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Undulators are the most advanced sources for the generation of synchrotron radiation. The photons

generated by a single electron add up coherently along the electron trajectory. In order to do so, the

oscillatory motion of the electron has to be in phase with the emitted photons along the whole undulator.

Small magnetic errors can cause unwanted destructive interferences. In standard permanent magnet

undulators, the magnetic errors are reduced by applying shimming techniques. Superconductive undu-

lators have higher magnetic fields than permanent magnet undulators but shimming is more complex. In

this paper it is shown that coupled superconductive loops installed along the surface of the super-

conductive undulator coil can significantly reduce the destructive effect of the field errors. This new idea

might allow the building of undulators with a superior field quality.
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I. INTRODUCTION

Undulators are the most effective sources for brilliant x
rays in storage rings. Up to now undulators were mainly
made from permanent magnets. This technique was opti-
mized over many years. The maximum magnetic field
strength of permanent magnet undulators is limited by
the material properties of the permanent magnets [1,2].
Two new concepts tried to overcome these limitations.

The first one was the development of in-vacuum perma-
nent magnet undulators with a smaller magnetic gap and
higher on-axis field strengths. By cooling the in-vacuum
devices to temperatures between 150 K and liquid nitrogen
temperature, the on-axis field can be increased further
and at the same time the risk of radiation damage is
reduced [3–5].

A second concept consisted of replacing the permanent
magnets by superconductive wires. After first experiments
in the 1970’s [6,7], the development was resumed in the
early 1990’s [8,9] and several intermediate steps were
followed by the installation of a 100 period superconduc-
tive undulator with a period length of 14 mm in the storage
ring ANKA in April 2005 [10,11]. This device made it
possible to study the properties of the emitted radiation
[12], the beam heat load [13], the effect of the undulator on
the orbit [14], the field errors, and the development of
correction schemes for field errors [15,16].

In an undulator the electrons continuously emit white
light into a narrow cone around the forward direction
(z axis). These cones overlap and the photons emitted by
a single electron interfere. Because of this interference the
undulator emits a line spectrum along the z axis:

�L ¼ �u

2k�2

�
1þ K2

2

�
: (1)

�L is the wavelength of the photons, �u is the period length
of the undulator, � the relative beam energy, and k the
harmonic number of the emitted radiation (k ¼
1; 3; 5; . . . ). The deflection parameter K is K ¼ 0:0934 �
�u½mm� � ~B½T�, with ~B the amplitude of the magnetic field
on the beam axis.
In order to obtain the maximum brilliance, the photons

must add up constructively. A phase slip between the
electron and the photon would cause a line broadening
and intensity reduction of the emitted lines. A measure
for the deviation between electron and photon phase is the
so-called phase error. For an overview see [17,18].
Field errors in permanent magnet and hybrid (permanent

magnets and poles) undulators can be due to a number of
factors, e.g. variation of permanent magnet strength, mag-
netization errors, material inhomogeneities, and mechani-
cal tolerances [1,18].
In superconductive undulators the distance of the poles

and wire bundles to the beam axis and the period length
vary around the nominal values. Therefore, by ensuring
tight mechanical tolerances and by iteratively applying
mechanical measurements and mechanical corrections (re-
adjusting poles, grinding, etc.), it is possible to reduce the
expected phase errors significantly. Other possible sources
of field errors are variations in pole material and persistent
currents. Electrical shimming concepts have been pro-
posed and verified for single undulator periods [19,20].
These have subsequently been extended to whole undula-
tors [16,21,22].
For both types of undulators shimming is an iterative and
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shim coil, and verifying the improved field quality. This
provided the stimulation to think about concepts for super-
conductive undulators where field errors are compensated
automatically without additional steps of shimming [23].

II. INDUCTION SHIMMING

The induction-shimming concept for superconductive
undulators is based on Faraday’s law of induction,

I
C

~Ed~l ¼ � d

dt

Z
S

~Bd ~A; (2)

where ~B is the magnetic flux density over the area S with

the contour C, ~E is the electrical field strength, and d ~A is
the surface element. The line integral of the electric field

strength ~E along C is equal to the negative time derivative

of the integral of the magnetic flux density ~B over the area
S, which is confined by the contour C.

Using an ideal conductor along the contour, for instance
a superconductive closed loop, Eq. (2) is reduced to

0 ¼ d

dt

Z
S

~Bd ~A: (3)

In other words, a change of the magnetic flux through the
closed loop is compensated by the magnetic flux produced
by the induced current.

A. One period with closed loop

The idea is to use closed superconductive loops for
phase-error compensation. These closed loops must be
arranged in such a way that for an ideal undulator the
magnetic flux enclosed by one loop is equal to zero. This
is the case when the loop covers integer multiples of
undulator periods.

In the following a superconductive closed loop is con-
sidered, which is installed on the undulator surface and
covers a full period (see Fig. 1). Further on, it is assumed
that the magnetic flux in each half period is different. For

the sake of simplicity it is assumed that the flux in each half
period has a rectangular shape. The magnetic flux enclosed
by the superconductive loop is not zero [see Fig. 1(a)].
The magnetic flux in the first and second half period u1

and u2 and the flux y1 produced by the loop superpose to
zero:

y1 þ u1 þ u2 ¼ 0: (4)

The flux w1 and w2 in each half period is changed to

w1 ¼ u1 þ 1
2y1 (5)

w2 ¼ u2 þ 1
2y1: (6)

Equations (4)–(6) yield

w1 þ w2 ¼ 0

! w2 ¼ �w1 ¼ w:
(7)

Equations (5) and (6) can be rewritten as follows:

w ¼ �u1 � 1
2y1 w ¼ u2 þ 1

2y1;

and solved for w,

w ¼ �u1 þ u2
2

: (8)

The current in the loop equalizes the field strength accord-
ing to Eq. (3). This is shown in Fig. 1(c).

B. Generalization for n overlapping closed loops

In the following, induction shimming with superconduc-
tive closed loops is extended to n closed loops.
The system is shown in Fig. 2, with the magnetic flux un

in the nth half period (n ¼ 1; 2; 3; . . . ), the correction flux
ym produced by the closed loopm (m ¼ 1; 2; 3; . . . ; n� 1),
and the resulting fluxes wn.
The set of equations for Faraday’s law can be written as

y1 þ u1 þ u2 þ 1
2y2 ¼ 0

y2 þ u2 þ u3 þ 1
2y1 þ 1

2y3 ¼ 0

..

.

yn�1 þ un�1 þ un þ 1
2yn�2 þ 1

2yn ¼ 0

yn þ un þ unþ1 þ 1
2yn�1 ¼ 0:

(9)
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FIG. 1. (Color) Influence of a superconductive closed loop in-
stalled at the undulator surface. The loop covers a single un-
dulator period. Without the induced current in the loop (a) the
magnetic flux in the two half periods is different. For the sake of
simplicity it is assumed that the flux has a rectangular shape.
When the loop is installed, the induced current produces a
correction flux [red (b)] and equalizes the field strength accord-
ing to Eq. (3) (c).
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FIG. 2. (Color) Rectangular flux with nþ 1 half periods and n
overlapping closed loops.
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The magnetic flux in each half period is

w1 ¼ u1 þ 1
2y1

w2 ¼ u2 þ 1
2y1 þ 1

2y2

..

.

wn ¼ un þ 1
2yn�1 þ 1

2yn

wnþ1 ¼ unþ1 þ 1
2yn:

(10)

Substituting these equations into the closed-loop equa-
tions (9) gives

w1 þ w2 ¼ 0

w2 þ w3 ¼ 0

..

.

wn�1 þ wn ¼ 0

wn þ wnþ1 ¼ 0;

which is equal to

w ¼ �w1 ¼ �w2 ¼ � � � ¼ �wn ¼ �wnþ1: (11)

The magnetic flux in each half period becomes

w ¼ �u1 � 1
2y1

w ¼ �u2 � 1
2y1 � 1

2y2

..

.

w ¼ �un � 1
2yn�1 � 1

2yn

w ¼ �unþ1 � 1
2yn;

which can be solved for w:

w ¼ �u1 � u2 � � � � � un � unþ1

nþ 1
: (12)

As with the one loop system described before, the system
of n overlapping closed loops adjusts the absolute values of
the magnetic flux in each half period to the same level.

III. GENERALIZATION FOR BIOT-SAVART
CLOSED LOOPS

In the following the concept is extended to sinusoidal
fields and the field produced by the current in the loops is
described by the law of Biot-Savart.

For the sake of simplicity the closed loops are consid-
ered to consist of ideally superconducting long straight
wires perpendicular to the beam direction (z axis). The
loop parts parallel to the e-beam direction can be neglected
due to their large distance from the e-beam.

A. Faraday’s law for overlapping closed loops in a long
undulator

Faraday’s law of induction [see Eq. (2)] for one closed
loop can be written as

_I ¼ � 1

L
_�; (13)

where _� is the time derivative of the magnetic flux through
the closed loop, L is the self-inductance of the loop, and _I
the time derivative of the induced current. For an
induction-shimming scheme with overlapping closed
loops, the coupling between the loops also has to be
considered. The coupling between loop i and loop j with
a mutual inductance Mij is defined by

_I i ¼ Mij
_Ij: (14)

Combining Eqs. (13) and (14) and solving for _� gives

_� i ¼ L

�X
j�i

Mij
_Ij � _Ii

�
: (15)

When the current in the undulator main coil is turned on at
the time t0, the flux through the closed loops is changed
from zero to a certain value and a current I is induced.
Integration of Eq. (15) yields

�i ¼ L

�X
j�i

MijIj � Ii

�
: (16)

The self-inductance L and the mutual inductances Mij are

defined by the geometrical arrangement and the design of
the closed loops.

B. Biot-Savart’s law for overlapping closed loops in a
long undulator

In a real superconductive undulator, a set of overlapping
closed loops will be mounted in the way shown in Fig. 3.
One possibility would be to use high temperature super-
conductor loops sputtered on a substrate and structured by
applying lithographic techniques. The achievable geomet-
ric accuracy with this technique is in the order of 10 nm.
The undulator consists of N periods and the shimming

system of 2N � 1 closed loops. The loops are numbered
from the entrance of the undulator (1; 2; . . . ; 2N � 1).
Errors of the undulator magnetic field induce correction
currents in the closed loops. The main field and the cor-
rection fields superpose in the beam plane. For this ar-
rangement of superconductive closed loops, the self-
inductance and the mutual inductances will be determined
in the following with the help of Biot-Savart’s law.

The magnitude of the magnetic flux density ~B at a point

P at the distance R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p
caused by a current I in a

long straight wire, running parallel to the x axis, is given by
[24]
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j~Bj ¼ �0

4�
IR

Z 1

�1
dl

ðR2 þ l2Þ3=2 ¼
�0

2�

I

R
: (17)

�0 ¼ 4�� 10�7 Vs
Am is the magnetic permeability in vac-

uum. The coordinate system is defined in Fig. 3.
With cos� ¼ z

R and the above definition of R, the y

component of the magnetic flux density at a point can be
calculated as

Byðy; zÞ ¼ j~Bj cos� ¼ �0I

2�

z

z2 þ y2
; (18)

where z and y are the distances from the center of the
conductor to point P. The conductor has the dimensions
wcc � hcc.

Treating this as a two-dimensional problem, the mag-
netic flux produced by the loop shown in Fig. 4 is

� ¼ 2
Z �u�ð3=2Þwcc

wcc=2
Byðz0Þdz0 ¼ 2

�0I

2�

Z �u�ð3=2Þwcc

wcc=2

1

z0
dz0

¼ 2
�0

4�
I

�
ln
ð�u � 3

2wccÞ2
ðwcc

2 Þ2
�
¼ �LI: (19)

The mutual inductances Mij for i � j and i, j ¼
1 . . . ð2N � 1Þ can be calculated with the help of Fig. 5.
Defining

ak ¼ LMi;j (20)

with k ¼ jj� ij and

�k ¼
�
1 if k is odd
0 if k is even;

ak is given by

ak ¼ �0

2�

Z ½ðk=2Þþ1��u�ð3=2Þwcc

ðk=2Þ�uþð1=2Þwcc

z0

z02 þ ð�khccÞ2
dz0

� �0

2�

Z ðk=2Þ�u�ð1=2Þwcc

½ðk=2Þ�1��uþð3=2Þwcc

z0

z02 þ ð�khccÞ2
dz0; (21)

or

ak ¼ �0

4�

�
ln

�½ðk2 þ 1Þ�u � 3
2wcc�2 þ ð�khccÞ2

ðk2�u þ 1
2wccÞ2 þ ð�khccÞ2

��

� �0

4�

�
ln

� ðk2�u � 1
2wccÞ2 þ ð�khccÞ2

½ðk2 � 1Þ�u þ 3
2wcc�2 þ ð�khccÞ2

��
: (22)

The integrals were solved analytically [25].
Equation (16) becomes

�1

�2

..

.

�2N�1

0
BBBB@

1
CCCCA ¼ �Mcc

I1
I2
..
.

I2N�1

0
BBBB@

1
CCCCA; (23)

with the symmetrical matrix

Mcc ¼

L a1 a2 � � � a2N�1

a1
. .
. ..

.

a2
. .
.

a2
..
. . .

.
a1

a2N�1 � � � a2 a1 L

0
BBBBBBBBB@

1
CCCCCCCCCA
: (24)

The resulting magnetic field along the beam axis can be
written in the form

FIG. 4. One closed loop made out of two long straight wires.
FIG. 5. Two overlapping closed loops with induced currents I1
and I2.

e−

y

z

closed loop correction coils

FIG. 3. (Color) Cross section of an undulator with the main coils (green, iron; red, superconductive wire bundles) and overlapping
closed loops for correction (magenta) placed close to the main coils.
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ByðzÞ ¼ By;mainðzÞ þ
X2N�1

l¼1

By;lðzÞ; (25)

where By;mainðzÞ is the magnetic field along the beam axis

generated by the undulator main coils and By;lðzÞ is the

field generated by the closed-loop l [see Eq. (18)].

IV. SIMULATIONS

In the following it is assumed that the magnetic field is
sinusoidal. Amplitude and period length can be varied in
each half period. The midplane of the superconductive
closed loops is considered to be 1 mm away from the
source (main coil) and 2.5 mm from the beam plane. The
undisturbed field amplitude on axis is 1 T.

A. Correction of a single field error

For a first simulation, a three period undulator has been
modeled with a 10% too high second maximum. A single
pole, which is closer to the beam than the others, would
cause this error. The field plot along the beam axis with and
without induction shimming is shown in Fig. 6. The second
maximum was reduced by about 7% from 1.1 to 1.03 T.
The absolute values of the neighboring minima were in-
creased to 1.025 T and the first maximum was increased to
1.015 T. The changes in the third maximum and minimum
were negligible. The error previously localized in one half
period was distributed over two periods.

The comparison of the first field integrals, with and
without induction shimming, is shown in Fig. 7. The final
value of the first field integral was reduced by a factor of 2
and the sign changed.

Comparing these results with those obtained in Sec. II
with rectangular fields shows that the method with coupled
Biot-Savart loops is somewhat less effective. This is due to
the fact that in the rectangular field model the field is

assumed to be confined inside the loop. But in reality the
field generated by a loop expands to some extent into the
space outside the loop and reduces the efficiency of the
method. This reduction in efficiency can be partly com-
pensated by using a different arrangement of the loops: the
loops cover two or more periods instead of one.

B. Monte Carlo simulations

In a superconductive undulator, statistically distributed
mechanical deviations are the main reasons for phase
errors. Figures 8 and 9 show the phase-error distribution
calculated for 1000 undulators with and without induction
shimming. The undulators consist of 50 periods. Normally
distributed variations of the wire-bundle y positions (anti-
symmetric field deviation) and pole y positions (single field
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FIG. 6. (Color) Comparison of the magnetic field along the
beam axis with (black) and without (red) induction shimming.
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FIG. 7. (Color) Comparison of the first field integral along the
beam axis with (blue) and without (red) induction shimming.
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FIG. 8. (Color) Phase-error distribution for 1000 50-period un-
dulators without induction shimming; ��B=B;coil ¼ ��B=B;pole ¼
3� 10�3.
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distortion at one extremum), both with ��B=B ¼ 3� 10�3,

were assumed.
In a second step the influence of a longitudinally mis-

aligned induction-shimming system on the efficiency of
the correction was examined. Therefore the whole
induction-shimming loop arrangement was moved
0.5 mm against the zero crossings of the undulator main
field. Figure 10 shows the phase-error distribution calcu-
lated for 1000 undulators with the misaligned induction-
shimming system.

The width of the phase-error distribution with induction
shimming is significantly lower and the tail of the distri-
bution is shorter. In case of a longitudinally misaligned
induction-shimming system, the correction efficiency is
reduced. The results are shown in Table I.
In addition, angular misalignments of the shimming

system have to be considered. A lateral cant (roll) of the
shim substrate will (i) reduce the flux enclosed by the
loop and therefore reduce the correction current and
(ii) generate additional horizontal field components.
A short estimation shows that these effects are small and

therefore can be neglected in relation to the longitudinal
misalignment: Assume a width of the substrate of 50 mm
(x axis). The shim substrate is mounted at x ¼ �25 mm
directly on the coil surface and at x ¼ þ25 mm it is
misplaced by 1 mm from the coil surface. The substrate
has an angle (dy=dx) relative to the coil surface of
arctanð1=50Þ. The projected loop area and therefore the
enclosed flux is reduced to cos½arctanð1=50Þ� ¼ 99:98% of
the flux enclosed by a perfectly positioned loop. The
induced current and the total correction field are reduced
by about the same amount. The correction field has in first
order an angle of arctanð1=50Þ to the y axis. The vertical
correction field has then a value of fcos½arctanð1=50Þ�g2 ¼
99:96% and the additionally produced horizontal
field component a value of sin½arctanð1=50Þ� �
cos½arctanð1=50Þ� ¼ 1:99% of the perfect vertical correc-
tion field.
Assuming that the shimming system can correct field

errors not larger than 1% of the main coil field, the hori-
zontal field component is negligible small. In addition, a
misplacement by 1 mm seems to be a dramatic value:
0.1 mm is more likely the worst case. In this case the
effects are reduced by a factor of 10 compared to the
example given above.
Since the shim substrate is in general much longer than

wide a rotation around the vertical axis (y axis) has an even
smaller effect on the shimming efficiency than the one
caused by a lateral cant.
The positioning of the induction-shimming system can

be done iteratively. Therefore, misalignments can be re-
duced to an acceptable limit.
As discussed in the previous section the phase-error

reduction could be further increased by using a different
arrangement of the loops.
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FIG. 9. (Color) Phase-error distribution for 1000 50-period un-
dulators with induction shimming; ��B=B;coil ¼ ��B=B;pole ¼
3� 10�3.

TABLE I. Comparison of the confidence levels in the phase-
error distributions with and without induction shimming (ind.
shim.).

Without

ind. shim.

With

ind. shim.

Misaligned

ind. shim.

Peak of the distribution 3.0� 2.0� 2.5�
50% level 3.9� 2.5� 3.0�
99.7% level 29� 11� 11.5�
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FIG. 10. (Color) Phase-error distribution for 1000 50-period
undulators with a induction-shimming system misaligned by
0.5 mm against the zero crossings of the undulator main field;
��B=B;coil ¼ ��B=B;pole ¼ 3� 10�3.
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V. CONCLUSION

A new shimming concept for superconductive undula-
tors is described. The simulations showed that the phase
error is reduced significantly.

The efficiency of the correction can be increased by
using different loop arrangements: loops covering two or
more periods instead of one.
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