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We employ the so-called ‘‘spin response formalism,’’ which is a linear response theory applied to the

spin dynamics in circular accelerators, to analyze recent measurements of spin-flip resonance widths. The

data was taken using a radial field rf dipole spin flipper to flip the spins of stored polarized proton and

deuteron beams at the COSY storage ring. Numerical calculations are presented, which provide a

satisfactory fit to the data.
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I. INTRODUCTION

Several papers have been recently published describing
spin-flip studies for stored polarized beams, using both
protons [1–3] and deuterons [4,5]. A radial field rf dipole
spin flipper was used to flip the spins. The authors (the
SPIN@COSY Collaboration) have claimed to find ‘‘unex-
pected discrepancies’’ between the measured values and
the theoretical expressions for the spin-flip resonance
widths [3,5]. Some errors in the theoretical analysis by
the SPIN@COSY Collaboration were pointed out by Bai,
MacKay, and Roser [6] (which fortunately have now been
acknowledged by the collaboration). Nevertheless, other
discrepancies remain, as advertised in a recent paper [5].
Specifically, the theoretical expressions for the resonance
strength in [1–5] did not account for the full spin-flip
contributions of a radial field rf dipole spin flipper. In
particular, in addition to its direct spin coupling, an rf
dipole spin flipper also excites coherent vertical betatron
oscillations, and these can in turn couple to the spin,
thereby modifying the overall spin-flip resonance strength.
This latter contribution was omitted in [1–5].

In this paper, we employ the so-called ‘‘spin response
formalism,’’ which is a linear response theory applied to
the spin dynamics in circular accelerators [7–9], to analyze
the data in some of the above papers, specifically [3]
(protons) and [5] (deuterons). The spin response functions
are calculated by the computer code ASPIRRIN (Analysis of
SPIn Resonances in RINgs) [8,9]. We used ASPIRRIN to fit
the proton and deuteron spin-flip data in [3,5], respectively.
A paper to fit the COSY spin-flip studies, for stored polar-
ized deuterons and an rf dipole, has also been written by
Kondratenko, Kondratenko, and Filatov [10] (in Russian),
but the above paper does not treat the polarized proton
data.

The structure of this paper is as follows. In Sec. II, we
present the basic theoretical formalism. In Sec. III, we
present our numerical calculations for the COSY spin-
flip data. Section IV concludes.

II. BASIC FORMALISM

We treat a particle of charge e, mass m, with velocity v

and spin s. The Lorentz factor is � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
. The

magnetic moment anomaly will be denoted by G ¼ ðg�
2Þ=2. In particular, Gp ’ 1:792 847 for protons and Gd ’
�0:142 987 for deuterons. The externally prescribed elec-
tric and magnetic fields of the accelerator will be denoted
byE andB, respectively. We employ cgs units. For motion
along the reference (or design) orbit of the storage ring (i.e.
along the guide field of the accelerator), we denote the
magnetic rigidity by B� ¼ p0c=e, where p0 is the refer-
ence momentum. We shall use the arclength s along the
reference orbit as the independent variable, and define the
azimuth � ¼ s=R, where the ring circumference is 2�R.
We employ a prime to denote differentiation with respect
to �, so f0 � df=d� for any function f. Our coordinate
system is ðx̂; ŷ; ẑÞ, a right-handed orthogonal system where
x̂ is radially outward, ŷ is along the reference orbit, and
ẑ ¼ x̂� ŷ (this is vertical in a planar ring). The positive
sense of circulation is counterclockwise around the ring.
We denote the horizontal and vertical coordinates of a
particle by x and z, respectively. We scale the orbital
variables to be dimensionless, so what we call ‘‘x’’ would
generally be denoted by x=R by other authors. The hori-
zontal and vertical betatron tunes will be denoted by �x and
�z, respectively. We also define the dimensionless scaled
magnetic fields on the reference orbit Kx;y;z ¼ Bx;y;z=B0,

where B0 is a reference value given by the arc dipoles

B0 ¼ 1

2�

Z
arcs

Bzd�: (2.1)

We introduce the important phase �, defined via*srmane@optonline.net
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� ¼
Z �

0
Kzð~�Þd~� ¼

Z �

0

R

�ð~�Þd
~�; (2.2)

where � is the local bend radius in the horizontal plane.
The spin precession equation of motion in the externally
prescribed electric and magnetic fields of the accelerator is
known as the Thomas-BMT equation [11,12]. Using � as
the independent variable, the equation takes the form

ds

d�
¼ W � s: (2.3)

We subdivide the spin precession vector W into two parts
W ¼ W0 þ w, where W0 denotes the precession vector on
the reference orbit, and w denotes all of the other terms. We
treat w as a perturbation. We define the symbol �0 ¼ G�0.
Here �0 (a constant) is the value of � on the reference orbit.
For a planar ring such as COSY, W0 ¼ �0Kzẑ is vertical.
The detailed expression for w is not required here; it can be
found, for example, in the review article [13]. On the
reference orbit, the spins precess around the vertical axis
with a precession tune called the ‘‘spin tune’’ �. We dis-
tinguish between � and �0 for the sake of the Froissart-
Stora formula (see the next paragraph).

Froissart and Stora [14] solved the spin precession equa-
tion in a planar ring, for the passage across a single isolated
resonance. Suppose the beam is initially vertically polar-
ized, and the beam energy is increased at a uniform rate so
that � ¼ G� ¼ �res þ ��, where �res is the resonant spin
tune,� is a constant, and the spin tune is increased from far
below to far above the resonance. Froissart and Stora
calculated the final asymptotic vertical polarization, and
obtained the result

Pf

Pi

¼ 2e��j"j2=ð2j�jÞ � 1: (2.4)

Here Pi and Pf are the initial and final vertical polariza-

tions, respectively. Equation (2.4) is called the Froissart-
Stora formula. The value of j"j is called the resonance
strength. It is given by

" ¼ h½ðG�þ 1Þz00 þ iðG��GÞKzz
0

� ið1þGÞK0
zz�eiG��i: (2.5)

The above integral coincides (up to differences of notation)
with that given in [15]. Here G� is evaluated at the center
of the resonance, i.e. G� ¼ �res, and we shall take this as
the value of �0 below. The angle brackets denote the
average

hfð�Þi � lim
T!1

�
1

2T

Z T

�T
fð�Þd�

�
: (2.6)

The average in Eq. (2.6) picks out the nonoscillating com-
ponent of fð�Þ, if it exists (else the average is zero). We can
use the average in Eq. (2.6) to establish the following
result:

0 ¼ hðz0eiG��Þ0i ¼ hðz00 þ iG�Kzz
0ÞeiG��i: (2.7)

The proof is self-evident because the integrand is a perfect
derivative of a bounded function.
The Froissart-Stora formula [Eq. (2.4)] is also applicable

for spin flippers, where now the beam energy is held fixed
and instead the frequency (or tune) of the spin flipper is
swept across the spin tune. The value of z in Eq. (2.5) is
given by the coherent betatron oscillations induced by the
rf dipole spin flipper. The term in K0

z in Eq. (2.5) is a fringe
field term from the edges of the horizontal dipoles. We can
use Eq. (2.7) to eliminate z00:

" ¼ �ih½ð�2
0 þGÞKzz

0 þ ð1þGÞK0
zz�eiG��i: (2.8)

Note that the integral in Eq. (2.5) contains a term z00 which
is nonzero in any element where the orbit has curvature,
e.g., quadrupoles, whereas the integral in Eq. (2.8) receives
contributions only from elements where the bending field
is nonzero on the design orbit (i.e. the horizontal dipoles
and their fringe fields). It is therefore impossible to say
which set of beam line elements (dipoles or quadrupoles)
dominate the contribution to the resonance strength.
We performed our numerical calculations using the

program ASPIRRIN [8,9], which makes use of the spin
response formalism [7–9]. Let the rf dipole spin flipper
be located at �0 (mathematically, a � function), and let its
integrated field be

Z
Brfd‘ ¼ BoscL cosð�rf�þ �Þ: (2.9)

Here �rf is the tune of the spin flipper, � is an initial phase,
and BoscL denotes the peak integrated field. The spin
response formalism gives the resonance strength as [7,8]

" ¼ 1

4�

BoscL

B�
jF3ð�0Þj; (2.10)

where for a planar ring such as COSY,

F3ð�0Þ ¼ 1

2

�
fzð�0Þ

ei2�ð���zÞ � 1

Z �0þ2�

�0

½ð�2
0 þGÞKzf

�0
z

þ ð1þGÞK0
zf

�
z �ei�0�d�

� f�z ð�0Þ
ei2�ð�þ�zÞ � 1

Z �0þ2�

�0

½ð�2
0 þGÞKzf

0
z

þ ð1þGÞK0
zfz�ei�0�d�

�
: (2.11)

Here fz ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
	z=R

p
ei
z , where 	z is the vertical beta func-

tion and the phase is given by d
z=d� ¼ R=	z. Also recall
�0 ¼ G�0 and we evaluate the integral at �0 ¼ �res. The
above expression (in the approximation of ultrarelativistic
electrons) was first derived in [16]. The spin response
formalism [8,9] actually derives a set of functions F1–F5,
and for general rings. The function of relevance to us is F3,
and for a planar uncoupled ring its value is equal to the
above expression. The value of � does not contribute to the
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resonance strength for a ring with only one spin flipper, but
would be relevant if there were multiple spin flippers.

III. NUMERICAL CALCULATIONS FOR COSY

We shall now apply the spin response formalism to
analyze the spin-flip resonance strength for a radial field
rf dipole for a model of the COSY storage ring. We
performed our numerical computations using a datafile of
the COSYmachine optics, and the ASPIRRIN program [8,9],
with extensions written by one of the authors (Mane). Spin-
flip studies for polarized protons and deuterons at COSY,
using an rf dipole, were reported in [1–5]. For polarized
protons, the data in [1,2] mainly treat spin-flip efficiency
and report only one resonance width measurement in each
paper. We shall fit the polarized proton studies in [3],
because this paper reports numerous measurements of
resonance strengths (specifically, the resonance strength
is plotted as a function of the vertical betatron tune). The
stored polarized proton beam momentum was p ¼
2:1 GeV=c. The polarized deuteron data was taken at a
momentum p ¼ 1:85 GeV=c [4,5]. We shall fit the data in
[5] because it is more detailed (Ref. [5] also displays the
resonance strength plotted as a function of the vertical
betatron tune).

There are some caveats to note first, however, before we
display our theoretical computations. The studies reported
in [1–5] were performed using a variety of machine optics.
We do not have detailed information for every study.
COSY is a racetrack storage ring with two 180� arcs and
two long straight sections. (The COSY footprint, including
the rf dipole and external beam lines, is displayed, for
example, in Fig. 4 of [3].) For brevity we shall henceforth
write ‘‘COSY’’ instead of ‘‘our model of COSY,’’ but the
above fact should be understood in all of our calculations.
During machine operations, the vertical betatron tune in
COSY is varied by adjusting the arc quadrupoles. In the
graphs below plotting the value of jF3j as a function of the
vertical betatron tune, we recomputed F3 (recomputed the
optics) for each setting of the quadrupoles, but again we do
not have precise information about the actual COSY ma-
chine operations.

The next caveat to note is that we treat the beam as
monoenergetic. It was reported in [3] (for protons) and in
[5] (for deuterons) that the respective spin-flip resonance
strengths did not depend on the beam momentum spread or
the vertical beam size. Note also that the rf cavities were
shorted at flattop during the spin-flip studies, so there were
no synchrotron oscillations.

Next, in both [3,5], the quantity displayed is the ratio

R ¼ "FS
"0

; (3.1)

where "FS is the experimentally measured spin-flip reso-
nance width and the ‘‘direct’’ coupling of an rf dipole to the
spin is

"0 ¼ G�þ 1

4�

BoscL

B�
: (3.2)

Hence the value of jF3j must be compared to the quantity

F ¼ ðG�þ 1ÞR: (3.3)

Actually, there is a further complication because the
SPIN@COSY collaboration made factor of 2 errors in their
analysis; this was corrected by Bai, MacKay, and Roser
[6], and we shall discuss factors of 2 below.
We stated in Eq. (2.10) that the resonance strength is

proportional to jF3ð�rfÞj, i.e., the resonance strength de-
pends on the location of the rf dipole around the ring
circumference. The value of F3 depends not only on the
particle species, but also on the beam momentum and the
ring optics (hence the vertical betatron tune). We plot the
value of jF3j around the COSY ring in Fig. 1 for protons
(left) and deuterons (right). For the protons, we used p ¼
2:1 GeV=c and �z ¼ 3:525 [3], and for deuterons p ¼
1:85 GeV=c and �z ¼ 3:60 [5]. Note that jF3j � 1 for
protons but jF3j< 1 everywhere for deuterons. In particu-
lar, for deuterons the rf dipole seems to be located at a point
where jF3j attains almost its minimum value.
The large value of jF3j for protons can be understood

because G� ’ 4:395 for p ¼ 2:1 GeV=c, and the vertical
betatron tune is �z ¼ 3:525, so 8� �z ’ 4:475, so j�0 �
ð8� �zÞj ’ 0:08. Hence for protons, F3 contains a small
resonance denominator. For deuterons, G� ’ �0:200 84
for p ¼ 1:85 GeV=c, and �z ¼ 3:60, so �z � 4 ’ �0:4,
so j�0 � ð�z � 4Þj ’ 0:2. Hence, for deuterons, F3 does not
contain such a small resonance denominator. Also, the
values of the coefficients in Eq. (2.11) are �2

0 þG ’ 21:1
and 1þG ’ 2:792 847 for protons, but only �2

0 þG ’
�0:1 and 1þG ’ 0:857 013 for deuterons.
Note also that for deuterons with G� ’ �0:2, the con-

tribution to F3 is dominated by the fringe field term K0
z in

Eq. (2.11). We have employed a simple ‘‘hard edge’’ model
for the fringe field, and it is possible that a more sophisti-
cated model of the fringe field would yield a better fit to the
data. For protons, however (with G� ’ 4:395), the contri-
bution to F3 is dominated by the term in Kz in Eq. (2.11).
This comes from the body of a dipole and is unambiguous.
Let us confirm the relative magnitudes of the terms in Kz

andK0
z in Eq. (2.11) (for protons and deuterons). In the next

figure, we display the value of jF3j and also the separate
contributions jF3aj and jF3bj, which are obtained by re-
taining only the terms from Kz and K0

z, respectively, in
Eq. (2.11). Figure 2 shows the values of jF3j, jF3aj, and
jF3bj as a function of �z for protons (left) at p ¼
2:1 GeV=c and deuterons (right) at p ¼ 1:85 GeV=c. It
is clear that for protons, jF3aj � jF3bj at all values of �z,
and the total value of F3 comes almost entirely from the
‘‘magnet body’’ term F3a. On the other hand, for deuterons
jF3aj � jF3bj at all values of �z, and the total value of F3

comes almost entirely from the ‘‘fringe field’’ term F3b.
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We now analyze the proton spin-flip data. A graph of the
ratio R as a function of the vertical betatron tune is
displayed in Fig. 6 of [3]. The authors showed that the
data are well fitted by the functional form

R p ¼ Ap þ
Bp

j�rp � �zj ; (3.4)

where �rp is the resonant tune for the protons. According to

[3], the fitted values are

Ap ¼ 0:44	 0:46; (3.5a)

Bp ¼ 0:50	 0:03; (3.5b)

�rp ¼ 3:6060	 0:0005: (3.5c)

Note that all of the data in [3] were on the left side of the
peak, i.e. �z < �rp. Because of the factor of 2 error pointed

out by Bai, MacKay, and Roser [6], the values of Ap and Bp

must be multiplied by 2. Since p ¼ 2:1 GeV=c yields
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FIG. 2. Graph of jF3j at the location of the rf dipole as a function of the vertical betatron tune �z, for polarized protons (left) at
p ¼ 2:1 GeV=c and polarized deuterons (right) at p ¼ 1:85 GeV=c. The curves for F3a and F3b are the individual contributions to F3

from the terms in ð�2
0 þGÞKz and ð1þ GÞK0

z, respectively, as shown in Eq. (2.11).
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FIG. 1. Graph of jF3j, for protons (left) and deuterons (right), around the circumference of the COSY ring. The proton momentum is
p ¼ 2:1 GeV=c, and the vertical betatron tune is 3.525, from [3]. The deuteron momentum is p ¼ 1:85 GeV=c and the vertical
betatron tune is 3.60, from [5]. The location of the rf dipole is indicated.
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G� ’ 4:395 leading to 8�G� ’ 3:605, we reduced the
proton momentum slightly to align the resonance peak
with the data. Hence, we compare our computed value of
jF3j to the value of

F p ¼ 2ðG�þ 1Þ
�
Ap þ

Bp

j�rp � �zj
�
; (3.6)

where G� ’ 4:394. Figure 3 shows a plot of the theoretical
value of jF3j (solid curve) and the above value of F p (dot-

dashed curve) against the vertical betatron tune �z. Our
theoretical calculations agree very well with the experi-
mental data.

Next we analyze the deuteron data. A graph of the ratio
R as a function of the vertical betatron tune is displayed in
Fig. 4a of [5]. The resonance peak is asymmetric, and the
data span both sides of the peak. The authors showed that
the data (except for the point at �z ¼ 3:6) are well fitted by
the functional form

R d ¼
��������Ad þ Bd

�rd � �z

��������; (3.7)

where �rd is the resonant tune for the deuterons. According
to [5], the fitted values are

Ad ¼ 0:06	 0:04; (3.8a)

Bd ¼ 0:010	 0:002; (3.8b)

�rd ¼ 3:798	 0:001: (3.8c)

The authors claim in [5] to have addressed the factor of 2
error which was present in the proton data above, hence
one should not multiply the values of Ad and Bd by 2. Since
G� ’ �0:200 84 for p ¼ 1:85 GeV=c, leading to 4þ
G� ’ 3:799, we increased the momentum slightly to align

the resonance peak with the data. We thus compare our
computed value of jF3j to the value of

F d ¼
��������ðG�þ 1Þ

�
Ad þ Bd

�rd � �z

���������; (3.9)

where G� ’ �0:202. Figure 4 shows a plot of the theo-
retical value of jF3j (solid curve) and the above value of
F d (dot-dashed curve) against the vertical betatron tune
�z. Both the ASPIRRIN curve and the experimental curve are
asymmetric. The theoretical curve is in general slightly
lower than the data, but overall it is a reasonable fit to the
data.
Let us discuss the deuteron data in more detail. First, the

asymmetry arises from nonresonant background terms.
The integral for F3 [see Eq. (2.11)] is a sum of many terms,
corresponding to different resonance denominators (basi-
cally, for � ¼ k	 �z for all integers k). However, not all of
the terms are strong. Since for the deuterons G� ’ �0:2,
and �z goes from 3.6 to 3.85, the principal resonance
denominator is given by � ¼ �4þ �z. This denominator
approaches zero when �z ’ 3:8, and the term in F3 corre-
sponding to this denominator is responsible for the peak in
Fig. 4. However, the value of F3 also contains contributions
from terms with resonance denominators at �3þ �z (far
away) and 3� �z and 4� �z, and others which are even
farther away. These denominators do not vanish for a
vertical betatron tune scan spanning the interval 3:6<
�z < 3:85; hence, they contribute to a nonresonant back-
ground, leading to the asymmetry of the data in Fig. 4. Next
note that, if we compare the data values in Eqs. (3.5) and
(3.8), we see that the resonance strength parameter for
deuterons Bd ’ 0:01 is 50 times smaller than that for
protons Bp ’ 0:50 (or a factor of 100 if we compare to

2Bp ’ 1:0). Hence, the deuteron spin-flip resonance is
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FIG. 4. Graph of jF3j (for deuterons, at the location of the rf
dipole in COSY) plotted against the vertical betatron tune �z.
The deuteron momentum is p ¼ 1:85 GeV=c. The solid curve is
a numerical calculation. The dot-dashed curve is the experimen-
tal fit to the data published by the authors of [5].
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of [3].
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much weaker, and the effects of nonresonant background
terms in the data are more significant. For the proton data,
the functional fit in Eq. (3.4) is symmetric by construction,
and in any case the resonant term is so strong (note that
jF3j 
 100 in most of Fig. 3) that the contribution from the
nonresonant term Ap is negligible. In general, it is difficult

to quantify the nonresonant background terms in detail.
Note that the values of Ap and Ad both have large uncer-

tainties. We do not know all of the details of the experi-
mental procedure, and so we cannot pursue the matter
further.

IV. CONCLUSION

We calculated the spin-flip resonance strengths, for a
radial field rf dipole spin flipper, for stored polarized
proton and deuteron beams at COSY. The key point was
to include both the direct spin coupling and the indirect
spin coupling via the vertical betatron oscillations induced
by the rf dipole. The most obvious manifestation of the
latter contribution is the appearance of a resonance peak
when the resonance strength is plotted as a function of the
vertical betatron tune. We used the program ASPIRRIN to
perform our numerical calculations. We plotted graphs of
the (scaled) resonance strength as a function of the vertical
betatron tune, for both polarized protons at p ¼
2:1 GeV=c and polarized deuterons at p ¼ 1:85 GeV=c.
We obtained excellent agreement for the polarized proton
data, when a factor of 2 error in the data was corrected. The
deuteron spin-flip data exhibits considerable asymmetry
due to nonresonant background terms. The ASPIRRIN cal-
culation reproduced the overall asymmetry of the deuteron
data, and also gave a good fit to the data. We do not know
enough details of the experiment to quantify all of the
background nonresonant terms which contribute to the
asymmetry. However, we have enough evidence to state
that there is no ‘‘unexpected discrepancy’’ between theory
and measurement for the spin-flip data (for both protons
and deuterons).
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