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The correct implementation of the nonlinear lattice model is crucial to achieving the design perform-

ance in storage rings. We describe here a method for the simultaneous correction of multiple nonlinear

resonances based on local resonance measurements and numerical fits of the sextupole components. This

method has been applied for the simultaneous correction of two sextupole resonances excited in the

Diamond storage ring. The local correction of these resonances has been achieved with unprecedented

precision. We also point out that this method has the potential to lead to an effective reconstruction of the

local sextupole component errors around the whole ring circumference.
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I. INTRODUCTION

The performance of storage ring light sources or circular
colliders depends crucially on the correct implementation
of the nominal optics. Both the linear and the nonlinear
optics are usually the result of a long and complicated
process of optimization of the beam dynamics to achieve
the small emittance with a long lifetime and good injection
efficiency required in 3rd generation light sources or the
large dynamic aperture and high luminosity required in
circular colliders. While the correct implementation of the
linear optics has been substantially eased by fitting algo-
rithms such as LOCO [1], the calibration of the nonlinear
model of the storage ring still lacks an analogously com-
prehensive approach. Important steps forward were made
with the introduction of frequency map analysis [2] (FMA)
which offers clear information on the detuning with am-
plitude and the resonance structures excited in the storage
ring. A complementary technique based on the frequency
analysis of the betatron motion has been proposed to
measure the driving terms of the resonances [3,4] that
affect the beam motion and to establish their longitudinal
dependence along the ring [5].

Within the latter theoretical formalism, we have devel-
oped a method for the calibration of the nonlinear model of
the storage ring [6] which is based on a numerical fit of the
sextupole components with the aim of reproducing the
longitudinal dependence of the spectral lines and their
corresponding resonance driving terms. The correct cali-
bration of the linear optics is a prerequisite for the suc-
cessful modeling of the nonlinearities in the storage ring
and can be achieved with LOCO-type algorithms. This
method, described in Sec. II, has been applied to both

numerical tracking data and to machine turn-by-turn data
taken at the Diamond storage ring. In Sec. III we report the
result of the correction of the nonlinear lattice model. In
Sec. IV we report the results of the application of this
method to real machine data with the correction of two
nonlinear resonances at the Diamond storage ring.
Conclusions will be drawn in Sec. V.

II. THE METHOD

The frequency analysis of betatron motion can be used
to extract information on the resonance driving terms that
affect the nonlinear dynamics of the particle beam. It has
been shown [3,4] that each spectral line is proportional to a
specific resonance driving term, at least in the first order of
perturbation theory with the multipole components. We
want to show that the measurement of the spectral lines
can be used to correct the nonlinearities and to generate a
model of the ring that reproduces the dynamics. This
method is based on a least-squares fit of the lattice ele-
ments strength to minimize the difference between the
spectral content measured from all beam position monitors
(BPMs) in the machine and the ideal model. The spectral
lines, whose amplitude and phase should be controlled, are
selected according to which resonance appears to be most
excited in the ring.
Correspondingly, the lattice parameters to be fitted

should be selected among those that excite the selected
resonance, e.g. sextupole components should be fitted for
controlling spectral lines excited by third order resonances.
The resonance driving terms vary along the ring and their
value at each BPM can be obtained from the spectral
decomposition of the betatron oscillation signal using a
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refined fast-Fourier-transform algorithm [7,8] such as
those developed in the NAFF [2,9] or SUSSIX [10] codes.

For a particular resonance that needs to be compensated
for, since it significantly differs from the s-dependent
pattern expected from the model, one can build a target
vector Ameas whose components are the amplitude and/or
the phase of the spectral lines measured at each BPM. The
detailed relationship between driving terms and spectral
lines is reported in Refs. [3,4] and will not be repeated
here. Indicating the generic resonance mQx þ nQy with

ðm; nÞ, we recall, as an example, that if the resonance (3, 0)
is targeted, then the target vector to use is given by the
amplitude and phase of the spectral line at a frequency
ð�2; 0Þ in the horizontal plane of motion, which is excited
by the sextupoles in the ring

�A ð�2;0Þ
meas ¼ ðA1; . . . ; ANbpm;�1; . . . ; �NbpmÞ;

where Nbpm is the total number of BPMs in the ring. Each
component of this vector will depend on the particular
distribution of sextupoles in the ring, therefore we can
write

�A ð�2;0Þ
meas ¼ �Að�2;0Þ

meas ðS1; . . . ; SNsextÞ;

where Sk is the strength of the kth sextupole and Nsext is
the total number of sextupoles.

This target vector is then compared with the same target
vector computed from the ideal model Amodel. The distance
between these two vectors,

�2 ¼ X2Nbpm

j¼1

½Að�2;0Þ
model ðjÞ � Að�2;0Þ

meas ðjÞ�2;

gives a measure of the discrepancy between the real accel-
erator and the model. This quantity can be minimized by a
least-squares minimization procedure that involves fitting
the strength of the magnetic elements directly responsible
for the excitation of that particular spectral line. Several
algorithms can be used such as the singular value decom-
position inversion of the Jacobian matrix which defines the
dependence of the target vector A on the fit parameter
chosen:

Mjk ¼
@Aj

@Sk
:

We eventually opted for a Levenberg-Marquardt algo-
rithm [11] built-in in the MATLAB optimization toolbox that
proved quite effective and also allowed the introduction of
constraints on the overall variation of the sextupole com-
ponent. The Diamond storage ring has 168 BPMs and 168
sextupoles and one iteration for the fit takes typically
10 minutes for a target vector made of two resonances at
all BPMs (168� 2 ¼ 336 entries) on an Intel core 2
processor.

Once the sextupole components have been fitted to
reproduce the measured longitudinal dependence of the
spectral lines, these components are used to correct the
machine back towards the nominal model of the ring. The
target vector can be built using the amplitude and/or the
phase of several spectral lines according to the particular
problem and the particular set of magnetic errors that we
wish to control in the lattice.
Of course, the simple relationship between spectral lines

and resonance driving terms is based on the perturbative
analysis valid to the first order in the element strengths.
This approach breaks down when higher orders become
effective and the betatron motion is no longer quasiperi-
odic. The extension of these relations to higher order is
discussed in Ref. [4].

III. APPLICATION TO NUMERICAL TRACKING

We investigated the effectiveness of the proposed
method on the analysis of turn-by-turn data obtained
from numerical tracking of a single particle in the non-
linear model of the Diamond storage ring. To simulate a
realistic scenario, we introduced a series of random errors
in the sextupole components and used the technique out-
lined in the previous section to reproduce the longitudinal
pattern of the main spectral lines and therefore of the main
resonance driving terms excited in the ring. We found that
the method was capable of fully reconstructing the particu-
lar random sequence of errors that had been assigned to the
sextupole component. In this way we prove that the method
is capable of attacking the far more ambitious goal of
individually identifying the local errors in the sextupole
magnets.
The target vector was built using the amplitudes of the

spectral lines of the resonances which were cleanly detect-
able by the analysis of the turn-by-turn data with SUSSIX.
The applied kick excited betatron oscillations in both
directions with the same amplitude. It was essential for
the full reconstruction to use all the spectral lines that were
identified at all BPMs by the SUSSIX program. In this case
the target vector consisted of the amplitude of five spectral
lines (0, 2), ð�2; 0Þ, ð�1; 2Þ, ð�1;�2Þ, ð�3; 0Þ detected in
the horizontal plane of motion. The results of the analysis
are shown in the Figs. 1 and 2 which show the comparison
of the target vector before and after the fit. Figure 3 shows
that all the individual random errors could be well
identified.
We are quite aware of the fact that the phase information

of the spectral line can be equally useful to extract relevant
information on the nonlinear dynamics. Nevertheless, the
mixing of amplitude and phase information in the target
vector generates some difficulties related to the choice of
the relative weighting of the two pieces of information. It is
not yet fully clear how we may profit from the phase
information. This deserves further analysis.
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The tracking simulations did not consider sources of
errors such as BPM noise [12], BPM nonlinearities [13],
decoherence [5] of the betatron oscillations, and radiation
damping which naturally occur in a real storage ring.

Therefore the full reconstruction of the nonlinear model
of the real accelerator can only be achieved within the
limits that these errors impose.

IV. EXPERIMENTAL RESULTS AT DIAMOND

A campaign of measurements was started with the aim
of measuring the local longitudinal dependence of the
resonant driving terms, comparing them with the nonlinear
ring model and correcting the deviations by means of the
method outlined in the previous sections. The Diamond
storage ring is equipped with two independent pinger
magnets that can excite betatron oscillations to large am-
plitudes, it has turn-by-turn capabilities at all BPMs, and
has independently powered sextupole magnets. The experi-
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FIG. 2. (Color) Same comparison as in Fig. 1 after the sextu-
poles have been corrected with the fit procedure outlined in
Sec. II. Notice that the vertical scale in this plot is smaller by
roughly a factor of 4 compared to Fig. 1. The nominal model for
the Diamond bare lattice is in red and the machine model with
random errors in the sextupole component and their correction in
black. Notice also that the red line is barely visible underneath
the black line. This demonstrates how well this correction
technique may work.
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FIG. 3. (Color) Assigned sextupole components (blue) and their
reconstructed values with the numerical fit (red).
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FIG. 4. (Color) Comparison of the amplitude of the ð�1; 1Þ line
in the vertical plane. The spectral line from the model is blue
while the measured one is in red.
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FIG. 1. (Color) Comparisons of the target vector built with the
amplitude of five spectral lines (0, 2), ð�2; 0Þ, ð�1; 2Þ, ð�1;�2Þ,
ð�3; 0Þ in the horizontal plane for the nominal model for the
Diamond bare lattice (red) and for the machine model with the
assigned random errors in the sextupole (black).
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ments were always performed after an initial correction of
the linear optics with LOCO [1]. A residual� beating of less
than 1% peak to peak and a coupling correction better than
0.2% were routinely achieved. We applied the method
described in the previous sections to correct the longitudi-
nal dependence of the spectral lines excited by nonlinear

resonances. The pinger magnets were used to excite beta-
tron oscillations simultaneously in both planes, although
aperture limitations did not allow diagonal kicks to large
amplitudes. The turn-by-turn data of these experiments
were generated with horizontal kicks 4 times larger than
the vertical ones. We could detect the spectral lines asso-
ciated to the resonances ð1;�2Þ as seen in the vertical
plane (Fig. 4) and the resonance (3, 0) as seen in the
horizontal plane (Fig. 5). The comparison with the model
is already good without any correction of the sextupole
components, nevertheless some discrepancies appear and
these were the object of our investigation.
We have first tried the correction of a single nonlinear

resonance, in the hope that the other resonances would also
be reduced. The fit of the sextupole components converged
to a new setting of the sextupoles which reproduced very
well the spectral lines along the ring at all BPMs as shown
in Fig. 6. Nevertheless we observed that other spectral
lines, neglected in the minimization target, were indeed
poorly controlled and actually increased as a result of the
fit: Fig. 7 reports the difference between the measured and
model spectral line ð1;�1Þ controlled by the fit and the
ð�2; 0Þ line excluded from the fitting procedure, which
indeed appears to grow after two iterations. The contribu-
tion to the �2 of the ð�1; 1Þ line is reduced by almost a
factor of 4 while the contribution to the �2 of the ð�2; 0Þ
line is increased by 25%. The sextupole variation required
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FIG. 5. (Color) Comparison of the amplitude of the ð�2; 0Þ line
in the horizontal plane. The spectral line from the model is blue
while the measured one is in red.
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FIG. 6. (Color) Correction of a single resonance by fitting the ð�1; 1Þ line in the vertical plane: before correction (a); after one iteration
(b); after two iterations (c). The spectral line from the model is blue while the measured one is in red.

R. BARTOLINI et al. Phys. Rev. ST Accel. Beams 11, 104002 (2008)

104002-4



0 20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

D
ev

ia
tio

n 
in

 a
m

pl
itu

de
 o

f (
−

1,
1)

 li
ne

 

 

0 20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

D
ev

ia
tio

n 
in

 a
m

pl
itu

de
 o

f (
−

2,
0)

 li
ne

BPM Number

 

 

before correction
after correction

before correction
after correction

FIG. 8. (Color) Simultaneous reduction of the ð�1; 1Þ line in the vertical plane and of the ð�2; 0Þ line in the horizontal plane after the
sextupole component variation determined by the fit procedure.
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FIG. 7. (Color) Difference of the two spectral lines ð�1; 1Þ and ð�2; 0Þ at the beginning and at the end of the fit procedure (targeting
only one resonance).

CORRECTION OF MULTIPLE NONLINEAR . . . Phys. Rev. ST Accel. Beams 11, 104002 (2008)

104002-5



by the fit reached 10% which is deemed to be incompatible
with magnetic measurements results.

We therefore included a second resonance line to the
target. In this case, the sextupole fit converged with sub-
stantially reduced variations of the sextupole strengths
along the ring as shown in Fig. 8. The contribution to the
�2 of the ð�1; 1Þ line is reduced by almost a factor of 2 and
the contribution to the �2 of the ð�2; 0Þ line was also
reduced by 20%. The resulting sextupole variation is re-
ported in Fig. 9, and shows that now the sextupole variation
required is always less than 5% peak to peak. Applying
these sextupole strength corrections to the real machine
resulted in an increase in lifetime by 10%. This is a clear
demonstration, in storage ring light sources, that a deter-
ministic improvement of nonlinear beam dynamics leads to
an improvement of the performance of the storage ring.

V. CONCLUSION AND ACKNOWLEDGMENTS

We have presented a new technique for the correction of
the nonlinear resonances in a storage ring and proven its
effectiveness both in numerical tracking, where this tech-
nique can reproduce the nonlinear model of the ring, and in
real experimental data where a global improvement of the
nonlinear dynamics was achieved resulting in an increase
of the lifetime of the Diamond storage ring. The method
proposed provides a deterministic strategy for the simulta-
neous correction of multipole resonances, taking fully into

account their longitudinal dependence and it goes beyond
the compensation of nonlinear resonances performed so far
in synchrotrons [14]. The method requires independently
powered sextupole magnets. The benefits of the correction
of the leading terms of the nonlinear resonances with
sextupole powered in families will be the object of forth-
coming investigations.
This method provides useful information on the non-

linear part of the ring model, complementary to those
obtained by the FMA, by looking at the whole spectral
content of the betatron oscillations computed at all BPMs,
rather than the tune dependence with amplitude computed
at one BPM. Furthermore, we would like to stress that the
applicability of these techniques is not restricted to syn-
chrotron light sources but is equally valid for colliders
where typically higher order multipoles typically dominate
the nonlinear beam dynamics.
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FIG. 9. (Color) Sextupole component variation introduced by
the fit in Fig. 7 (red) and in Fig. 8 (black).
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