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The use of nonlinear lattices with the large betatron tune spreads can increase instability and space

charge thresholds by orders of magnitude compared to typical linear accelerator lattices. Unfortunately,

strong nonlinear fields create, in general, strong resonances and chaotic motion. This shrinks the dynamic

aperture to impractical values, thus erasing all benefits from their use. Previously known examples of

stable and regular accelerator motion with special nonlinear lenses were related to one-dimensional

motion or round beams. However, no solution has been realized with real 2D transverse magnetic fields to

produce stable, close to regular 2D motion with the large dynamic aperture and betatron tune spread

comparable to the betatron tune itself. This paper presents possible solutions for such 2D lattices. They

consist of straight sections with short linear and nonlinear lenses with transverse magnetic fields.

DOI: 10.1103/PhysRevSTAB.11.114001 PACS numbers: 05.45.�a, 45.50.�j

I. INTRODUCTION

Accelerator lattices with regular nonlinear motion, hav-
ing analytical invariants in coordinates and momenta, rep-
resent an obvious generalization of linear lattices with
Courant-Snyder invariants. Unfortunately, thin, or at least
not continuous, nonlinear lenses (sextupoles, octupoles,
etc.), placed into a linear lattice, produce nonlinear reso-
nances with extremely complicated chaotic motion in their
vicinity, and unstable motion with unlimited amplitude
growth. The invariants of motion in these cases are not
analytic functions of coordinates and momenta—this is the
reason for the complex behavior. However, there exist
some special combinations of multipoles, either thin or
distributed, for which the invariants become analytic func-
tions of dynamic variables. For these ideal unperturbed
systems, the resonances become either isolated in the phase
space or disappear completely—the latter 1D case is pre-
sented in the next section. The time dependence of the
coordinates (at least in the particular 1 D case) can be
obtained by integrating some function of the coordinates
and finding its inverse function similar to the 1D time
independent case. That is why these systems are called
integrable. For the simplest 1D integrable system, its in-
variant, in some sense, replaces the Hamiltonian of the 1D
time independent system in the sense that its constant
levels show the invariant lines in the phase space.

The development of lattices with invariants of motion
started in application to round colliding beams [1]. The
idea was to reduce the transverse motion to a 1D case, thus
eliminating harmful 2D resonances. A few years later,
many examples of 1D integrable lattices were found [2].
Some had been discovered earlier by McMillan et al. [3].
Independently, numerical methods to eliminate resonances
and achieve regular motion were suggested in [4] and
further developed in [5–7]. Some of these systems were
extended to the 2D case of round beams [8] and to trans-

verse lenses formed by electron beams [9]. Also, exactly
integrable 2D cases with magnetic field lenses were found
[8], but all of these yielded unstable transverse motion. A
previous attempt to find exact 2D stable cases with mag-
netic lenses failed (some attempts to investigate the 2D
case can be found in [10]). The main problem with real
magnetic fields is that the horizontal and vertical compo-
nents are linked to each other through Maxwell equations.
For example, linear lenses focus particles in one plane and
defocus in the other. In nonlinear cases the motion in the
horizontal and vertical planes is inevitably coupled, reduc-
ing degrees of freedom for the fields to make the motion
fully integrable. In this paper we exploit capabilities of
linear lattices to squeeze the beam in one plane at a non-
linear lens, which then influences mostly the other plane. In
accelerator language, we create a very large beta function
beating and place the nonlinear lenses where the ratio of
horizontal and vertical beta functions is large. These lenses
affect mostly one degree of freedom, that in which the beta
function is large. Furthermore, if this nonlinear kick re-
sembles the lens for an integrable 1D case, the overall 2D
motion becomes almost decoupled and nearly integrable.
Here I present the simplest 2D accelerator lattices with
large beta function beating and the necessary conditions to
create very nonlinear nearly integrable stable 2D motion.

II. UNDERLYING 1D LATTICE

To begin, consider a simple lattice having one straight
section with the length L and one infinitely thin lens. We

always can transform the variables x ! x
ffiffiffiffi

L
p

, x0 ! p=
ffiffiffiffi

L
p

so that we can work with length L � 1 for the map in the
new variables. The corresponding map for the new coor-
dinate x and momentum p is

�x ¼ xþ p; �p ¼ p� 2a �x3 þ 3b �x2 þ c �xþ d

a �x2 þ b �xþ e
; (1)
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where the bar sign denotes the new variables, and a, b, c, d,
e are arbitrary parameters. One can check that the follow-
ing function is invariant under this transformation:

Iðx; x0Þ ¼ ðax2 þ bxþ eÞp2 þ ð2ax3 þ 3bx2 þ cxþ dÞp
þ ax4 þ 2bx3 þ cx2 þ 2dx: (2)

The details on how to find this and other integrable lattices
can be found in [5]. The nonlinear kick in (1) can be
represented in more convenient form as follows:

� 2ax3 þ 3bx2 þ cxþ d

ax2 þ bxþ e
¼ �2x

� bx2 þ ðc� 2eÞxþ d

ax2 þ bxþ e
:

(3)

The linear part of the force with a straight section map
gives a linear phase advance of �=2—this is the frequency
of the motion for the large values of the invariant (2).

The choice of linear transformation between nonlinear
kicks does not necessarily have to be a straight section and
a linear focusing kick �2x. Since the nonlinear kick pa-
rameters in the right-hand side (RHS) of (3) are arbitrary,
we can always change the scale of coordinate and add a
linear function of coordinate to momentum (in other
words, we can make a linear canonical transformation
that is equivalent to the change of beta function and its
derivative at the lens) to change the linear matrix between
the lenses to produce another integrable map. But one
property of the new system remains the same—it will
always have the same eigenvalues (or frequencies).
Therefore, any linear map with eigenfrequency �=2 and
nonlinear kick of the form of the second term in the RHS of
(3) constitutes an integrable system. Its invariant is always
given by (2) but with an appropriate change of variables,
determined by the choice of the linear matrix. In our case
of straight section with L ¼ 1 and thin kick given by (3),
the invariant is exactly given by (2). It is easy to check that
the phase advance ��=2 will work as well. In general,
quadratic invariants of the type (2) exist for any lattice with
fractional tunes �1=4 and kicks

� g1x
2 þ g2xþ g3

g4x
2 þ g1xþ g5

; (4)

where the gi are arbitrary parameters. It is essential to
observe that the nonlinear lens has a quadrupole compo-
nent and linear lattice tunes �1=4 are not simply the
betatron tune motion near the closed orbit. Because the
quadrupole term in (4) is one of arbitrary parameters, we
do not have any constraints on the betatron tunes.

In the next sections we present 2D cases, based on this
1D map. It is shown that it is possible to find such 2D
lattices when the horizontal and vertical motions are very
much decoupled and each plane has invariants of the
form (2).

III. 2D THIN NONLINEAR LENSES

Transverse magnetic focusing in accelerators can be
achieved by solenoids with longitudinal fields and lenses
with the transverse fields. The implementation of nonlinear
kick of the form (3) using solenoids was suggested in [11].
Unfortunately, solenoids provide small focusing at large
energies. In addition, the system is integrable for round
beams, which requires equal tunes and equal beta functions
at the nonlinear kick points. In contrast to this example, in
the present paper we deal with transverse fields and thin
lens kicks only. The term ‘‘thin lens’’ means that the length
of the element is much shorter than the beta functions in
each plane. At the same time we assume that this length is
much longer than the beam aperture so that fringe fields of
all elements can be neglected. The horizontal and vertical
fields obey Maxwell’s equations and are coupled to each
other. The simplest representation of the kick can be given
in complex variables z ¼ xþ iy and the momentum trans-
formation through the nonlinear lens has the form

px ¼ ReFðzÞ; py ¼ �ImFðzÞ; (5)

where FðzÞ is any analytic function. The map (4) in this
form is automatically symplectic and the fields Hx (pro-
ducing kicks in the y direction) andHy (producing kicks in

the x direction) obey Maxwell’s equation.

IV. CONSTRUCTING A SUITABLE LINEAR
LATTICE

As was pointed out in Sec. II, any 1D lattice with a
��=2 phase advance and nonlinear kick (4) produces
integrable motion with a quadratic invariant in momentum.
Our goal is to construct a 2D lattice with nearly decoupled
x-y motion having an invariant of the type (2). If we have
enough lenses and straight sections, we can then, in prin-
ciple, produce a lattice having two places with very large
beta function ratios, one with large �x=�y and the other

with large �y=�x. The special kicks then mostly influence

only one degree of freedom at each location. It is also easy
enough to make linear phase advances equal to ��=2.
Here we investigate the simplest lattices with suitable
conditions.
Doublet case.—The simplest 2D linear lattice is a dou-

blet. Each plane has a focusing and a defocusing lens. For
simplicity, we would like to have horizontal and vertical
degrees of freedom similar to each other, so the simplest
doublet should have the same absolute value of quadrupole
focusing and the same length L of the two straight sections.
This lattice does not meet our purpose for the following
reason: the betatron phase advance condition (’b ¼
��=2) can be satisfied only for one value of the integrated
quadrupole gradients. The resulting matrix of the doublet
at the beginning of straight section (with focusing lens at
the end) is
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M ¼
�
�
�
�
�
�
�
�
�

1þ L
F 2Lþ L2

F

� L
F2 1� L

F � L2

F2

�
�
�
�
�
�
�
�
�

; (6)

where F is the focal length of the focusing quadrupole, and
�F is the defocusing strength of the other quadrupole. To
obtain the ��=2 phase advance, the trace of this matrix

must be zero. The only solution is F ¼ L=
ffiffiffi

2
p

. The maxi-
mum ratio of horizontal and vertical beta functions in this
case is achieved at the point of the focusing (horizontally)

quadrupole and is 4þ ffiffi

2
p

4� ffiffi

2
p � 2:1. This ratio is too small to

decouple the horizontal and vertical motion when the non-
linear kick is included (as is shown in the next section,
really good decoupled nearly integrable motion occurs
when this ratio is greater than 50).

Triplet case.—This case is not symmetric between the
horizontal and vertical directions, even though the matrices
for x and y motion can be equalized. If all straight sections
are the same length and the first and the third quadrupole
strengths are identical, this case has two free parameters,
namely, the ratios of the straight section length and the
focal lengths of the central and the first (and the third)
quadrupoles, respectively. Similar to doublet analysis, the
solutions can be easily obtained and analyzed. The maxi-
mum ratio of beta functions can be as large as 6.9 in one
plane and 2.4 in the other plane, where the central quad-
rupole focuses the particles. There still is not enough free-
dom to constrain the phase advances and obtain sufficiently
large beta function ratios.

Quadruplet case.—For the symmetric quadruplet we
have two choices: two doublets with alternating gradients
of adjacent quadrupoles, or two focusing followed by two
defocusing quadrupoles. The latter provides larger beta
function ratios, and is therefore our choice for the linear
lattice. This is the first symmetric lattice that has sufficient
freedom to allow arbitrarily large beta function ratios at the
nonlinear lens position, and phase advances of ��=2 in
both planes. Thus, if we obtain a solution for one plane, the
other plane is automatically satisfied. To apply this princi-
ple we assume a symmetric quadruplet with two identical
focusing quadrupoles and two identical defocusing quadru-
poles having the same absolute value of the gradient. The
straight sections have two different lengths: the shorter
sections surrounded by longer ones, and vice versa. The
symmetry gives the following simplifications—the tunes
for horizontal and vertical motions are automatically the
same and the horizontal beta functions produce the vertical
beta function under mirror transformation around the cen-
ter of straight section between focusing and defocusing
quadrupoles (we later call it S1). Therefore, once the large
ratio of beta functions is obtained in one plane, there is a
symmetry point with the same conditions in the other
plane.

The resulting lattice has the following sequence in the
horizontal direction F-S0-F-S1-D-S0-D-S1, where F, D
stand for focusing and defocusing quadrupoles with the

same absolute value of the gradient, S0 is the base straight
section with length unity (for simplicity, every focal and all
other lengths will be specified in units of this length), and
S1 is a variable length straight section. Thus, the lattice has
two free parameters—the absolute value of the quadrupole
gradient, and the length of the variable straight section.
Once we specify the frequency (the only accessible good
solution for us in this lattice has tunes of 0.75 in both
planes), we are left with only one parameter. The choice
of this parameter is up to us and we select the variable
straight section length. The ratio of beta functions is a
function of this parameter in our setup. We have two
good choices for the location of the horizontal nonlinear
kick—the focusing quadrupole position (1st choice) and
the center of the straight section between the defocusing
quadrupoles (2nd choice). In both cases the ratio of hori-
zontal and vertical beta function can be made as large as
desired. Figure 1 shows the dependence of these ratios on
the length of the variable section p (the tunes for the linear
part lattice are 0.75 here for both planes). One can see that
the larger ratio is achieved at the center of the section
between two defocusing quadrupoles. But this location
has one serious disadvantage: even though the ratio of
beta functions is large, the horizontal beta function itself
is rather small (of order unity in units of S0 length), as
compared to the beta function at the focusing quadrupoles
(which is of order 100). Therefore the nonlinear lens has to
be much stronger for the second choice. In the next section
we use the 1st choice and show the nonlinear motion for
various beta function ratios and various initial conditions.
The behavior of beta functions is shown in Fig. 2 for

p ¼ 2. The starting point of the plot is the first horizontally
focusing quadrupole. The nonlinear lens for the horizontal
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FIG. 1. The horizontal and vertical beta function ratios at the
focusing quadrupole (dashed line) and the center of the straight
section in between of the defocusing quadrupoles (solid line) as a
function of the variable straight section length p.
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tune spread is located at the very beginning of the lattice;
the vertical nonlinear lens is located at its center.

V. NONLINEAR DYNAMICS FOR VARIOUS BETA
RATIOS

In this section we explore the quadruplet linear lattice
and two nonlinear kicks that are placed at the focusing
(horizontal kick) and defocusing (vertical kick) lenses such
that the nonlinear lenses are separated by two straight
sections. The kicks are intended to produce the nonlinear
motion for both directions and they have the same parame-
ters for their respective planes. Therefore, there is absolute
symmetry for the horizontal and vertical planes. All the
coordinate parameters are measured in terms of the S0
straight section length. The kick has the form (5) with px ¼
Re az

bz2þ1
, py ¼ �Im az

bz2þ1
, where z ¼ xþ iy, and parame-

ters a, b are real for the horizontal nonlinear lens, and py ¼
Re az

bz2þ1
, px ¼ �Im az

bz2þ1
, with the same parameters and

notations for the vertical plane (note the swap of subscripts
for p from the horizontal to the vertical lenses). Figure 3
presents the exactly integrable 1D case when the initial y,
py are equal to zero and a ¼ �0:03=�max (only for the lens

with large x beta function that we call �max; the other lens
strength is equal to zero), b ¼ 1 for the lattice with the S1
length equal to 0.5. The horizontal and vertical coordinates
in this and all other figures of this section correspond to
normalized variables; for normalization we use linear lat-
tice Twiss parameters, taken at the beginning of straight
section S1. The figure shows cases for ten various initial
conditions, corresponding to ten different invariant lines;
each line consists of 1000 points.

To find the invariant in this case we express variables of
Sec. I via present coordinates such that the constructed
lattice matrix takes the form (1) with linear kick from RHS

(3) (as we mentioned, it is possible to do only if the
matrices have the same eigenvalues, and this condition
was met in course of the lattice construction). After ex-
pressing the old variables in terms of the present coordinate
and momentum, one has to substitute these into (2) to get
the invariant in the real lattice variables [one has to re-
member that if the fractional tune is �0:25 the opposite
sign straight section length and linear kick 2x are taken in
(1) and (3)].
For the 2D case investigation, we use the same initial

amplitudes for horizontal and vertical planes with a ¼
�0:03=�max, b ¼ 58=�max for both lenses, where �max

is the largest of the beta functions at the lens—the division
of the lens coefficients by the beta function is done to have
the same tune shift and tune spread from nonlinear lens for
different beta functions. Figure 4 shows three cases for
approximately the same ten initial conditions for all plots
but for various ratios of horizontal and vertical beta func-
tions (we call it B below) at the nonlinear kicks. One can
see that, for low values of B, the motion is coupled and
chaotic at large amplitudes. When B approaches 50, the
motion in both planes starts to look like decoupled 1D
motion in the large dynamic range of coordinates and
momenta. For values of B above 100, the motion fully
resembles that of the 1D case, and the dynamic aperture is
almost infinite.
For all these cases, the linear lattice tune is 0.75 and the

spread of frequencies is around 0.2. It means that, roughly
at every unit of betatron frequency we can achieve around
30% of the tune spread with regular nonlinear motion. Here
we introduce a simplified criterion for the lattice—it is
good for producing nonlinear spread if the motion is still
nearly regular and stable for amplitudes having 90% of the
maximal tune shift. We concluded that it happens for
values of B above 50 that correspond to the center plots
of the Fig. 4.
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FIG. 2. Horizontal (solid) and vertical (dashed line) beta func-
tions for p ¼ 2.
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Figure 5 shows what happens when one uses only an
octupole component instead of an ‘‘integrable’’ lens. We
took the second case, shown in Fig. 4, and used exactly the
same linear part and octupole term as the nonlinear lens,

nullifying all other terms. The available phase space
shrinks a factor of 5 in each dimension (note that the scale
in Fig. 5 is 5 times smaller than that in Fig. 4). In addition,
the motion becomes very chaotic at large amplitudes with
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FIG. 4. Horizontal (left) and vertical (right) phase spaces for 3 different beta ratios B: B � 10 (top), B � 58 (middle), B � 260
(bottom).
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FIG. 5. Octupole phase space for the horizontal (left) and vertical (right) motion for the beta ratios equal to 58.
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lots of resonant islands. All these large resonances are
absent in the integrable case. This comparison demon-
strates the profit of using ‘‘integrable’’ lattices.

VI. NONLINEAR LENS

The nonlinear kick (4) can be realized with two same-
current wires in an iron-free lens [the position of the wires
corresponds to the pole of the denominator in (4)], or with
the conventional iron magnets. For example, if the kick in
expression (5) were FðzÞ ¼ z

z2þ1
, the iron poles would look

like ones shown in Fig. 6.
The field has the same signature as in a quadrupole case

(the adjacent poles have opposite field), but unlike conven-
tional quadrupoles, the poles lack 90 degrees symmetry.
The pole profile is a smooth function of coordinates, much
the same as in the case of quadrupole poles, where y / 1

x ,

therefore the design of the nonlinear lens will be similar to
the design of quadrupole (or other multipole) lenses.

VII. COMPARISON WITH OTHER APPROACHES

Having described our approach, we would like to make a
brief comparison with other methods to avoid chaos and
increase the dynamic aperture of accelerator lattices. The
vast amount of published material, aimed at practical
results, can be divided into two groups.

The first group is focused on reducing the tune spread
thus avoiding resonance crossing. The details of analytical
procedures can be found in [12]; one example of eliminat-
ing the footprint for beam-beam effects can be found in
[13]. The resulting systems with zero foot print are inte-
grable—they can be obtained from linear systems by mak-
ing an arbitrary canonical transformation of coordinates
and momenta. The systems in these papers are drastically
different in a sense that the goal of the present construction

is to get as much betatron tune spread as possible, therefore
the resonance crossings are unavoidable in principle.
The second group of papers, aimed at improved integra-

bility, is focused on dynamic aperture limitations (see, e.g.,
[14,15]) and eliminating or controlling the resonance
strengths (see, e.g., [4,16]). Papers [4,5], mentioned in
the Introduction, are very close in spirit to the goals of
this paper—eliminating all resonances and achieving al-
most full integrability. This goal can be achieved (numeri-
cally, or analytically like in the present paper) in the 1D
case. As it is clear from [5], the elimination of 2D reso-
nances is a very tough procedure, taking into account the
fact that the horizontal and vertical degrees of freedom are
firmly coupled through Maxwell equations for the mag-
netic fields. The general situation is that if we want to have
a large tune spread, the number of available knobs is not
sufficient to create a quasi-integrable nonlinear 2D lattice.
This paper suggests that the 2D coupling resonances can be
efficiently suppressed by choosing the underlying linear
lattice to have large beta function ratios at nonlinear lens
position. Moreover, by introducing special lens profiles,
like in the previous section, one can kill all 1D resonances,
thus creating a realizable extremely nonlinear lattice with
nearly regular motion.
We would like to remark that the integrability is a very

fragile property and any nonlinear perturbation destroys it.
For example, the thin lens presentation of the kick is an
approximation and the difference between the real and thin
lens transformations produces a perturbation. The pertur-
bations can come from other sources, but in most cases,
small perturbations cause relatively little change in the
phase space (due to the so-called Kolmogorov-Arnol’d-
Moser theorem). This is always the case with real accel-
erators—the lattice design starts with an ideal linear lattice
and then takes into account all other elements (sextupoles,
octupoles, etc.), treating them as perturbations. In this
paper, the ideal lattice, like in the linear case, has predict-
able motion with controllable or zero strength resonances,
depending on parameters of the kick (4). But the tremen-
dous difference with the standard linear lattice approach is
that the nonlinear spread of betatron tunes is large from the
very beginning and comparable with the betatron tune
itself.
Concluding this section, we have to note that the goal of

the approach, presented in the paper, is not to advance the
theory of integrable systems but to make use of it in
applications to accelerator problems. One example of
such an application is the round colliding beam idea [1],
where the practical conditions of creating the round beams
were found. This was recently implemented with relative
success [17]. We develop the approach here in the same
vein. All the nonlinear kicks can be created by real 2D
magnetic fields using lenses with special profiles. The
linear lattices between them are a trivial piece that can be
realized in many ways. The goal of such a lattice is to
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FIG. 6. Nonlinear lens magnet pole profile (arbitrary units).
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advance beam intensities and space charge limits, similar
to the paper [7] idea of reducing beam halo by using
nonlinear elements.

VIII. CONCLUSION

This paper demonstrates that there exist a variety of
nonlinear 2D lattices with very large betatron tune spread
and nearly integrable resonance-free motion with unlim-
ited dynamic aperture. Possible lattice constructions and
nonlinear kick realizations are discussed.
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