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‘‘Action and phase jump’’ analysis is presented—a beam based method that uses amplitude and phase

knowledge of a particle trajectory to locate and measure magnetic errors in an accelerator lattice. The

expected performance of the method is first tested using single-particle simulations in the optical lattice of

the Relativistic Heavy Ion Collider (RHIC). Such simulations predict that under ideal conditions typical

quadrupole errors can be estimated within an uncertainty of 0.04%. Other simulations suggest that

sextupole errors can be estimated within a 3% uncertainty. Then the action and phase jump analysis is

applied to real RHIC orbits with known quadrupole errors, and to real Super Proton Synchrotron (SPS)

orbits with known sextupole errors. It is possible to estimate the strength of a skew quadrupole error from

measured RHIC orbits within a 1.2% uncertainty, and to estimate the strength of a strong sextupole

component from the measured SPS orbits within a 7% uncertainty.

DOI: 10.1103/PhysRevSTAB.12.014002 PACS numbers: 41.85.�p, 29.85.Fj, 29.20.�c

I. INTRODUCTION

One of the most common methods to measure magnetic
errors in high energy accelerators is the matrix response
method [1], in which dipole correctors in the accelerator
are systematically perturbed while orbit measurements are
taken. The optical model of the accelerator—with incom-
pletely known variables like quadrupole strengths, beam
position monitors (BPMs) gains, and steering magnet
kicks, et cetera—is then fitted to all these measurements.
This method has been used successfully in accelerators like
the National Synchrotron Light Source and the Advanced
Light Source [2] where the number of variables is around
400. Rings as big as the Relativistic Heavy Ion Collider
(RHIC) have a significantly larger number of variables
(about four thousand), and huge matrices. Procedures to
deal with the problems of such large matrices have been
used in accelerators like PEP-II, but they are time and
resource consuming [3,4].

For these reasons, the application of the matrix response
method was deprecated during early RHIC commission-
ing, in favor of other options like the orbit bump method
[5–8], the action phase jump method [9], and others
[10–12].

The action and phase jump method considers any
optical error—whether a dipole, quadrupole, or sextupole,
et cetera—as a simple kick. From this perspective, a
particle trajectory is exactly described by two separate
equations: one to describe the trajectory just before the
error, and one to describe it just after. In both equations the
lattice functions assume their original design values, and

only the action and phase constants differ. The differences
between these constants before and after the error allow the
strength of the error and its nature to be calculated.
The first advantage of this method is that it is not

necessary to generate new optics including the effect of
the error—only the original design optics are required.
This simplifies the estimation of (for example) quadrupole
errors, which modify the optics all around the ring. The
second advantage is that errors can be located just by
looking for changes in action and phase.
In order to apply the action and phase method, it is

necessary to be able to measure action and phase just
before and just after the error. This is done using at least
two BPMs on each side of the error under the assumption
that no error exists between the two BPMs. This is not
generally the case, but if the effect of the error to be
measured is much larger than the effect of any error
between the BPMs, the action and phase jump method
usually gives a reasonably precise measurement. This is
exactly the situation at the interaction regions (IRs) of a
collider, because errors in the arcs usually have much
smaller effects than errors in the IRs. Hence, the BPMs
in the arcs can be used to estimate actions and phases
before and after the IRs.
In this paper, the basic principles of the action and phase

jump method are first explained (Secs. II and III), and then
the simulated performance of the method is tested
(Sec. IV). Finally, experimental measurements from
RHIC and the SPS are presented (Secs. V, VI, and VII).

II. THE ACTION AND PHASE JUMP METHOD

Assume that a magnetic kick error �z (where z stands for
either the x plane or the y plane) is introduced at a longi-*jfcardona@unal.edu.co
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tudinal position s ¼ s� in an otherwise perfect accelerator
lattice. As a consequence, the lattice will be divided in
three different regions: s < s�, s ¼ s�, and s > s�. Three
independent formulas, one for every region, exactly de-
scribe the linear betatron motion of any particle, as follows.

For s < s�, the trajectory is simply given by the well-
known formula,

zðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0�zðsÞ
q

sin½c zðsÞ � �0�; (1)

where J0 and �0 are the action and phase constants for s <
s�, while �z and c z are the optical lattice functions. The
phase space coordinate orthogonal to zðsÞ is

z0ðsÞ ¼ dz

ds
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0�zðsÞ
q

cos½c zðsÞ � �0 þ �zðsÞ�; (2)

where �zðsÞ ¼ arctan½�zðsÞ� while �z and �z are the
Courant-Snyder parameters.

For s ¼ s�, the phase space coordinates are

zðs�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0�zðs�Þ
q

sin½c zðs�Þ � �0� (3)

and

z0ðs�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0�zðs�Þ
q

cos½c zðs�Þ � �0 þ �zðs�Þ� þ �z:

(4)

These are almost like Eqs. (1) and (2) except for the last
term of z0ðs�Þ, which represents the change of the trajectory
slope due to the magnetic error.

For s > s� the phase space coordinates are calculated as
follows:

zðsÞ
z0ðsÞ

� �

¼ Mðs� ! sÞ zðs�Þ
z0ðs�Þ

� �

; (5)

whereMðs� ! sÞ is the transformation matrix from s� to s
and is given by [13]

M ¼ a cos�c z þ b sin�c z c sin�c z

d sin�c z þ e cos�c z f cos�c z þ g sin�c z

� �

;

(6)

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðsÞ
�zðs�Þ

s

; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðsÞ
�zðs�Þ

s

�zðs�Þ;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðsÞ�zðs�Þ
q

; d ¼ � 1þ �zðsÞ�zðs�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðsÞ�zðs�Þ
p

;

e ¼ �zðs�Þ � �zðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðsÞ�zðs�Þ
p

; f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðs�Þ
�zðsÞ

s

;

g ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðs�Þ
�zðsÞ

s

�zðsÞ;

and

�c z ¼ c zðsÞ � c zðs�Þ:
Substituting Eqs. (3), (4), and (6), in Eq. (5), we obtain

zðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0�zðsÞ
q

sin½c zðsÞ � �0�

þ �z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðsÞ�zðs�Þ
q

sin½c zðsÞ � c zðs�Þ�: (7)

The right-hand side of Eq. (7) can also be expressed as a
sinusoidal function,

zðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J1�zðsÞ
q

sin½c zðsÞ � �1�; (8)

where J1 and �1 are the action and phase constants for s >
s�, given by

J1 ¼ J0 þ �2z�zðs�Þ
2

þ �z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0�zðs�Þ
q

cos½c zðs�Þ � �0�
(9)

and

tan�1 ¼ �z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðs�Þ
p

sin½c zðs�Þ� þ 2J0 sin�0

�z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðs�Þ
p

cos½c zðs�Þ� þ 2J0 cos�0

: (10)

Thus the particle trajectory for s < s� [Eq. (1)] and for s >
s� [Eq. (8)] are described by the same functional form, but
with different action and phase constants. In other words, a
jump of action and phase occurs at s ¼ s�, the error
location. Therefore, a plot of action and phase as a function
of the axial coordinate s reveals error source locations. The
previous reasoning can be generalized for more than one
error. In particular, it can be shown that Eq. (7) can be
written as

zðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0�zðsÞ
q

sin½c zðsÞ � �0�

þX

i

�zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zðsÞ�zðs�iÞ
q

sin½c zðsÞ � c zðs�iÞ�; (11)

where �zi represent any arbitrary magnetic kick error lo-
cated at s ¼ s�i in an optical lattice.

The individual values of action and phase as a function
of s are experimentally determined from BPM measure-
ments. Consider two adjacent BPM measurements,

zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jiþ1�zi

p

sinðc zi � �iþ1Þ;
ziþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jiþ1�ziþ1

p

sinðc ziþ1 � �iþ1Þ;
(12)

where it is assumed that there are no magnetic errors
between the two BPMs, so that Ji ¼ Jiþ1 and �i ¼ �iþ1.
Solving Eq. (12) for the constants Jiþ1 and �iþ1 gives

Jiþ1 ¼ ðzi=�ziÞ2 þ ðziþ1=�ziþ1Þ2
2sin2ðc ziþ1 � c ziÞ

� ziziþ1 cosðc ziþ1 � c ziÞ
�zi�ziþ1sin

2ðc ziþ1 � c ziÞ
; (13)
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tanð�iþ1Þ ¼ ðzi=�ziÞ sinðc ziþ1Þ � ðziþ1=�ziþ1Þ sinðc ziÞ
ðzi=�ziÞ cosðc ziþ1Þ � ðziþ1=�ziþ1Þ cosðc ziÞ :

(14)

Plots of action and phase as a function of s are generated
by applying Eqs. (13) and (14) to all pairs of adjacent BPM
readings. For example, Fig. 1(a) shows simulated BPM
data representing a trajectory in RHIC with a magnetic
kick error at s� ¼ 1241 m. The action and phase plots in
Figs. 1(c) and 1(d) are obtained by direct application of
Eqs. (13) and (14). Figure 1 shows a jump in action and
phase across s� ¼ 1241 m, as expected.

The strength of the error can also be determined from the
actions and phases measured before and after the error.
Using Eqs. (7) and (8),

�z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0 þ 2J1 � 4 � ffiffiffiffiffiffiffiffiffi

J0J1
p

cosð�1 � �0Þ
�zðs�Þ

s

; (15)

where �zðs�Þ is the design value of the beta function at the
error.

III. MULTIPOLE COMPONENTS OFA MAGNETIC
KICK

A magnetic kick error can have contributions from
any magnetic field component—dipole, quadrupole, skew

quadrupole, sextupole, et cetera. In general, the horizontal
kick �x caused by a vertical deviation �By in a magnet of

length l is given by

�x ¼ � e�Byl

p
; (16)

with e is the electron charge and p is the nominal momen-
tum of the beam. Similarly, the vertical kick �y is

�y ¼ e�Bxl

p
: (17)

After expanding the magnetic field into normal and skew
components bn and an, using

�By þ i�Bx ¼ B
X

n

ðbn þ ianÞðxþ iyÞn; (18)

then Eqs. (16) and (17) lead to

�x ¼ B0 � B1xðs�Þ þ A1yðs�Þ þ 2A2xðs�Þyðs�Þ
þ B2½�x2ðs�Þ þ y2ðs�Þ� þ � � � (19)

�y ¼ A0 þ A1xðs�Þ þ B1yðs�Þ þ 2B2xðs�Þyðs�Þ
þ A2½x2ðs�Þ � y2ðs�Þ� þ � � � ; (20)

where An ¼ eBlan=p and Bn ¼ eBlbn=p. These new
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FIG. 1. (a) Simulation of a RHIC first turn trajectory with every dot representing a BPM measurement, in the presence of a magnetic
kick with strength �z at s� ¼ 1241 m. (b) RHIC optics with short bars representing dipoles and long bars representing quadrupoles.
(c) Action analysis of the simulated first turn trajectory. (d) Phase analysis of the same trajectory.
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quantities completely characterize a magnetic error. The
main goal of the action and phase jump method is to
measure their values.

If �x ¼ B0 (a dipole kick), it is clear from Eqs. (15) and
(19) that it is only necessary to measure one trajectory in
order to estimate the strength of the error. This remains true
for any higher order component, as long as it is known to be
the only component present. For example, if only quadru-
pole components are considered, Eqs. (19) and (20) lead to

A1 ¼
�xyðs�Þ þ �yxðs�Þ
x2ðs�Þ þ y2ðs�Þ

(21a)

B1 ¼
�yyðs�Þ � �xxðs�Þ
x2ðs�Þ þ y2ðs�Þ

; (21b)

where all the quantities used to estimate A1 and B1 can be
obtained from a single trajectory.

Several trajectories with different amplitudes must be
used when several multipole components are present or
suspected, and used to generate three curves: �x versus
xðs�Þ, �y versus xðs�Þ, and yðs�Þ versus xðs�Þ, as illustrated
in Fig. 2. Such curves are typically represented by

�x ¼ C1xxðs�Þ þ C2xx
2ðs�Þ þ � � � (22a)

�y ¼ C1yxðs�Þ þ C2yx
2ðs�Þ þ � � � ; (22b)

and

yðs�Þ ¼ mxðs�Þ þ b: (23)

Polynomial fits to the three curves yields measured values
for C1x, C2x, C1y, C2y, m, and b. Substituting Eq. (23) in

Eqs. (19) and (20) shows that the relations between the

multipole components and the fitted coefficients,

C1x ¼ A1m� B1 þ 2A2bþ 2mbB2; (24a)

C1y ¼ A1 þ 2bB2 � 2A2bmþ B1m; (24b)

C2x ¼ 2A2 � B2 þm2B2; (24c)

C2y ¼ A2 þ 2B2m� A2m
2; (24d)

are a 4� 4 system of the linear equation system in the
unknown variables A1, A2, B1, and B2. Their solution is

A1 ¼
C1xmþ C1y

1þm2
; (25a)

B1 ¼ �C1x � C1ym

1þm2
; (25b)

A2 ¼ ��C2y � 2C2xmþ C2ym
2

1þ 2m2 þm4
; (25c)

B2 ¼ �C2x � 2C2ymþ C2xm
2

1þ 2m2 þm4
; (25d)

where the coefficients C2x and C2y have been neglected in

the calculation of A1 and B1, since their effect is usually
much smaller than the linear terms.
Only quadrupole and sextupole components are consid-

ered in Eq. (22), because they are the most common
components in practice. Dipole components are also very
important, but they are readily easily suppressed from the
experimental data, as discussed in Sec. V.

IV. SIMULATIONS

The action and phase jump method is easily tested using
simulated RHIC first turn trajectories with gradient errors,
skew quadrupole errors, and sextupole errors. Simulated
trajectories are generated with MAD [14], which is able to
simulate both single turn trajectories and also closed orbits.
Errors are simulated by setting to a certain strength a
quadrupole, a skew quadrupole, or a sextupole at s� ¼
1241 m. The simulated trajectories are then analyzed,
and the measured error is compared with set error. The
difference � is the error of the method.

A. Gradient error

An integrated gradient error of B1 ¼ 1� 10�3 m�1 is
added, and four trajectories with different amplitudes are
simulated leading to four plots of trajectories, actions, and
phases like the one shown in Fig. 1. Those plots along with
Eq. (15) finally lead to Fig. 3. The simulated trajectories
contain only a gradient error (A1 ¼ B2 ¼ A2 ¼ 0), with no
coupling (m ¼ 0), so Eqs. (22a) and (24a) lead to

�x ¼ �B1xðs�Þ: (26)

The slope measured from the data shown in Fig. 3 is very
close to the expected value of �B1 ¼ �1� 10�3.
The method error � was calculated using the same

procedure for ten different gradient errors, as shown in
Fig. 4. The largest value of � in Fig. 4, for typical values of
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FIG. 2. Horizontal magnetic kick error �x and vertical mag-
netic kick error �y as functions of the horizontal particle position

xðs�Þ. The typical dependence between the horizontal particle
position xðs�Þ and the vertical particle position yðs�Þ is also
shown. Eight simulated first turn trajectories with different
amplitudes have been used to obtain this plot.
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gradient errors at RHIC, suggests that the method could be
accurate to within a 0.04% uncertainty.

B. Skew quadrupole error

A similar procedure can be followed for skew quadru-
pole errors. However, in this case the horizontal trajectory
is perturbed by a vertical magnetic kick, so that the new
version of Fig. 3 plots �y versus xðs�Þ instead of �x versus

xðs�Þ. Again, ten different skew quadrupole strength set-
tings are simulated and their corresponding � values are
calculated. Figure 5 shows that � oscillates around 0.01%.

C. Sextupole error

Sextupole errors lead to a nonlinear dependence of �x on
xðx�Þ, as shown in Fig. 6, because when only a sextupole
error B2 is present the horizontal kick is

�x ¼ �B2x
2ðs�Þ: (27)

A quadratic fit of the data in Fig. 6 gives the value of B2.
Sextupoles are included in the simulation through the
integrated sextupole strength K2L (MAD notation), which
is related to the magnetic fields by
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FIG. 5. Simulations predict that the action and phase jump
method determines skew quadrupole errors within an uncertainty
as small as 0.01%.
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FIG. 4. The error of the method � as a function of the gradient
error strength, predicting the method error to be less than 0.04%
for RHIC gradient errors larger than 10�3 m�1.
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response to a gradient error of 1� 10�3 m�1 intentionally
introduced in the lattice at s� ¼ 1241 m. The slope of the curve,
�0:999 69� 10�3 m�1, is very close to the expected value.
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K2L ¼ B00l
B�

: (28)

On the other hand,

B2 ¼ eBlb2
p

¼ Blb2
B�

¼ B00l
2B�

; (29)

and hence

K2L ¼ 2B2: (30)

Thus, the quadratic coefficient obtained from fitting the �x
versus xðs�Þ data must be multiplied by two in order to
recover the sextupole strength values set in the MAD files.
The differences between the sextupole error settings and

the values recovered using the action and phase jump
method are significantly larger than in the two previous
cases, as shown in Fig. 7. Nonetheless, these differences
are smaller than 3% in the range of interest for RHIC
sextupoles. The differences decrease quite rapidly as the
sextupole strength increases.

V. LINEAR EXPERIMENTS WITH BEAM IN RHIC

It is necessary to excite large amplitude trajectories in
order to experimentally test the action and phase jump
method in an accelerator. In RHIC, this is easily done by
turning on any of the dipole correctors installed throughout
the accelerator and recording the corresponding trajecto-
ries as turn by turn data.
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It is necessary to subtract the baseline orbit (which exists
in the accelerator before turning on any dipole corrector)
from these turn by turn trajectories, in order to generate
‘‘difference orbits’’ in which dipole errors and BPM sys-
tematic errors are both suppressed. For the analysis pre-
sented in this section, the difference orbits were
constructed with the first turn of the baseline and the first
turn of the large amplitude trajectory.

Equations (13) and (14) are applied to every pair of
adjacent BPMs in every difference orbit, to obtain plots
like that shown in Fig. 8. In this figure the action and phase
plots of RHIC difference orbits are approximately constant
along the arcs, but big jumps are visible at the IRs. Such
behavior is expected because the size of the action jump
inferred from Eq. (9) is determined by the product of
�2z�zðs�Þ, and the beta functions in the interaction regions
are much larger than in the arcs. Even small IR errors lead
to larger effects than are typical from arc errors.

A. Data from the RHIC 2002 run

The action and phase method not only points to error
locations, but also estimates error strengths.

These capabilities were tested with beam during the
RHIC 2002 proton run at injection, by introducing six
different known skew quadrupole strengths at the bi8-qs3
corrector in the 8 o’clock IR. Large beam trajectories were
excited, one for every bi8-qs3 setting, with one of the
RHIC dipole correctors and recorded as turn by turn
data. The dipole corrector was chosen at a location such
that the orbit excursion at bi8-qs3 was near a maximum.
From the turn by turn data, only the first turn in each case
was used to build the difference orbit as explained above.

Actions J0 and J1 and phases �0 and �1 were estimated
around IR8 using data sets similar to that shown in Fig. 8.
These estimations were obtained by averaging the individ-
ual actions and phases in the arcs around IR8. Actions and
phases that deviated more than 3 standard deviations from
the average were discarded. Equations (15) and (21a) were
used to obtain the measured error values shown in Fig. 9,
once the actions and phases before and after the error were
known.
Since six first turn orbits were available for every setting

of the skew quadrupole and six baselines, it was possible to
build 36 difference orbits. Therefore, six different values
for every skew quadrupole setting were obtained with
Eq. (21a). Three times the standard deviation of those
values gives the height of the error bar at each point of
Fig. 9. Most of the measured skew quadrupole values were
close to their set values—a linear regression of the experi-
mental points in Fig. 9 gave a slope of 1:00� 0:12, agree-
ing well with the expected value 1.0, but with an
uncertainty of 12%.

B. Beam position monitor gain errors

BPM gain errors are often a point of concern when
analyzing experimental data to extract optical parameters
of a lattice. To study their effect on the action and phase
method, first consider the case when all BPMs in the
accelerator have the same error gain so that the (difference)
beam position z�i reported by any BPM is related to the real
beam position zi by

z�i ¼ kzi; (31)

where k represents the gain error. Using Eqs. (13) and (14)
it can be shown that

J�0 ¼ k2J0; J�1 ¼ k2J1; (32a)

��
0 ¼ �0; ��

1 ¼ �1; (32b)

where J�0 , J
�
1 , �

�
0, and ��

1 are the actions and phases calcu-

lated with the BPM measurements z�i . Replacing Eq. (32)
in Eq. (15), the estimated strength error ��z becomes

��z ¼ k�z: (33)

When Eqs. (31) and (33) are replaced in Eqs. (19) and (20),
we obtain

��x ¼ B�
0 � B�

1x
�ðs�Þ þ A�

1y
�ðs�Þ þ 2A�

2x
�ðs�Þy�ðs�Þ

þ B�
2½�x�2ðs�Þ þ y�2ðs�Þ� þ � � � ;

��y ¼ A�
0 þ A�

1x
�ðs�Þ þ B�

1y
�ðs�Þ þ 2B�

2x
�ðs�Þy�ðs�Þ

þ A�
2½x�2ðs�Þ � y�2ðs�Þ� þ � � � ;

(34)

where
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FIG. 9. Relation between the skew quadrupole errors inten-
tionally introduced in the accelerator and the measured errors
obtained from action and phase analysis of RHIC difference
orbits.
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B�
0 ¼ kB0; (35a)

A�
1 ¼ A1; B�

1 ¼ B1; (35b)

A�
2 ¼ A2=k; B�

2 ¼ B2=k: (35c)

Equation (35) shows that, while a systematic gain error in
all BPMs does not affect the estimation of quadrupole
errors, nonetheless the estimations of dipole errors and
sextupole errors are affected. This apparent impasse is
solved with a simple measurement: a dipole corrector in
the accelerator is set to a strong and known value B0. After
applying action and phase analysis to the resultant orbit, B�

0

and therefore k are found using Eq. (35a).
It is possible to have acceptable estimations of J0, J1, �0,

and �1 even when random BPMs gain errors are present, if
several measurements are available. For example, in the
RHIC case it is reasonable to consider the actions and
phases within an arc to be constant, yielding ten measure-
ments per arc that can be averaged. The fluctuations of J0,
J1, �0, and �1 around their arc averages that are visible in
Fig. 8 are significantly smaller than the jumps in the IRs.
These fluctuations may be due either to magnetic errors
within the arcs or to gain errors—they are an upper bound
on the random BPM gain errors.

VI. NONLINEAR EXPERIMENTS WITH BEAM IN
THE SPS

Nonlinear experiments with sextupoles were conducted
during the 2003 RHIC deuterium-gold run, by powering a
sextupole corrector at the 8 o’clock interaction region. A
set of orbits with different amplitudes was taken while the
sextupole strength was kept constant, yielding data similar
to that shown in Fig. 6. Unfortunately, the results of these
experiments were inconclusive. Even though the trend of
the measurements was as expected, the measurement scat-
ter was significant when compared with the expected val-
ues and the error bars [15,16]. Fortunately, experimental
verification of the ability of the action and phase jump
method to resolve sextupole components was possible
thanks to SPS turn by turn beam data that was originally
taken during sextupole resonance driving term studies [17].

During those studies, a beam with an energy of 80 GeV
(injection energy for SPS is 26 GeV) was excited with a Q
kicker (a kicker used to measure transversal tunes) to
produce turn by turn trajectories of seven different ampli-
tudes while eight strong sextupoles were activated around
the ring. At least three turn by turn trajectories were
recorded for every strength of the kicker which makes 21
turn by turn trajectories available for the studies presented
in this section. Turn by turn difference orbits were built
subtracting the orbit before the kick from the orbits just
after the kick. Phase analysis of the turn by turn difference
orbits revealed jumps at the strong sextupole locations, as
shown, for example, in Fig. 10, where the jumps appear
large in only some turns, because the protons follow differ-
ent trajectories on each turn. The turn with the largest

jumps in action and phase (optimal turn) gave the most
accurate estimates for a particular error.
Using the optimal turns of the 21 turn by turn difference

orbits and following the procedure explained in Sec. IVC
around sextupole 63 (at s ¼ 3646 m), Fig. 11 is obtained.
From this figure, the strength of sextupole 63 was esti-
mated to be B2 ¼ ð0:219� 0:016Þ m�2, yielding an
integrated sextupole strength of ð0:438� 0:032Þ m�2 ac-
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FIG. 10. Phase analysis of a SPS turn by turn difference orbit.
The sextupoles that were intentionally introduced in the accel-
erator can be clearly identified by the jumps in phase (taken from
Ref. [17]).
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FIG. 11. Measured horizontal kick error as a function of the
horizontal beam position for sextupole 63 in the SPS ring.
Optimal turns of turn by turn difference orbits with seven differ-
ent amplitudes were used to obtain this curve. A quadratic fit
gave an integrated sextupole strength in good agreement with the
actual set strength value (taken from Ref. [17]).
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cording to Eq. (30), with a relative uncertainty of about
7%. Each point with its error bar in Fig. 11 was obtained
with the three turn by turn trajectories taken for every
different kicker strength. This measurement was in good
agreement with the integrated strength of 0:446 m�2 that
was set in sextupole 63.

VII. DIFFERENCE ORBITS FROM A SINGLE
TURN BY TURN MEASUREMENT

Action and phase jump analysis of experimental data
shown in previous sections were based on conventional
difference orbits which were obtained subtracting a base-
line orbit from a large amplitude beam orbit. It is also
possible to build difference orbits from two large ampli-
tude beam orbits like, for example, two turns of the same
multiturn beam trajectory. In this section, we show that
these new difference orbits not only help to eliminate
contributions due to dipole errors as in the case of conven-
tional difference orbits but they could also magnify the
magnetic error under evaluation and significantly reduce
the noise.

Let us assume a lattice with a quadrupole error �q ¼ B1x

at s ¼ s�q that wants to be estimated using action and

phase analysis. Let us also assume that there is a dipole
error �d ¼ B0 at s ¼ s�d. According to Eq. (11), a large
amplitude beam orbit in such a lattice can be represented
by

xðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J�xðsÞ
q

sin½c xðsÞ � ��
þ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�xðsÞ�xðs�dÞ
q

sin½c xðsÞ � c xðs�dÞ� (36)

þ B1xðs�qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�xðsÞ�xðs�qÞ
q

sin½c xðsÞ � c xðs�qÞ�:
(37)

A baseline orbit can be represented exactly by the same
equation but in this case J and xðs�qÞ are generally much

smaller than in the previous case. Hence, the corresponding
(conventional) difference orbit �xðsÞ is given by

�xðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J�xðsÞ
q

sin½c xðsÞ � �2� þ B1xðs�qÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�xðsÞ�xðs�qÞ
q

sin½c xðsÞ � c xðs�qÞ�; (38)

where it is clear that the contribution from the dipole error
has been eliminated from the orbit.

Now, let us consider two orbits x2ðsÞ and x1ðsÞ of large
and similar amplitudes J2 and J1 in the same lattice. Their
difference is given by

�xðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J2�xðsÞ
q

sin½c xðsÞ � �2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J1�xðsÞ
q

sin½c xðsÞ � �1� þ B1½x2ðs�qÞ
� x1ðs�qÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�xðsÞ�xðs�qÞ
q

sin½c xðsÞ � c xðs�qÞ�;
(39)

where the first two terms can be combined into a single sine
function and Eq. (39) becomes very similar to Eq. (38) and,
hence, action and phase analysis can give the value of B1.
Notice also that the effect of the quadrupole error is
proportional to the difference of orbit trajectory or beam
positions at s ¼ s�q. If the orbits x2ðsÞ and x1ðsÞ are chosen
such that x2ðs�qÞ and x1ðs�qÞ are maximum and opposite,

the effect of the quadrupole error in this new difference
orbit can be twice the effect of the same error in a conven-
tional difference orbit.
There is still a second advantage of the new difference

orbits when compared to the conventional difference or-
bits. Orbits used to build a new difference orbit can be any
pair of turns of different turn by turn trajectories or even
turns of the same turn by turn trajectory. If the turns are
taken from the same trajectory, significant noise reduction
can be achieved.
This was recently verified (see [18]) building first, a

difference orbit in the conventional way, obtaining its
corresponding action and phase plots (see Fig. 12), and
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FIG. 12. Action and phase analysis of a RHIC difference orbit
taken during the 2002 proton run. The difference is built out of
two separated first turn orbits named bi8-qs3.-0.0010.8h.sdds and
baseline.1.1.8h.sdds.
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then building a difference orbit with two turns of the same
turn by turn trajectory and obtaining its corresponding
action and phase plots (see Fig. 13). Using the conventional
difference orbits, the noise was as big as the jumps at the
IRs. Using the new difference orbits, the noise in the arcs is
dramatically reduced and the jumps in the IRs can be

clearly seen. This example is an extreme case and the
improvement is not always so notorious, but in general
there is noise reduction when the difference orbit is built as
described in the second case.
The experiment discussed in Sec. V was analyzed again,

but this time the new difference orbits were used instead of
the conventional difference orbits.
The results can be seen in Fig. 14 where the horizontal

axis represents the skew quadrupole error set in the skew
quadrupole corrector bi8-qs3, and the vertical axis repre-
sents the skew quadrupole error values estimated with
action and phase jump analysis on the experimental orbits.
The circles correspond to skew errors obtained with the
previous analysis while the squares correspond to the new
analysis. The errors bars for each point of the new analysis
were obtained by building six different difference orbits
from 12 turns of the same turn by turn trajectory. A linear
regression of the experimental points in Fig. 14 gives a
slope of 0:996� 0:012 which leads to a 1.2% uncertainty
on the determination of skew quadrupole components, an
improvement of 1 order of magnitude when compared to
the old analysis.

VIII. CONCLUSIONS

Exact expressions were derived that relate localized
errors in an accelerator lattice to the action and phase
jumps that they cause.
Simulations showed that these relationships can be used

to estimate small quadrupole errors within an uncertainty
of 0.04% under ideal conditions. These uncertainties
dropped to the 0.01% level as the quadrupole error strength
increases. The estimation of sextupole errors from simu-
lated orbits has larger uncertainties, reaching 3% for small
sextupole errors and decreasing rapidly for larger errors.
Beam experiments with quadrupole errors placed at one

particular location in RHIC demonstrated measurements
within an average uncertainty of 12%. An approach that
constructed difference orbits from consecutive turns of a
single multiturn measurement showed a significant im-
provement, reducing the uncertainty of quadrupole error
measurements in RHIC from 12% to 1.2%.
Beam experiments in the SPS with strong sextupoles

showed that the strength of the sextupoles can be recovered
within a 7.3% uncertainty.
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tional difference orbits (circles) and skew quadrupole errors
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