed energy the mass
resolving powers are monotonic functions of wedge thick-
ness. This is not true for charge resolving power; there is an
energy range around 300 MeV=u that exhibits more com-
plicated behavior. Also, the separation cuts are lines even
in the presence of nonlinearities and we studied the asso-
ciated slope in the mass-charge dispersion plane. We con-
cluded that the cut angle varies significantly as a function
of thickness at higher energies and it flattens out at lower
energies. Therefore, two-stage separators are more useful
at higher energies.

Further work will involve studies of two-stage fragment
separators and fragment separators for gas cells. For stud-
ies of separation purity and background distribution, the
techniques developed in this paper will be combined with
Monte Carlo techniques for a hybrid map-Monte-Carlo
extension of COSY INFINITY.
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APPENDIX A: PROOF OF EQ. (10)

Since this is a linear calculation, it is sufficient to con-
sider a wedge of thickness lw and half-angle � with no
curvature or higher order shape effects. The situation is
depicted in Fig. 16. Consider two particles of the same
energy in the midplane, one with xi ¼ 0, ai � 0 and an-
other one with xi � 0, ai ¼ 0. The particles traverse the
wedge and see effective thicknesses equal to their track
lengths la and lx, respectively. At the end, the particles will
emerge with new relative energy deviations given by
�a;f ¼ ð�jaÞwai and �x;f ¼ ð�jxÞwxi, respectively. If it

happens that the track lengths are equal lx ¼ la then also
the energies must be the same, giving �x;f ¼ �a;f. The

calculation of the track lengths is a geometric problem
that can be easily solved with the help of Fig. 16.
To calculate lx notice that it is equal to lw þ 2�, where

� ¼ xi tan�. Hence, lx ¼ lw þ 2xi tan�. Calculation of la
is just a little bit more involved. Applying the sin theorem
we obtain

sin�

lw
¼ sin�

la
; (A1)

and the following relationships among the various angles:
�þ �þ � ¼ � and ð�� �Þ þ �=2þ� ¼ �. It is well
known that to first order ai ¼ �. It follows that

la ¼ lw
cosð�Þ

cosð�þ�Þ ; (A2)

which reduces at first order to la ¼ lwð1þ � tan�Þ ¼
lwð1þ ai tan�Þ. Therefore, lx ¼ la for given wedge pa-
rameters if xi=ai ¼ lw=2, independent of the wedge angle.
In this case the equal energies �x;f ¼ �a;f result in the

relation

ð�jxÞw lw
2
¼ ð�jaÞw; (A3)

which is (10), and the proof is complete. Clearly, extending
the geometrical arguments to higher order similar equa-
tions can be derived that connect higher order wedge map
elements.
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