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The phase 1 LHC interaction region (IR) upgrade aims at increasing the machine luminosity essentially

by reducing the beam size at the interaction point. This requires a total redesign of the full IR. A large set

of options has been proposed with conceptually different designs. This paper reports on a general

approach for the compensation of the multipolar errors of the IR magnets in the design phase. The

goal is to use the same correction approach for the different designs. The correction algorithm is based on

the minimization of the differences between the IR transfer map with errors and the design IR transfer

map. Its performance is tested using the dynamic aperture as a figure of merit. The relation between map

coefficients and resonance terms is also given as a way to target particular resonances by selecting the

right map coefficients. The dynamic aperture is studied versus magnet aperture using recently established

relations between magnetic errors and magnet aperture.

DOI: 10.1103/PhysRevSTAB.12.011002 PACS numbers: 29.20.db

I. INTRODUCTION

The design of the interaction region (IR) of a circular
collider is one of the most critical issues for the machine
performance. Many constraints should be satisfied at the
same time and the parameter space to be studied is huge
[1,2]. The strong focusing required to increase the lumi-
nosity generates large values of the beta functions at the
triplet quadrupoles. This in turn enhances the harmful
effects of the magnets’ field quality on the beam dynamics.
It is therefore customary to foresee a system of nonlinear
corrector magnets to perform a quasilocal compensation of
the nonlinear aberrations. This is the case of the nominal
LHC ring, for which corrector magnets are located in the
Q1, Q2, and Q3 quadrupoles, the latter including nonlinear
corrector elements.

The strategy for determining the strength of correctors
was presented in Ref. [3] and is based on the compensation
of those first-order resonance driving terms that were veri-
fied to be dangerous for the nominal LHC machine. The
proposed approach is based on a number of assumptions
that are valid for the nominal LHC machine, but not
necessarily true for the proposed upgrade scenarios [4,5],
such as perfect antisymmetry of the IR optics between the
two beams circulating in opposite directions. Indeed, some
LHC upgrade options may not respect the antisymmetry of
the IR optics between the two beams and the set of danger-
ous resonances might not be the same as for the nominal
LHC or even be different among the LHC upgrade options.
Furthermore, it might be advisable to use a method that
should take into account all possible sources of nonline-
arities within the IR, such as the field quality of the

separation dipoles and also collective beam effects like
the long-range beam-beam interactions.
For these reasons a more general correction algorithm

should be envisaged, thus allowing a direct and straightfor-
ward application to any of the upgrade options or, more
generally, to any section of an accelerator. The proposed
method is based in the analysis of the nonlinear transfer
map for a given section of a particle accelerator. Therefore
it is conceived for the design phase when the magnetic
errors have been measured. For an experimental setting of
the corrector circuits other methods have been proposed
[6–9].
The essential details about the nonlinear effects of the

elements comprised in the section of the machine under
consideration are retained in the nonlinear transfer map
over one turn. For this reason the one-turn transfer map was
proposed as an early indicator of single-particle instability
with a reasonable correlation with the dynamic aperture
[10–12].
This method relies on the developments on normal form

theory, e.g. [13], which have also been the basis of other
local correction schemes in the past, e.g., Refs. [14,15], for
the Superconducting Super Collider arcs or Ref. [16] for
the Large Hadron Collider (LHC). Different free parame-
ters to minimize the selected figure of merit as well as
different observables to benchmark the effectiveness of the
correction proposed, such as analytical and numerical
smears or detuning with amplitude, were studied.
In the next sections the proposed method is described

and some applications to phase 1 LHC upgrade layouts are
given, including the analysis of the effectiveness of the
methods using the dynamic aperture (DA) as a figure of
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merit. An illustrative first-order relation between achro-
matic map coefficients and resonance terms is also given.

II. MATHEMATICAL BACKGROUND

The transfer map between two locations of a beam line is
expressed in the form

~x f ¼ X

jklmn

~Xjklmnx
j
0p

k
x0y

l
0p

m
y0�

n
0 ; (1)

where ~xf represents the vector of final coordinates

ðxf; pxf; yf; pyf; �fÞ, the initial coordinates being repre-

sented with the zero subindex, and ~Xjklmn is the vector

containing the map coefficients for the four phase-space
coordinates and the momentum deviation �, considered as
a parameter. The MAD-X [17] program together with the
polymorphic tracking code (PTC) [18] provide the compu-

tation of the quantities ~Xjklmn up to the desired order.

To assess how much two maps, X and X0, deviate from
each other, the following quantity is defined:

�2 ¼ X

jklmn

k ~Xjklmn � ~X0
jklmnk; (2)

where k � k stands for the quadratic norm of the vector. To
disentangle the contribution of the various orders to the
global quantity �2, the partial sum �2

q over the map co-

efficients of order q is defined, namely,

�2
q ¼

X

jþkþlþmþn¼q

k ~Xjklmn � ~X0
jklmnk (3)

so that

�2 ¼ X

q

�2
q: (4)

The definition of �2
q can be easily extended to introduce

weighting of the different terms, using characteristic dis-
tances and divergences to compute the weights or simply to
select those terms of more relevance. The applications
described in this paper have all equal weights for all terms.

Furthermore, �2
q is split into a chromatic �2

q;c and ach-

romatic �2
q;a contribution, corresponding to

�2
q;a ¼

X

jþkþlþm¼q

k ~Xjklm0 � ~X0
jklm0k: (5)

It is immediate to verify that �2
q ¼ �2

q;c þ �2
q;a.

Throughout this paper only the achromatic part will be
considered since it typically dominates the particle stabil-
ity in circular machines.

A. Relation to resonance driving terms

This section gives an illustrative first-order relation be-
tween achromatic map coefficients and resonance driving
terms. This allows comparing this new approach to other
correction algorithms based on the minimization of impor-

tant resonance terms. Eventually these relations could also
be used to target particular resonances by minimizing the
right collection of map coefficients. However, in practice
MAD-X and PTC are used to provide the map coefficients to

the desired order, including all feed-down and feed-up
effects. Transverse coupling is assumed to be a perturba-
tion however adequate coordinate transformations could
take stronger coupling into account.
In the Hamiltonian formalism Eq. (1) is written as

x̂ f ¼ e:h:Mx̂; (6)

where h is the nonlinear Hamiltonian andM represents the
linear transport and x̂ is the normalized coordinates, i.e.
x̂ ¼ x=

ffiffiffiffiffiffi
�x

p
. The Hamiltonian h is expanded in the reso-

nance driving terms as follows:

h ¼ X

jklm

hjklm�
þj

x ��k

x �þl

y ��m

y ; (7)

��
x being the complex normalized coordinates,

��
x ¼ x̂� ip̂x: (8)

Using the previous expressions into Eq. (6),

x̂ f ¼ e:h:M1
2ð��

x þ c:c:Þ ¼ 1
2e
:h:ðe�i��x��

x þ c:c:Þ (9)

where c:c: stands for complex conjugate and ��x is the
phase advance between the two locations. To expand this
expression the two following properties are used:

½�þj

x ; ��
x � ¼ �2ij�þj�1

x ; (10)
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obtaining
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This equation is the equivalent to Eq. (1) but using reso-
nance terms instead of map coefficients. Therefore to relate
them it is enough to take the right derivatives to isolate the
term of interest. For example,

Xx
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which after some algebra yields

Xx
p0000 ¼ �ie�i��x

ffiffiffiffiffiffiffiffi
�xf

�p
x

s
Xp

r¼0

rhrðp�rÞ00 þ c:c: (13)

This expression already captures the most important fea-
tures of the relation between map coefficients and reso-
nance terms. For example, the sextupolar map coefficient
Xx
20000 depends linearly on h3000 and h1200, or the (3,0) and
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(1,0) resonances, respectively. It can be proved that the
coefficient Xx

pq000 depends on the same terms as Xx
ðpþqÞ0000.

The number of resonances involved in the relation in-
creases linearly with the order of the map coefficient.
Therefore minimizing local map coefficients implies a
minimization of a collection of resonances. Hence, this
approach might be useful when the knowledge of the full
accelerator is limited. For completeness a more general
coupling map coefficient is given below as a function of
resonance terms, showing the features already described:

Xx
p0q00 ¼ �ie�i��x

ffiffiffiffiffiffiffiffiffiffiffiffi
�xf

�p
x�

q
y

s
Xp

r¼0

Xq

s¼0

rhrðp�rÞsðq�sÞ þ c:c:

(14)

III. CORRECTION OF MULTIPOLAR ERRORS

A. Algorithm

The basic assumption is that the multipolar field errors
of the IR magnets are available as the results of magnetic
measurements. The ideal IR map X without errors is com-
puted using MAD-X and PTC to the desired order and stored
for later computations. Including the magnetic errors to the
IR elements perturbs the ideal map. To cancel or compen-
sate this perturbation, distributed multipolar correctors
need to be located in the IR. Throughout this paper we
assume adjacent correctors to the triplet quadrupoles.
Corrector choice will be based on performance. The map
including both the errors and the effect of the correctors
will be indicated with X0. The corrector strength is deter-
mined by simply minimizing �2

q for these two maps. For

efficiency, the minimization is accomplished order by or-
der (see, e.g., Ref. [19] for a description of the dependence
of the various orders of the nonlinear transfer map on the
nonlinear multipoles). In such an approach the sextupolar
correctors are used to act on �2

2, the octupolar ones on �2
3,

and so on.
The code MAPCLASS [20] already used in [21] has been

extended to compute �2
q from MAD-X output. The correc-

tion is achieved by the numerical minimization of �2
q using

any of the existing algorithms in MAD-X for this purpose.

B. Performance evaluation

The evaluation of the performance of the method pre-
viously described is carried out using two of the three
layouts proposed for the upgrade of the LHC insertions
(see, e.g., Refs. [2,4,5,22] for the details on the various
configurations under consideration).

The field quality of the low-beta triplets is considered to
follow the assumption reported in Ref. [23]. This implies
that the various multiple components bn, an given by

By þ iBx ¼ 10�4B2

X1

n¼2

ðbn þ ianÞ
�
xþ iy

Rref

�
n�1

; (15)

where Bx, By represents the transverse components of the

magnetic field and B2 the field at the reference radius Rref ,
scale down linearly with the reference radius, taken at a
given fraction of the magnet aperture �, according to [23]

�ðbn; an;��;�RrefÞ ¼ 1

�
�ðbn; an;�;RrefÞ; (16)

where �ðbn; an;��;�RrefÞ stands for the random field
components of order n and � represents any scaling factor
of the magnet aperture and the reference radius. As a
natural consequence, large-bore quadrupoles will feature
a better field quality than smaller aperture ones. The multi-
polar components used for the simulations discussed in this
paper are listed in Table I.
An example of the order-by-order correction is shown in

Fig. 1 for the so-called low-�max configuration [2,5,22]. A
total of 60 realizations of the LHC lattice are used in the
computations. It is worthwhile stressing that, even though
the random errors are Gaussian distributed with zero mean
and sigma given by the values in Table I rescaled to the
appropriate value of the magnet aperture, the limited sta-
tistics used to draw the values for a single realization
implies that in reality nonzero systematic errors are in-
cluded in the simulations.
One corrector per IR side and per type (normal and skew

component) is used. Different locations of the nonlinear
correctors can be used for the minimization of �2

q. The

configuration having the lowest �2
q after correction is

selected for additional studies (see the next section). The
difference between a nonoptimized positioning and the
best possible one is illustrated in Fig. 2. There, the results
of the proposed correction scheme in the case of a sym-
metric configuration (see Refs. [2,4,22]) are shown. The
configuration corresponding to the gray dots achieves
slightly better corrections over the ensemble of realizations
and therefore is selected for further studies. Both configu-
rations use normal and skew sextupole and dodecapole
correctors. The worse configuration uses correctors be-
tween Q2A and Q2B and between Q2B and Q3 while the
better configuration uses correctors between Q2A and Q2B

TABLE I. Random part of the relative magnetic errors of the
low-beta quadrupoles at 17 mm radius [24]. The components bn
and an stand for normal and skew multipolar errors, respectively.

Order bn an
[10�4] [10�4]

2 0.349 431 0.477 730

3 0.100 570 0.309 803

4 0.067 294 0.062 218

5 0.135 565 0.057 960

6 0.012 633 0.016 546

7 0.003 812 0.014 816

8 0.006 825 0.003 813

9 0.008 446 0.003 973
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and after Q3. Also the worse configuration required con-
siderably larger strengths.

It is worth mentioning that the apertures of triplet mag-
nets Q2;3 of the two scenarios low-�max and symmetric is

130 mm, while Q1 is 90 mm for the low-�max and 130 mm
for symmetric.

IV. DYNAMIC APERTURE COMPUTATION

A. Assessment of the nonlinear correction algorithm

The main goal of the error compensation is to increase
the domain in phase space where the motion is quasilinear,
thus improving the single-particle stability. It is customary
to quantify the stability of single-particle motion using the

concept of dynamic aperture. The DA is defined as the
minimum initial transverse amplitude becoming unstable
beyond a given number N of turns. The standard protocol
used to compute the DA for the LHC machine is based on
N ¼ 105 and a sampling of the transverse phase space
ðx; yÞ via a polar grid of initial conditions of type
ð� cos	; 0; � sin	; 0Þ with 	 2 ½0; 
=2�. In practice, five
values for 	 are used. The scan in � is such that a 2�
interval is covered with 30 initial conditions. The momen-
tum offset is set to 3=4 of the bucket height, which equals
to 2:7� 10�4 in relative momentum deviation at top en-
ergy. Even though the correction settings are computed for
on-momentum particles, we still use the LHC standard
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FIG. 2. (Color) Evaluation of the various orders of �2
q (upper

plot) before (blue markers) and after (gray and red markers)
correction. The red markers represent a nonoptimized (in terms
of correctors location) compensation scheme. Sixty realizations
of the random magnetic errors are used. The layout is the
symmetric one, whose optical functions are also reported (lower
plot).
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FIG. 1. (Color) Evaluation of the various orders of �2
q (upper

plot) before (blue markers) and after (red markers) correction.
Sixty realizations of the random magnetic errors are used. The
layout is the low-�max, whose optical functions are also reported
(lower plot).
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protocol, which includes an energy offset, since anyway
DA is dominated by geometrical aberrations.

As far as the magnetic field errors used in the numerical
simulations are concerned, the as-built configuration of the
LHC is used. The information concerning the measured
errors, as well as the actual slot allocation of the various
magnets, is taken into account in the numerical simula-
tions. The errors on the results of the magnetic measure-
ments are included in the numerical simulations by adding
random errors to the various realizations of the LHC ring.
On the other hand, the field quality of the low-beta triplets
from Table I and the scaling law from Ref. [23] are used. It
is worth mentioning that the layouts under studies are not
finalized, yet. In particular, the details for the implementa-
tion of the separation dipoles D1 and D2 are not fixed. As a
consequence, no estimate concerning their field quality
was taken into account in the modeling of the LHC ring.
As for the evaluation of the correction schemes, sixty
realizations of the random multipolar errors in the triplets
are used and the value of DA represents the minimum over
the realizations. The accuracy of the numerical computa-
tion of the minimum DA is considered to be at the level of
�0:5�.

In Fig. 3 the DA for the two LHC upgrade options,
low-�max and symmetric, as a function of phase-space
angle is plotted with and without nonlinear corrections
schemes.

The correction algorithm proved to be particularly suc-
cessful in the case of the symmetric layout. Indeed, for this
configuration about 2:5� are recovered thanks to the cor-
rection of the nonlinear b3 and b6 errors.

The improvement in the case of the low-�max layout is
less dramatic, as it allows recovering 2:5� for small angles,
only. It is also important to stress that the baseline DA is
not the same for the two layouts, as the low-�max is already

well above 14:5�without any correction. Furthermore, not
only the optics is different for the options, but also the
triplets’ aperture. The first implies a different enhancement
of the harmful effects of the triplets’ field quality, while the
latter has a direct impact on the actual field quality because
of the scaling law [23]. Note that the case with larger DA,
namely, low-�max, also features lower �2

q values for all

orders after correction, implying that this quantity might be
a good indicator of particle stability. It is clear that the DA
for the low-�max is already well beyond the targets used for
the design of the nominal LHC even without nonlinear
correctors. The situation for the symmetric option is
slightly worse and a correction scheme might be
envisaged.

B. Digression: Dynamic aperture vs low-beta triplet
aperture

A third layout proposed as a candidate for the LHC IR
upgrade is the so-called compact [2,5,22]. It features very
large aperture triplet quadrupoles, namely, 150 mm diame-
ter for Q1 and 220 mm for Q2 and Q3. Thanks to the
proposed scaling law, the field quality is excellent and
the resulting DA is beyond 16�. Hence, no correction
scheme is required for this layout.
Nonetheless, a detailed study of the dependence of the

dynamic aperture on the magnets aperture is carried out.
The overall LHC model is the same as the one described in
the previous sections, the main difference being the scan
over the aperture of Q1 and simultaneously over the aper-
tures of Q2 and Q3. The optics is assumed to be constant,
which implies that the configurations corresponding to
larger magnets apertures than the nominal ones cannot be
realized in practice.
The results are shown in Fig. 4. The minimum, average,

and maximum (over the realizations) DA are shown for the
two types of scans. The horizontal lines represent the
asymptotic value of the DA and are obtained by using a
huge (and unrealistic) value for the triplets aperture.
The dependence on the aperture of Q1 is rather mild and

an asymptotic value is quickly achieved. Furthermore,
there exists a rather wide range of apertures for which
the DA is almost constant. In particular, for �> 110 mm
the asymptotic value of the DA is reached. A constant drop
of DA is observed for �< 100 mm and, in general, the
three curves behave the same.
The asymptotic value of DA for the scan of the Q2 and

Q3 aperture is reached for apertures much larger than
280 mm. This is due to the larger value of the beta function
inQ2;3 than inQ1, which enhance the impact of the quadru-

poles’ field quality on the beam dynamics. The spread
between the asymptotic values for minimum, average,
and maximum DA is smaller than for the case of the scan
over the aperture of Q1.
The way the asymptotic value is achieved is remarkably

the same for both types of scans and was studied in more
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FIG. 3. (Color) Comparison of the minimum dynamic aperture
for the LHC IR upgrade layouts low-�max and symmetric with
and without correction of the nonlinear magnetic errors in the
low-beta quadrupoles.
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detail to assess whether it could be explained by a general
scaling law. The hypothesis is that, due to the scaling law,
Eq. (16), for high values of the magnets’ aperture the
lowest order multipole, i.e., the sextupolar one, dominates
the beam dynamics. Therefore, the asymptotic behavior of
the DA should scale inversely to the third power of the
aperture �. This hypothesis was applied not only to the
compact layout, but also to the symmetric one, to ensure
the independence of the conclusion on the details of the
layout under study. To avoid the potential numerical in-
stabilities related with the use of the minimum DA, the
average of the realization was used for this study.

Figure 5 shows the DA for the two layouts and the two
sets of quadrupole apertures together with a fit of the
function fð�Þ ¼ a��3 þ b. In all cases the inverse cubic
asymptotic behavior seems to be in very good agreement
with the numerical data. It is worth stressing that all the
points shown in Fig. 5 were used for the computation of the
fit curves. The asymptotic character of the scaling law
implies that it should hold only for sufficiently large mag-
net apertures. This, indeed, explains why the agreement
between the fit and the numerical data in the intermediate
regime is not excellent (see Fig. 5, top).

V. CONCLUSIONS

A general algorithm for the correction of multipolar
errors in a given section of a circular accelerator has
been developed. It is based on the computation and com-
parison of map coefficients obtained from standard accel-
erator codes such as MAD-X and PTC. The algorithm aims at
minimizing the difference between a target transfer map
and the actual one. Both order-by-order and global opti-
mization strategies are possible. Of course, the algorithm
can be used also to optimize the location of the corrector
elements. In its present form the nonlinear magnetic field
errors are the only source of nonlinearities included in the
transfer map. On the other hand, sources of nonlinear
effects in the transfer map, such as beam-beam kicks
from long-range encounters, could also be included in
the correction algorithm. The efficiency of such an ap-
proach should be tested in practice with dedicated studies.
Direct relations between map coefficients and resonance

terms have been computed. These relations could be used
to extend the correction method to target specific reso-
nances by selecting the right collection of map coefficients.
The correction algorithm was successfully tested on two

layouts for the proposed IR upgrade of the LHC machine.
The quality of the correction was also assessed by means of
numerical simulations aimed at computing the dynamic
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aperture. In the two cases under consideration, a sizable
increase of the dynamic aperture due to the correction
scheme is observed. Moreover, the case with larger DA
also features lower �2

q values for all orders implying that

this quantity is a good indicator of particle stability.
In the numerical simulations used to evaluate the dy-

namic aperture, a new scaling law for the magnetic field
errors as a function of the low-beta quadrupoles aperture
was used. The impact of such an assumption on the value
of the dynamic aperture was assessed in detail with a series
of dedicated studies, where the triplets aperture is scanned.
Smooth dependency of the dynamic aperture with respect
to the magnets aperture is found, and a power law is fitted
to the numerical data with very good agreement. These
results could be used as an additional criterion for the
definition of the required aperture of triplet quadrupoles.
Indeed, one could derive the minimum aperture for which
the dynamic aperture does not require any correction. Such
a condition should then be taken into account together with
the ones related to the needed beam aperture and energy
deposition issues.
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