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Operation with natural chromaticity in a linear nonscaling fixed field alternating gradient (FFAG)

accelerator causes crossing of the low order resonances such as integer and half-integer. Although those

resonances are not systematic ones, small errors, such as a typical misalignment of 10 �m rms,

significantly increase particle amplitude when the accelerator is operated with a slow acceleration rate.

For example, there is practically no dynamic aperture if it takes 1000 turns to finish the whole acceleration

cycle. Chromaticity correction with sextupole and octupole reduces the maximum available dynamic

aperture in a lattice without errors. On the other hand, the accelerator becomes less sensitive to errors. To

use a nonscaling FFAG for applications where, unlike a muon accelerator, the large acceptance is not a

high priority demand (such as a proton driver or a particle therapy accelerator), chromaticity correction

seems to be an essential ingredient.

DOI: 10.1103/PhysRevSTAB.11.094003 PACS numbers: 29.20.�c, 41.85.�p, 29.27.�a

I. INTRODUCTION

The proposed neutrino factory requires muon accelera-
tion to 20 or 50 GeV=c [1]. Since a muon beam has short
lifetime of 2:2 �s at rest and large emittance of 30�
10�3� mrad [1], a suitable accelerator has to accelerate
muons quickly with large acceptance. An obvious candi-
date for a muon accelerator is a linear accelerator (linac).
However, from a rf power efficiency point of view, a
repetitive use of linac with arcs at both ends was suggested;
that is known as a recirculating linear accelerator [2].
Another candidate for a muon accelerator with similar
advantage in rf power efficiency is a fixed field alternating
gradient (FFAG) accelerator. Because of the small orbit
shift during acceleration which can fit in a single magnet
aperture, a beam can circulate for many turns in a FFAG
lattice; thus, the rf power requirement is reduced. Unlike a
conventional synchrotron, the repetition rate or accelera-
tion time is determined only by the available rf power with
a constant magnetic field.

A scheme of a neutrino factory based on a cascade of
muon FFAG accelerators was first proposed in Japan [3].
The FFAG employed in the proposal was a conventional
type called a scaling FFAG. A scaling FFAG satisfies the
so-called cardinal conditions [4,5] so that the transverse
tune is constant in both planes. The magnetic field profile
in the radial direction has a rk dependence, where k is a
constant field index, and the shape of the orbits is similar
for different momenta although the average radius in-
creases as the beam is accelerated. The field profile which

has a steeper gradient in larger radius region implies that
the orbit shift is smaller in the high momentum side.
The constant transverse tune may be a necessary condi-

tion for an ordinary accelerator such as a synchrotron
because, if there is tune excursion in tune space, a particle
will cross resonances which may increase particle ampli-
tude and eventually cause a particle to hit the vacuum
chamber. When a FFAG accelerator is used for muon
acceleration, however, the constant tune condition may
be violated because a beam circulates for only 10 to 20
turns and the amplitude built up with resonance crossing
will be harmless. In fact, we showed in a previous paper
that a beam was affected not by resonances, but rather by
random kicks [6]. A FFAG without the cardinal conditions,
and optimized from the point of view of compactness and
simplicity, namely with only linear lattice magnets such as
dipoles and quadrupoles, is called a nonscaling FFAG [7–
9]. More recent designs of a neutrino factory based on
muon acceleration in a FFAG have adopted such a non-
scaling type [1].
Although the original purpose of a nonscaling FFAG is

muon acceleration, the compact design and simple lattice
magnets are attractive characteristics that led to considera-
tion of wider applications. Among them, a particle therapy
machine [10] and an accelerator driven system (ADS) [11]
are seriously considered as applications of a nonscaling
FFAG. In those accelerators, acceleration time is relatively
longer, such as a few ms compared with that for muon,
which is a few �s, because one does not have to compete
with particle life time and the rf voltage should be moder-
ate to make the accelerator cost reasonable. However, the
slow acceleration rate required for these applications
means the problem of resonance crossing becomes an issue*shinji.machida@stfc.ac.uk
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again. The deterioration of beam quality as a function of
errors in a lattice, speed of resonance crossing, etc. should
be investigated to ascertain whether such applications are
feasible. There were studies on the similar issue such as
Aiba et al. [12] which discussed the particle trapping in a
nonsystematic nonlinear resonance crossing and Lee et al.
[13] which discussed crossing of space charge induced
systematic resonances. This paper, however, intended to
study the effects of crossing of the lowest order non
systematic resonance because alignment errors were inevi-
table in practice and space charge effects could be reduced
with a high machine repetition rate and a lesser number of
particles per bunch.

In this paper, we studied amplitude growth of a particle
with tracking simulations in a nonscaling FFAG when it
was operated with a much slower acceleration rate than
that for muons; we considered proton acceleration with
moderate rf voltage. First, the results were compared with
an analytical relation by Baartman et al. [14,15]. We then
calculated the required aperture as a function of errors and
acceleration rate. We also studied the effects of nonline-
arities which reduce the tune excursion.

II. SIMULATION SETUP

A. Accelerator model

We used the nonscaling FFAG lattice for the electron
model for muon acceleration (EMMA) as a simulation
base [16]. A proposed nonscaling FFAG for medical use
has similar optics although the acceleration rate is much
slower [10]. The lattice of EMMA consists of 42 doublet
focusing cells. The focusing (QF) and defocusing (QD)
quadrupole magnets were shifted in the radial direction to
produce a dipole field component. Both transverse tune and
the time of flight dependence on momentum were adjusted
by changing the field gradients of both QD and QF, and
their radial position, with respect to the machine center.

The acceleration was modeled simply by a constant
energy increase of a particle at each cell. There are two
reasons for this simplification. One is literally its simplicity
and the consequent reduction in computational time. The
other is, more importantly, to avoid longitudinal and trans-
verse coupling. In a linear nonscaling FFAG without chro-
maticity correction, the revolution time depends on the
transverse amplitude [17]. The large amplitude particle,

for example, takes more time to circulate and that makes
energy spread in a bunch. Beyond some certain transverse
amplitude, a particle goes to the deceleration phase and is
no longer accelerated. In order to separate this problem
from the particle loss due to resonances, we applied a
constant energy gain independent of transverse amplitude.
The injection and extraction momentum were chosen at

10.75 and 20:75 MeV=c, respectively. Although the design
values were 10.50 and 20:50 MeV=c, respectively, the
slight shift of injection momentum in simulation made
both the initial horizontal and vertical tune stay away
from integer values and therefore resulted in a smaller orbit
distortion to start with when alignment errors were in-
cluded. Table I shows the main parameters of EMMA.
Figure 1 shows horizontal and vertical total tune as a

function of momentum. Integer resonances were excited by
misalignments of the magnets. Because a dipole compo-
nent was made with a shift of the quadrupole magnets, the
alignment errors of the quadrupoles introduced a nonuni-
form dipole component around the ring. We assumed that
two quadrupole magnets of doublet focusing were on the
same table so that QD and QF were misaligned in the same
direction and with the same magnitude. There was no
assumed misalignment in the longitudinal direction or
rotation of magnets.

B. Particle amplitude

The closed orbit distortion at injection momentum with
misalignment errors was first found by iteration, which
defined the origin of initial phase space coordinates.
Then a particle was launched from the origin. The particle
amplitude was, however, measured with respect to the
phase space origin which was defined without misalign-
ment errors. The evolution of the amplitude was calculated
as

2Jy ¼
y2 þ ð�yyþ �yy

0Þ2
�y

; (1)

where �y and �y are lattice functions of the lattice without

TABLE I. EMMA parameters.

Cell length 394.481 mm

Number of cell 42

Focusing Doublet

Quadrupole gradient

QF 6:7 T=m
QD 4:9 T=m
Injection/extraction momentum 10:50=20:50 MeV=c

14

12

10

8

6

4

tu
ne

2018161412
momentum [MeV/c]

 horizontal
 vertical

FIG. 1. (Color) Horizontal and vertical total tune as a function of
momentum.
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errors. Although the particle amplitude may be defined
with respect to the closed orbit for each individually mis-
aligned lattice, the difference of the amplitude with respect
to the phase space origin with and without misalignment
errors was small compared with the amplitude growth due
to resonances that will be shown later. From a practical
point of view, we are interested in how much physical
aperture, measured with respect to the center of vacuum
chamber, is needed.

The calculated 2Jy had high frequency ripples. In order

to remove those ripples and show the amplitude behavior
relevant to integer tune crossing, 2Jy was smoothed with

the Savitzky-Golay filter [18].

III. SIMULATION RESULTS

A. Single particle behavior

Figure 2 shows examples of vertical amplitude growth as
a function of tune. The amplitude was normalized with
momentum (��) so that it stayed constant with accelera-
tion. We will show only the vertical motion in this paper
because the horizontal motion is similar and vertical aper-
ture is more restricted than horizontal in practice. A fixed

field accelerator always has wider aperture in horizontal
plane to accommodate orbit shift due to momentum
change. Higher tune was plotted on the left side because
the tune decreased when a particle was accelerated. With
an acceleration rate of 100 turns to finish the whole cycle,
the growth at each integer resonance crossing is already
visible as shown in Fig. 2(a). This becomes more obvious
when an acceleration rate is slower, for example 1000 turns
to finish as shown in Fig. 2(b). Note that the magnitude of
misalignment in 100 turns acceleration is larger so that the
maximum amplitude is larger in Fig. 2(a) than that in Fig. 2
(b). The finite initial amplitude is due to the definition of
the particle amplitude with respect to the phase space
origin without misalignment errors as discussed in the
previous section. The magnitude is, however, negligible
compared with the growth due to the resonance crossing.
We have prepared 501 (enough to see trends) different

patterns and amplitudes of alignment errors altogether. The
magnitude of the misalignment of 42 doublets was as-
sumed to have a Gaussian distribution with a cut at 2�.
For each misaligned lattice, a particle was tracked from the
closed orbit defined at the injection momentum and the

50x10-3

40

30

20

10

0

Sq
rt

(2
J n

or
.,y

) 
[m

1/
2 ]

14 12 10 8 6 4

Qy

(a)

12x10-3

8

4

0

Sq
rt

(2
J n

or
.,y

) 
[m

1/
2 ]

14 12 10 8 6 4
Qy

(b)

FIG. 2. Examples of single particle normalized amplitude evo-
lution when alignment errors are included: (a) 100 turns to finish
the whole cycle, (b) 1000 turns to finish the whole cycle. Note
that the magnitude of misalignment in 100 turns acceleration is
larger so that the maximum amplitude is larger in (a) than that
in (b).
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FIG. 3. (Color) Maximum amplitude through the whole cycle
for two example acceleration rates of 100 and 1000 turns.
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FIG. 4. Amplitude growth as a function of acceleration rate.
Error bars indicate rms deviations from the fitted line in Fig. 3.
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maximum value of Eq. (1) through the whole cycle was

recorded. Figure 3 shows
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jy;max

p

as a function of the

alignment errors.

Since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jy;max

p

was more or less proportional to the

alignment errors, we fitted the data with a straight line.
Together with other acceleration rates: 200, 500, 2000

turns, the gradient of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jy;max

p

as a function of the accel-

eration rate is depicted in Fig. 4. When the inverse of the
square root of a tune change per turn is taken as an
abscissa, all the data sit on a straight line. The error bars
indicate rms deviations from the fitted line in Fig. 3. To
define the tune change per turn, we took the number of
integer tune to be crossed, which is 8, divided by the total
number of turns, although it varied from this approxima-
tion slightly as Fig. 1 suggests.

B. Dynamic aperture

The amplitude growth due to integer resonance crossing
can put a particle outside the stable region in transverse
phase space. We defined the maximum amplitude of sur-
vival particles that were accelerated to the final momentum
as the dynamic aperture. Initially, a particle had the same
2Jx and 2Jy and was tracked for the whole acceleration

cycle. Figure 5 plots a set of initial particle amplitudes that
were NOTaccelerated to the final momentum as a function
of the alignment error. The step size is 20� 10�6� m rad
normalized (that is geometrical emittance of about 1�
10�6� mrad). The figure shows that there is no dynamic
aperture with alignment errors of 15 �m or more when the
acceleration takes 1000 turns.

IV. DISCUSSIONS

A. Amplitude growth

The simulation results show that the particle amplitude
growth due to the integer resonance crossing is propor-
tional to alignment errors and inversely proportional to the
square root of the tune change. That indeed agrees with a
relation Baartman et al. derived analytically [14,15]:

�A ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dQ=dT
p

�R
�B

Bn

Q
; (2)

where �A is the amplitude growth [m], dQ=dT is the tune
change per turn, �R is the average radius of an accelerator
[m], �B is the average bending field strength [T], Bn is the
nth harmonic content of error fields [T], and Q is the tune.
When Q ¼ n, the amplitude growth is excited.
To compare with the simulation results quantitatively,

we substituted �ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jy�y

p Þ for �A with �y ¼ �R
Q and dB

dy fn
forBn, where

dB
dy is the quadrupole strength and fn is the nth

Fourier component of the alignment errors,

fn ¼
X

mmax

m¼1

am expðjnmÞ: (3)

The relation finally becomes

�ð
ffiffiffiffiffiffiffi

2Jy
q

Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dQ=dT
p

ffiffiffiffi

�R
p
�B

ðdB=dyÞfn
ffiffiffiffi

Q
p : (4)

It is further modified as

�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jy;max

p Þ
��

�

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dQ=dT
p

¼ �
ffiffiffiffi

�R
p
�B

dB

dy

ffiffiffiffiffiffiffiffi

nres
p �

fn
��

ffiffiffiffi

Q
p

�

;

(5)

where nres is the number of integer resonances to be
crossed and h i takes the average. We assumed that the
maximum amplitude after nres crossing was

ffiffiffiffiffiffiffiffi

nres
p

times

the growth per crossing because there should be no corre-
lation in the betatron phases every time a particle received
the growth. Using the following values,

�R ¼ 2:5 ½m�;
�B ¼ B�

�R
¼ 0:020 ½T�;

dB

dy
¼

�

dB

dy

�

QF
þ

�

dB

dy

�

QD
¼ 6:7� 4:9 ¼ 1:8 ½T=m�;

nres ¼ 8; and
�

fn
��

ffiffiffiffi

Q
p

�

from the 501 different error patterns;
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FIG. 5. (Color) Initial amplitude which was not accelerated to
the final momentum. Black markers show 100 turns acceleration
and red markers show 1000 turns acceleration. Solid curves show
the average among the nearby points.

SHINJI MACHIDA Phys. Rev. ST Accel. Beams 11, 094003 (2008)

094003-4



the right-hand side of the equation (5) becomes 61 m�1=2.
The gradient of Fig. 4, on the other hand, indicates

50 m�1=2. Taking account of the adiabatic damping of
the amplitude, which in fact reduces the maximum ampli-
tude in simulation less than

ffiffiffiffiffiffiffiffi

nres
p

times the growth (but the

reduction rate is no less than 1=
ffiffiffi

2
p

where 2 is the initial and
final momentum ratio), the agreement between the simu-
lation results and the formula is good.

B. Chromaticity correction

The rapid decrease of the dynamic aperture with align-
ment errors in Fig. 5 implies that a nonscaling FFAG does
not work with an acceleration rate of order 1000 turns. A
few �m alignment tolerance is somewhat beyond the level
we can achieve practically, which is a few times 10 �m. If
the reduction of dynamic aperture is solely because of the
resonance crossing, a smaller total tune excursion, ideally
within neighboring integers, should improve the dynamic
aperture. On the other hand, there is a concern that intro-
ducing additional nonlinearities to correct the chromaticity
may reduce the dynamic aperture even without alignment
errors.

Sextupole and octupole components were added to the
quadrupoles for chromaticity correction. To minimize the
required strength of these components, the center of both
multipoles was located at the orbit of the final momentum
and we fixed the tune around the one which was deter-
mined by the final momentum. The strength of sextupoles
and octupoles was obtained with the downhill simplex
method [19]. Figure 6 is the resulting tune excursion.
The horizontal tune is located just between integer of 6
and 7, but the vertical tune starts from above integer 5 and
decreases to below 5.

With these multipole configurations, the dynamic aper-
ture was surveyed as a function of alignment errors. As
green markers in Fig. 7 show, dynamic aperture was re-
duced. It is obvious that the dynamic aperture even without
error was reduced because of additional nonlinearities.

Furthermore, the resonance crossing at Qy ¼ 5 became
the major source of amplitude growth as shown in Fig. 8.
In order to avoid the integer resonance crossing at all, we

started the particle tracking from 11:75 MeV=c. Although
this does not solve the problem in a real machine operation,
it is interesting to see how the integer resonance crossing
affects the beam. Blue markers in Fig. 7 show that the
dynamic aperture is less sensitive to the alignment errors
although the maximum aperture with an error-free lattice
does not change. It clearly shows that, if the required
normalized beam acceptance is 100� 10�6� m rad (geo-
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FIG. 6. (Color) Dashed lines show horizontal and vertical total
tunes as a function of momentum when sextupole and octupole
are introduced to correct the chromaticity. Solid lines are the
same as Fig. 1.
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FIG. 7. (Color) Initial amplitude which was not accelerated to
the final momentum. Lattice has chromaticity correction with
sextupole and octupole. It takes 1000 turns to finish the whole
cycle. Green markers show the case when acceleration started
from 10:75 MeV=c. Blue markers show the case when accel-
eration started from 11:75 MeV=c to avoidQy ¼ 5. Solid curves
show the average among the nearby points.
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lution when alignment errors are included. It takes 1000 turns to
finish the whole cycle. As Fig. 6 indicates, the vertical tune starts
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increases again.
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metrical acceptance of about 5� 10�6� m rad) or less, a
nonscaling FFAG may be used even with a slow accelera-
tion rate of 1000 turns with chromaticity correction. In
other words, chromaticity correction is an essential ingre-
dient to operate a nonscaling FFAG with practical align-
ment errors.

Lastly, we should make a comment on the elimination of
the last integer resonance crossing that occurs when accel-
erating from the original momentum of 10:75 MeV=c. To
accelerate from this momentum, further adjustment of the
quadrupoles, sextupoles, and octupoles is necessary such
that both the transverse tunes stay between neighboring
integers throughout the cycle. This should be investigated.
An alternative approach is to reduce the tune variation by
introducing a wedge-shaped quadrupole, as proposed by
Johnstone [20]. This approach could be solely used or
combined with nonlinear multipoles. Another remedy for
the problem would be harmonic correction with fixed field
correction magnets. The idea of resonance correction can-
not be applied in a nonscaling FFAG in general because it
is not possible to correct several harmonics at once with
fixed field magnets [6]. If there is, however, only a single
harmonic left to be corrected, it should be possible to
reduce the harmonic with the conventional correction al-
gorithm such as the harmonic correction scheme and the
�2-minimization method [21].

V. SUMMARY

With particle tracking simulations, the effects of reso-
nance crossing in a linear nonscaling FFAG were studied
when there were alignment errors and when an accelerator
was operated with a relatively slow acceleration rate of 100
or 1000 turns. When there were practical errors such as a
few times 10 �m rms misalignment, the resonance behav-
ior started appearing with 100 turns operation and became
clear with 1000 turns operation. In the latter case, dynamic
aperture practically disappeared. It was shown that the
amplitude growth dependence on acceleration rate and
alignment error agreed with the analytical formula by
Baartman et al.

Chromaticity correction with sextupoles and octupoles
was applied to eliminate resonance crossing. As a result,
the maximum available dynamic aperture in a lattice with-
out errors was reduced as expected. On the other hand, the
machine became less sensitive to misalignment errors.
Although it does not have enough aperture to be suitable
as a muon accelerator any more, for some applications
where the large acceptance is not a high priority demand
(such as a proton driver and a particle therapy machine),
chromaticity correction seems to be an essential ingredient
to make a nonscaling FFAG work.
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