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In this paper we present a method for measuring the nonlinear errors in a circular accelerator by taking

advantage of the feed-down effect of high order multipoles when the closed orbit is globally deformed. We

devise a nonlinear tune response matrix in which the response to a closed orbit deformation is obtained in

terms of change of machine tune and correlated with the strength of the local multipoles. A numerical

example and a proof of principle experiment to validate the theoretical methods are presented and

discussed.
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I. INTRODUCTION

The requirements of beam control for operation in syn-
chrotrons necessitate that an accelerator working point is
sufficiently far from any machine resonance. Errors deriv-
ing from higher order field components of magnets are the
major source for the excitation of nonlinear resonances.
When hardware constraints do not allow to change arbi-
trarily the machine working point, it may be necessary to
compensate some of the resonances present in the machine
in order to maintain a high accelerator performance. The
presence of space charge makes the role of nonlinear
resonances more central in case of the storage of a high
intensity bunched beam. In fact, the overlapping of the
space charge tune spread with a machine nonlinear reso-
nance leads to long term beam loss [1]. In this case
resonance compensation has to be carefully discussed as
the presence of space charge may influence the effective-
ness of the compensation system.

A general treatment of resonances in accelerators with
perturbation theory [2] or via normal form [3] shows that
the excitation of a resonance can be correlated to resonance
driving terms, which depend on the nonlinear error distri-
bution around the ring. The consequences of the nonlinear
errors in terms of a change of the beam distribution and of
beam loss are not easy to predict and benchmark with
respect to measurements [4–6]. An attempt to cover the
bridge between the complexity of the theory and the ne-
cessity of devising a method to measure nonlinear errors in
an existing accelerator is described in [7] via turn by turn
data acquisition. Later this approach was applied to the
normal form [8], and further progress in measuring errors
in circular accelerator is reported in Ref. [9]. All these
methods rely on the high precision in the measurement of
tunes made possible with the advent of the methods devel-
oped in Ref. [10]. Recently, another method applicable to
systematic errors was obtained via the measurement of the
nonlinear chromaticity: in this method the energy of a well

controlled bunch is slightly increased and Qx, Qy is mea-

sured versus �p=p. For these measured tunes the effect of
the nonlinearities is folded in globally, and these data can
be used to retrieve a theoretical model of the accelerator. In
fact, in a computer model the free parameters for creating
the nonlinear chromaticity are the strength of the nonlinear
systematic errors, which are assumed localized in dipoles
and quadrupoles, therefore the best fitting of the numerical
nonlinear chromaticity with the measured chromaticity
allows the setting of the systematic nonlinear errors in
magnets [11,12]. The analytic calculation of the detuning
for an off-energy closed orbit can be computed at any order
with a differential algebra-based method described in
Ref. [13]. This technique incorporates automatically the
correct closed orbit and the effect of nonlinear errors on the
chromaticity. As the off-energy closed orbit provides only
one free parameter to reconstruct the effect of localized
nonlinear errors, an alternative approach presented in
Ref. [14] uses local orbit bumps. The beam is moved
locally via orbit bumps and the detuning induced by
feed-down is the observable, which contains the effect of
the nonlinearities. In Ref. [14] this method is applied to the
RHIC interaction region. These authors, however, found a
difficulty in retrieving skew components for sextupolar and
octupolar nonlinear errors. In a later work, in Ref. [15], this
difficulty is avoided by equally deforming the closed orbit
in both horizontal and vertical planes. This approach works
well when the local bump acts only on one error. The
simultaneous presence of sextupoles and octupoles creates
a linear coupling, which is difficult to remove as it would
require a very special correlation between horizontal and
vertical closed orbit deformations. Therefore the simulta-
neous presence of several nonlinear errors in regions where
the closed orbit is deformed requires the assessment of the
detuning induced by the feed-down linear coupling.
In this paper we extend the strategy initiated in Ref. [14]

and extended in Ref. [15] by releasing the local bump
restriction: the closed orbit is globally deformed by all
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the accelerator steerers obtaining a detuning dependence
which is a quadratic form of all the steerer strength and also
a quadratic form of the strength of the nonlinear errors.
This approach has an analogy with the linear orbit response
matrix method. In our approach we explicitly calculate the
perturbative contribution of the skew linear components
induced by the deformation of the closed orbit. The ana-
lytic results allow us to reconstruct sextupolar and octupo-
lar normal and skew errors in a circular accelerator. The
plan of the paper is the following: In Sec. II we present the
theoretical basis of the method; in Sec. III we show an
application of this method to the SIS18 and discuss via
numerical simulations the robustness and the limits of the
method proposed; in Sec. IV we present the measurement
results performed in the SIS18 synchrotron in which we
made a proof of principle experiment for demonstrating
that this method can be used in a real synchrotron.
Section V is devoted to the conclusion and the outlook
and in the Appendix we discuss the more technical mathe-
matical aspects of the derivation of this method.

II. THEORETICAL BASIS OF THE NONLINEAR
TUNE RESPONSE MATRIX METHOD

This approach has an analogy with the method devel-
oped in the orbit response matrix (ORM) [16], where the
local orbit response, i.e., the orbit deformation as function
of the steerer value, is measured and information on the
linear optics can be retrieved. In particular, a fitting of the
ORM performed with computer models allows one to
obtain the best modeling of a real accelerator. The method
discussed here extends the ORM method to the changes in
tunes created by nonlinear components feed-down. We
refer to this method as nonlinear tune response matrix
(NTRM) in analogy with the ORM.

A. Linear and nonlinear accelerator model

We consider a linear model of a circular accelerator
composed by a sequence of linear thick elements as drifts,
quadrupoles, and dipoles and assume tunes sufficiently far
off a resonance. The strengths of the linear focusing forces
is defined by kxðsÞ, kyðsÞ, where s is the longitudinal

coordinate. We assume that the accelerator is equipped
with Nt thin steerers each of which can act independently
in the horizontal and vertical plane. The longitudinal loca-
tion of the tth steerer is st, and its steering angle is �xt in the
horizontal plane, �yt in the vertical plane. We also include

in the ring Nl thin nonlinear elements. A nonlinear element
can be a lattice sextupole or octupole as well as a magnet
nonlinear error. In general, the lth nonlinear error located at
sl is composed of several multipoles of integrated strength
Knl, Jnl, n � 1. Here the index n is used for indicating the
order of the nonlinear component, and l is the location as
shown in Fig. 1. In a real accelerator some of these errors
may be negligible. With these definitions the single-
particle equation of motion reads

x00 þ kxx ¼ �Re

�X
n�1

kn þ ijn
n!

ðxþ iyÞn
�
þ �x

y00 þ kyy ¼ Im

�X
n�1

kn þ ijn
n!

ðxþ iyÞn
�
þ �y

(1)

with ð Þ0 ¼ dð Þ=ds, and

�x ¼
XNt
t¼1

�xt�ðs� stÞ; �y ¼
XNt
t¼1

�yt�ðs� stÞ;

kn ¼
XNl
l¼1

Knl�ðs� slÞ; jn ¼
XNl
l¼1

Jnl�ðs� slÞ:
(2)

All the quantities kx, ky, kn, jn, �x, �y are s dependent, but

for simplicity of notation we omit this dependence. Note
that Eqs. (1) are written with respect to the reference closed
orbit, which is identified here by x ¼ 0, y ¼ 0 when �x ¼
�y ¼ 0.

B. The distorted closed orbit

We now deform the closed orbit by setting the Nt steer-
ing angles �xt, �yt, with t ¼ 1; . . . ; Nt to a value different

from zero. The new closed orbit ðxo; x0o; yo; y0oÞ is the
solution of the equations

x00o þ kxxo ¼ �Re

�X
n�1

kn þ ijn
n!

ðxo þ iyoÞn
�
þ �x;

y00o þ kyyo ¼ Im

�X
n�1

kn þ ijn
n!

ðxo þ iyoÞn
�
þ �y;

(3)

with the boundary condition xoðsÞ ¼ xoðsþ CÞ, x0oðsÞ ¼
x0oðsþ CÞ, yoðsÞ ¼ yoðsþ CÞ, y0oðsÞ ¼ y0oðsþ CÞ for 0 �
s � C, where C stands for the length of the ring. If the
closed orbit deformation is not too large and the tunes are
not close to any relevant resonance, then the nonlinear

FIG. 1. (Color) Schematic of the nonlinear error and steerer
locations.
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components in Eqs. (3) do not play an important role in
determining the closed orbit, which can be described by the
equations

x00o þ kxxo ¼ �x; y00o þ kyyo ¼ �y: (4)

As Eqs. (4) are linear, the value of xo, yo at a specific
longitudinal location is a linear combination of the steering
angles. At the location of the lth nonlinear element sl, we
find that xol � xoðslÞ and yol � yoðslÞ are given by

xol ¼
XNt
t¼1

Mx
lt�xt; yol ¼

XNt
t¼1

My
lt�yt: (5)

The first index in these matrices refers to the location of the
error, the second to the location of the steerer. The matrices
Mx,My form the orbit response matrix,M ¼ Mx �My, for
the decoupled system. Note that for Nt ¼ Nl, the inverti-
bility of the matricesMx

lt andM
y
lt depends on the lattice: in

fact ifMx
lt were not invertible, there would be two different

configurations of �xt, say �ð1Þxt and �ð2Þxt , such that xol ¼P
t¼1;Nt

Mx
lt�

ð1Þ
xt ¼ P

t¼1;Nt
Mx
lt�

ð2Þ
xt . Therefore there would

exist a steerer configuration ��xt ¼ �ð1Þxt � �ð2Þxt such thatP
t¼1;Nt

Mx
lt�

�
xt ¼ 0 for every l. But such a configuration

of the steerers, ��xt, is possible only if the location of the
steerers st and locations of the errors sl satisfy some very
special condition. For instance, for a lattice with the se-
quence of steerers alternated with lattice nonlinear errors,
such a condition reads

1 ¼ ð�1ÞNt YNt
t¼1

sin xt

sin ̂xt
: (6)

Here  xt is the phase advance between the tth steerer
located at s ¼ st and the tth nonlinear error (the first non-

linear error after the tth steerer); instead  ̂xt is the phase
advance between the location of the tth nonlinear error and
the (tþ 1)th steerer (i.e. the first steerer after the tth non-
linear error). Note that the setting for the steerers ��xt
consistent with Eq. (6) depends on the angle in which the
closed orbit passes through one multipolar error. As an
example we assume the closed orbit passes through the first
multipolar error with coordinates ð0; x01Þ and there the beta
function is �x1, then the configuration of steerers consis-
tent with Eq. (6) is given by

��xt ¼ x01

ffiffiffiffiffiffiffiffi
�x1
�xt

s
sinð xt þ  ̂xtÞ

sin ̂xt
ð�1ÞtYt�1

i¼1

sin xi

sin ̂xi
; (7)

where 1 � t � Nt, and �xt is the beta function at the
location of the tth steerer [for t ¼ 1 the (t� 1)fold product
should be replaced by 1]. Note that if the number of errors

is odd and  xt,  ̂xt < �=2, then the matrix Mx
lt is always

invertible, because Eq. (6) can never be satisfied. A similar
argument holds for My.

C. Motion around the distorted closed orbit

Consider now a test particle of coordinates ð~x; ~x0; ~y; ~y0Þ
with respect to the deformed closed orbit ðxo; x0o; yo; y0oÞ. In
the original reference frame this particle has coordinates
(xo þ ~x, x0o þ ~x0, yo þ ~y, y0o þ ~y0) and its motion is gov-
erned by

ðxoþ ~xÞ00 þ kxðxoþ ~xÞ ¼ �Re

�X
n�1

knþ ijn
n!

�½ðxoþ ~xÞþ iðyoþ ~yÞ�n
�
þ�x;

ðyoþ ~yÞ00 þ kyðyoþ ~yÞ ¼ Im

�X
n�1

knþ ijn
n!

�½ðxoþ ~xÞþ iðyoþ ~yÞ�n
�
þ�y:

(8)

By expanding to the first order we find

½ðxo þ ~xÞ þ iðyo þ ~yÞ�n ¼ ðxo þ iyoÞn þ nðxo þ iyoÞn�1

�ð~xþ i~yÞ þO½ð~xþ i~yÞ2�:
(9)

If the coordinates of the test particle ð~x; ~x0; ~y; ~y0Þ are small,
then all the terms of order higher than the first can be
neglected as the tunes are far from any resonance. In this
approximation the evolution of the particle coordinates ~x, ~y
with respect to the distorted closed orbit ðxo; x0o; yo; y0oÞ is
given by the equations

~x00 þ kx~x ¼ �Re

�X
n�1

kn þ ijn
ðn� 1Þ! ðxo þ iyoÞn�1ð~xþ i~yÞ

�
;

~y00 þ ky~y ¼ Im

�X
n�1

kn þ ijn
ðn� 1Þ! ðxo þ iyoÞn�1ð~xþ i~yÞ

�
: (10)

As all the relevant perturbative terms are linear, we can
now redefine in Eqs. (10) the argument of the sum in terms
of new gradient components as follows:

~k ðnÞ
1 þ i~jðnÞ1 ¼ kn þ ijn

ðn� 1Þ! ðxo þ iyoÞn�1: (11)

Note that all the components ~kðnÞ1 , ~jðnÞ1 are localized com-

ponents deriving from the localized components kn, jn
described by Eqs. (2). The first three orders of expansion
of these components are listed in Table I.

TABLE I. Leading three orders of the feed-down due to the
deformed closed orbit.

n ~kðnÞ1
~jðnÞ1

1 k1 j1
2 k2xo � j2yo k2yo þ j2xo
3 1

2 k3ðx2o � y2oÞ � j3xoyo k3xoyo þ 1
2 j3ðx2o � y2oÞ
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The final form of the equations of motion for a particle
with small amplitude in an accelerator with a deformed
closed orbit reads

~x 00 þ ðkx þ ~kÞ~x ¼ ~j ~y; ~y00 þ ðky � ~kÞ~y ¼ ~j ~x; (12)

where

~k ¼ X
n�1

~kðnÞ1 ;
~j ¼ X

n�1

~jðnÞ1 : (13)

From Eqs. (12) we find that the nonlinear components
around the ring produce an extra linear focusing compo-

nent of strength ~k and a linear coupling term of strength ~j.
Summing up the first order components of Table I we find

~k ¼ k1 þ k2xo � j2yo þ k3
1
2ðx2o � y2oÞ � j3xoyo;

~j ¼ j1 þ k2yo þ j2xo þ k3xoyo þ j3
1
2ðx2o � y2oÞ:

(14)

For example, if the closed orbit is deformed only in the
vertical plane, we find

~k ¼ k1 � j2yo � k3y
2
o

2
; ~j ¼ j1 þ k2yo � j3y

2
o

2
:

(15)

Limiting to normal sextupolar and normal octupolar com-
ponents, we find

~k ¼ � k3y
2
o

2
; ~j ¼ k2yo: (16)

Normal sextupolar components create linear coupling if
the closed orbit is vertically deformed.

D. Consequences of the feed-down induced linear
gradient components

When only small gradient errors ~k are present, and the
machine tunes are far from any integer or half integer
resonance, the tunes with respect to the distorted closed
orbit ðxo; x0o; yo; y0oÞ, can be evaluated via the formulas [17]

�Qx ¼ 1

4�

Z C

0
�xðsÞ~kðsÞds;

�Qy ¼ � 1

4�

Z C

0
�yðsÞ~kðsÞds;

(17)

where the tunes with respect to the closed orbit are defined
by Qx ¼ Qx0 þ�Qx, and Qy ¼ Qy0 þ �Qy. Here Qx0,

Qy0 are the tunes of the linear accelerator with the closed

orbit corrected. These equations represent the first order

contribution of the distribution of small gradient ~k along
the accelerator circumference. If the perturbative condition
is not fulfilled, or if the sum gives a too small value of�Qx,

then the higher order terms, quadratic in ~k, should be taken
into account (see [17]). This is the case for the linear error
described by Eqs. (14), where in addition the deformed
closed orbit creates also localized skew linear errors due to
feed-down of nonlinear components. Clearly, the presence
of the skew gradient brings extra complications as the
tunes Qx, Qy in this case are found as coupled normal

modes of the one-turn map MT of the circular accelerator.
Through a lengthy matrix algebra described in
Appendix A, under the assumptions J1l 	 0, and jK1lj 

jK2lj, jJ2lj, jK3lj, jJ3lj, we find that the detuning of a
particle close to a deformed orbit created by Nt steerers
is given by

�Qx¼ xQþXNt
t¼1

ðxQx
t �xtþ xQ

y
t �ytÞ

þ XNt
t;i¼1

ðxQxx
ti �xt�xiþ xQ

yy
ti �yt�yiþ xQ

xy
ti �xt�yiÞ; (18)

�Qy¼ yQþXNt
t¼1

ðyQx
t �xtþ yQ

y
t �ytÞ

þ XNt
t;i¼1

ðyQxx
ti �xt�xiþ yQ

yy
ti �yt�yiþ yQ

xy
ti �xt�yiÞ; (19)

where

xQ ¼ XNl
l¼1

K1l
~Kx
l þ

XNl
l;q¼1

K1lK1q
~Kx
lq;

xQ
x
t ¼

XNl
l¼1

K2l
~Kx
lM

x
lt;

xQ
y
t ¼ �XNl

l¼1

J2l
~Kx
lM

y
lt;

xQ
xx
ti ¼ 1

2

XNl
l¼1

K3l
~Kx
lM

x
ltM

x
li

þ XNl
l;q¼1

ðJ2lJ2q ~J x
lq þ K2lK2q

~Kx
lqÞMx

ltM
x
qi;

xQ
yy
ti ¼ � 1

2

XNl
l¼1

K3l
~Kx
lM

y
ltM

y
li

þ XNl
l;q¼1

ðK2lK2q
~J x
lq þ J2lJ2q

~Kx
lqÞMy

ltM
y
qi;

xQ
xy
ti ¼ �XNl

l¼1

J3l
~Kx
lM

x
ltM

y
li þ

XNl
l;q¼1

½J2lK2qð ~J x
lq þ ~J x

qlÞ

� J2qK2lð ~Kx
lq þ ~Kx

qlÞ�Mx
ltM

y
qi:

(20)

The equivalent terms yQ, yQ
x
t , yQ

y
t , yQ

xx
ti , yQ

yy
ti , yQ

xy
ti are

obtained replacing x with y at the apex of ~Kx
l ,

~Kx
lq, ~J

x
lq.

The explicit form of the terms ~Kx
l ,

~Kx
lq, ~J x

lq, which

depend only on the locations of the errors, locations of
the steerers and the tunes is given by Eqs. (A23) in
Appendix A. Therefore, when the linear machine is known,
these terms are known as well. Note that the linear com-
ponents K1l contribute to the tune Qx, Qy independently

from how the closed orbit is deformed: in the derivation
used in Sec. II B, Eqs. (5) are obtained when J1l ¼ 0 in
order to avoid the presence of coupling matrices. The
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derivation of the tunes is still possible if J1l � 0, but to a
price of a much higher level of complexity in the analytic
solutions. We assume therefore that J1l is small, or pre-
viously corrected (see in Ref. [18] for a discussion of the
correction of the natural linear coupling).

Therefore the effective tune due to linear elements will
be Qx0;eff ¼ Qx0 þ xQ and Qy0;eff ¼ Qy0 þ yQ. Note also

that the detuning in the horizontal and vertical planes
depends linearly on K2l, J2l, and that the octupolar terms
K3l, J3l produce a detuning quadratic in �xl, �yj, with an

additional second order contribution of the normal and
skew second order components.

E. Measurement of the nonlinear components
via nonlinear tune response matrix

From Eq. (18) we see that in general the detuning
induced by nonlinear components in a deformed closed
orbit is a quadratic form in �xt, �yt. We can therefore take

advantage of Eq. (18) and devise a method to reconstruct
the nonlinear errors in a ring. In fact, we can determine via
experimental measurements �Qx;eff ¼ Qx �Qx0;eff as

function of �xt, �yt. If the number of measurements is large

enough, we can obtain the quantities xQ
x
t , xQ

y
t , xQ

xx
ti , xQ

yy
ti ,

xQ
xy
ti (t, i ¼ 1; . . . ; Nt) by fitting, which are the components

of the nonlinear tune response matrix (NTRM). By spec-
ifying the assumed location of the nonlinear errors, we
compute then the matrices Mx

lt, M
y
lt, and �xl, �yl. For the

particular case of Nl ¼ Nt, i.e., for a number of errors
equal to the number of steerers, these matrices are in
general invertible and we can finally solve the system of
equations (20) in the unknown variables Knl, Jnl, with n ¼
2, 3, and l ¼ 1; . . . ; Nl. Note that the number of equations
for the octupolar errors, for example xQ

xx
ti , is larger than the

number of unknown nonlinear strengths K3l. In order to
find the values K3l, if the nonlinear tune measurements are
sufficiently precise, it is enough to determine xQ

xx
tt , xQ

yy
tt ,

xQ
xy
tt , with t ¼ 1; . . . ; Nt. By inspecting Eq. (18) we see

that, if�Qx;eff ¼ �Qxð�xt; �ytÞ � xQ and we measure with

equal steerer angle j�xtj ¼ j�ytj ¼ ��t, then

xQ
x
t ¼ 1

2 ��t
½�Qx;effð ��t; 0Þ ��Qx;effð� ��t; 0Þ�;

xQ
y
t ¼ 1

2 ��t
½�Qx;effð0; ��tÞ ��Qx;effð0;� ��tÞ�;

xQ
xx
tt ¼ 1

2 ��2t
½�Qx;effð ��t; 0Þ þ �Qx;effð� ��t; 0Þ�;

xQ
yy
tt ¼ 1

2 ��2t
½�Qx;effð0; ��tÞ þ �Qx;effð0;� ��tÞ�;

xQ
xy
tt ¼ 1

2 ��2t
½�Qx;effð ��t; ��tÞ þ �Qx;effð� ��t;� ��tÞ�

� xQ
xx
tt � xQ

yy
tt :

(21)

This then reduces the number of measurements needed for
retrieving the Nl nonlinear errors.

III. APPLICATIONS AND LIMITS

We summarize here the approximations and limitations
of the theory described in the previous section. (i) This
method relies on the possibility of predicting the closed
orbit as a function of the steerer strength, in other words on
the validity of Eqs. (5). In a real accelerator the presence of
nonlinearities will certainly add a correction to Eqs. (5).
The effect of this correction is minimized by keeping the
deformation of the closed orbit small so that the nonline-
arities affect minimally Eqs. (5). The second order correc-
tion to Eqs. (5) would introduce quadratic terms into the
equations for xQ

x
t , xQ

y
t of Eqs. (20), which would then be

found as a 4th order correction (in �) in the expression for

xQ
xx
ti , xQ

yy
ti , xQ

xy
ti . The knowledge of the orbit response

matrices Mx, My is also necessary and it can be acquired
via experimental ORM techniques. At the same time it is
mandatory to keep the tune sufficiently far from any low
order resonance. (ii) We require that the accelerator has
horizontal and vertical planes decoupled, which again
implies the validity of Eqs. (5). We therefore require J1l 	
0. We also require that gradient errors in the machine—not
related to the feed-down—are smaller than the sextupolar
and octupolar errors, i.e. jK1lj 
 jK2lj, jJ2lj, jK3lj, jJ3lj.
Note that it would be possible to reformulate this theory in
the presence of machine linear coupling at the expense of
more complexity. (iii) The beam should be kicked with
small angles. This is required to eliminate the transverse
dependence of the detuning on high order components. The
beam dynamics is then governed by Eqs. (12). When the
kick applied on the beam is too strong, the beam oscillation
is too large and a different approach is needed in order to
include the high order dependences. The methods de-
scribed in Ref. [19] should be applied for constructing a
nonperturbative theory. (iv) The measurements of the tunes
have to be sufficiently precise in order to retrieve the terms

xQ
x
t , xQ

y
t , xQ

xx
tt , xQ

yy
tt , xQ

xy
tt . From Eqs. (21) we notice that

the terms xQ
xx
tt , xQ

yy
tt , xQ

xy
tt are divided by �

2
t , which have to

be small to fulfill the requirements discussed in (i).
Therefore the precision of the tune measurements should

scale as �t to maintain the relative accuracy of each term of
the nonlinear tune response matrix. This limits the appli-
cation of this method up to octupolar errors. For retrieving
decapolar errors the precision in measuring the tune should

scale as �2t , which is more difficult to determine experi-
mentally. (v) The unavoidable errors in determining xQ

x
t ,

xQ
y
t , xQ

xx
tt , xQ

yy
tt , xQ

xy
tt are propagated to the reconstructed

strength of nonlinearities Kn;l, Jn;l according to the char-

acteristics of the orbit response matrices Mx, My.
Therefore this method will be affected by the possible
presence of ‘‘small numbers’’ in the matrices Mx, My.
Note that most of these restrictions are fulfilled, if the

closed orbit is weakly deformed and if the strength of the
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nonlinear errors is small. We show this in a numerical
example.

A. Example on SIS18

As a first step in validating this theoretical model, we
perform a numerical experiment using the SIS18 synchro-
tron lattice. For the purpose of this example we consider
the SIS18 with 12 steerers (horizontal and vertical as
discussed in the theory) located at the end of each super-
period. To the linear accelerator we add 12 different non-
linear errors, each of them formed by a thin sextupole and
octupole, simultaneously applied to the lattice, located in
each superperiod before the quadrupole triplet (see Fig. 2).

We then implemented this accelerator modeling in the
MICROMAP library [20]. We set the machine tune at Qx ¼
4:31, Qy ¼ 3:28 away from the linear coupling resonance

as well as from the 2nd, 3rd, and 4th order resonances. We
applied then the method described in Sec. II for recon-
structing these nonlinear errors. The closed orbit was de-
formed via each of the 12 steerers. For each setting of a
steerer, we took one particle centered in the deformed
closed orbit and induced small betatron oscillations by
shifting it along x of 0.1 mm and along y of 0.3 mm. By
taking the x coordinate of the particle over 2048 turns, we
compute via a fast-Fourier-transform (FFT) method [21]
the induced tuneshift. The strategy described in Sec. II E
was then applied to numerically compute xQ

x
t , xQ

y
t , xQ

xx
tt ,

xQ
yy
tt , xQ

xy
tt . We then solved Eqs. (20) as follows: from xQ

x
t ,

xQ
y
t we find K2l, J2l. We then use these values in the last

three equations so that we directly findK3l, J3l. In Fig. 3 we
show the results obtained by applying the NTRM method:

in Fig. 3(a) empty red squared markers give the strength of
the reconstructed normal sextupolar errors, and in black the
set errors.
With the triangular markers we summarize the results

for the skew components. All the results in Fig. 3(a) show
the high accuracy of the sextupolar error reconstruction. In
Fig. 3(b) are shown the octupolar errors and the recon-
structed values [the notations are the same as for Fig. 3(a)].
We here add also the second, redundant, solution for K3l

with green empty squared markers, relative to xQ
yy
tt . As

both numerical solutions are practically overlapping, in the

steerers

errors

FIG. 2. (Color) SIS18 layout and steerers and nonlinear errors
used in the validation simulations.
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FIG. 3. (Color) Comparison of the reconstructed errors (red
markers) with the error set in the SIS18 (black markers). The
squared markers refer to normal components, while the triangu-
lar markers refer to skew component. In (a) the comparison is
shown for sextupolar errors, in (b) for octupolar errors (both
solutions for K3l are plot: red and green squared empty markers).
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picture only the green squared markers are visible. The
reconstruction of the octupolar errors largely loses its
accuracy if the second order terms resulting from the

sextupolar component ~Kx
lq, ~J x

lq are not included in

Eqs. (20).

B. Robustness of the method for realistic beams

The theory discussed in Sec. II has been developed for a
single particle and assumes that the measurement of the
tune can be arbitrarily precise. However, in real measure-
ments the beam exhibits a finite emittance and the tunes are
measured by kicking the beam with a finite amplitude
sometimes far from a perturbative level. In realistic con-
ditions the application of the NTRM method might intro-
duce an error in the evaluation of the experimental
tuneshift �Qx;eff . We therefore study the influence of the

effect of the finite beam size and several kicked beam
amplitudes on the evaluation of the tune. For this study
we take the model of the SIS18 synchrotron presently
running at GSI, excite all the 12 sextupoles for chromatic
correction, and measure the tunes over 4096 turns for
several beams of varying emittance and for several ampli-
tudes of the initial kick equally applied in both planes. In

this simulation to distinguish the detuning stemming
purely from amplitude effects from the deformed closed
orbit effects [described in Eqs. (18) and (19)], we do not
deform the closed orbit, but only vary the kick amplitude
and beam emittance size.
The multiparticle simulations were performed with 1000

macroparticles. In Fig. 4 we show that the discrepancy of
the tune found from a single particle with respect to the
tune of a beam with maximum emittances �x, �y <

15 mmmrad is less than 5� 10�5 in the horizontal and
vertical planes for a kick amplitude of 	0:1 mrad. Note
that no octupoles are present in this simulation, and the
curvature of tune curves only stems from the large kick
amplitude effect.

IV. EXPERIMENTALVALIDATION ON SIS18

For the purpose of verifying the effectiveness of the
NTRM method, we performed a proof of principle experi-
ment in the SIS18 synchrotron. The testing method is based
on the capability of the NTRM method to retrieve a con-
trolled nonlinear error present in the SIS18. We are limited
by the fact that the SIS18 is only provided with sextupole
magnets for chromatic corrections and slow extraction and
no other higher order magnets as octupoles are available.
For measuring the tune response, a small emittance beam is
created and kicked for inducing transverse betatron oscil-
lations. In order to prevent fast beam oscillation decoher-
ence, the machine chromaticity was corrected. This causes
additional 3rd order resonances and quadratic nonlinear
components which add to the quadratic nonlinear compo-
nents preexisting in the SIS18. Therefore setting any con-
trolled sextupolar error as probing nonlinearity would
simply be added to the existing known and unknown
nonlinearities hindering the testing method. This can be
solved by noting that, following Eq. (18), the tune response
to the orbit deformation is linear in the error strength for
3rd order errors [see the terms xQ

x
t , xQ

y
t in Eqs. (20)]. We

take advantage of this dependence to perform the proof of
principle experiment as follows: first, we measure the tune
response for the machine set for normal operation with
chromaticity components (we will refer to this setting as
S0), then we add on two sextupoles for chromatic correc-
tion a small extra probing strength and remeasure the tune
response to the same deformation of closed orbit. By
subtracting the two tune response curves the resulting
differential tune response depends solely from the extra
probing error added on the sextupoles. As the probing
errors are folded linearly into the terms xQ

x
1, and xQ

x
2, the

experimental task is measuring the differential tune re-
sponse and obtaining xQ

x
1, and xQ

x
2.

A. First proof of principle experiment

Following the outlined procedure, we have considered
the case of two normal probing sextupolar errors to be
reconstructed by deforming the orbit by means of two
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FIG. 4. (Color) Simulation dependence of the nonlinear tune in
the horizontal plane (a) and vertical plane (b) as a function of the
amplitude of the kicked beam and its emittances.
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horizontal steerers: as we excite normal probing errors,
only horizontal deformation of the closed orbit can reveal
them (the terms xQ

y
t , yQ

y
t are absent). According to the

notations of Sec. II we have Nl ¼ 2 and Nt ¼ 2. The
elements of SIS18, steerers and sextupoles, associated to
the indexes t and l are reported in Table II, and their
location in the ring can be seen in Fig. 5.

In the experiment for correcting the chromaticity we
have activated the sextupole family S#KS1C with K2 ¼

�0:2162 m�2, and the family S#KS3C with K2 ¼
0:4004 m�2 (here # ¼ 1; 3; 5; 7; 9; 11). A beam of
40Ar18þ was injected into the SIS18 at 11:2 MeV=u and
accelerated at 416:54 MeV=u. The unnormalized beam
emittances are estimated to be �x ¼ �y ’ 1:4 mmmrad.

At this energy we excited a beam oscillation using the
fast kicker by a kick of 	0:15 mrad in each plane. The
signal was then measured by a beam position monitor.
A FFT analysis of the stored signal over 2048 turns

yields the tune response function to the orbit deformation.
The tunes of the machine are thus found to be Qx0 ¼
4:3035, Qy0 ¼ 3:2686. For completeness, we repeated

the measurement for several probing error strengths �K2,
whose values are reported in the third column of Table III.
In Figs. 6(a) and 6(c) are shown the tunes measured as a
function of the strength and of the steering angle for the
several sets of probing errors of Table III.
In Figs. 6(b) and 6(d) we show the difference tune

response curves. As expected these curves are linear and
their slopes directly give the quantities xQ

x
1, and xQ

x
2.

Using these quantities, and by inverting Eqs. (20), we
retrieve the strength of the probing sextupolar errors. These
results are summarized in the fifth column of Table III. For
completeness we compute the same quantities via com-
puter simulations and report these results in the fourth
column of Table III. In the last column of Table III we
show the relative errors of the reconstructed probing errors
obtained in the experiment with respect to the originally set
value (3rd column). These results fully validate the NTRM
as we can retrieve the probing errors with a good accuracy.

B. Second proof of principle experiment

For the second experimental validation test, we excited
two probing errors in skew sextupoles as summarized in
Table IV. As the 3rd order errors are now skew, a tune
response is expected for vertical closed orbit deformation.
For this measurement we measured the tune in the vertical
plane to test the NTRM by measuring yQ

y
t .

The experimental setup is the same as for the first
experiment, and the strength of the skew probing errors,
limited by hardware constraints, is shown in Table V. In

TABLE II. Elements of SIS18 used for the first proof of
principle experiment.

t l
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FIG. 5. (Color) SIS18 layout and magnet and steerers used for
the proof of principle experiment.

TABLE III. Additional strength applied in the normal sextupoles and retrieved values via NTRM.

Setting l �K2 [m�2] �10�2 Simulation [m�2] �10�2 Experiment [m�2] �10�2 Relative error %

S1 1 �2 �1:999 �1:797 �10:5
2 1 1.001 1.018 �1:8

S2 1 �4 �3:998 �4:133 3.3

2 2 2.002 1.546 �22:7

S3 1 �8 �7:995 �7:609 �4:9
2 4 4.007 3.902 �2:5

S4 1 5 5.008 4.971 �0:6
2 �3 �2:997 �2:739 �8:7
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Figs. 7(a) and 7(c) we show the tune response curves for
these two probing errors. The parabolic behavior can be
explained by Eqs. (18) and (20). In fact, we performed the
measurements by keeping the chromaticity corrected in
order to avoid a fast decoherence of the kicked beam.
This is obtained by powering 12 sextupoles, and as the
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FIG. 6. (Color) Measured tune response for several strengths of
the normal error deforming the closed orbit with the first steerer
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quantities are obtained varying the second steerer.

TABLE IV. Elements of SIS18 used for the second proof of
principle experiment.
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the skew error deforming the closed orbit with the first steerer (a)
and differential tune response (b). In (c) and (d) the same
quantities were obtained varying the second steerer.
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closed orbit is deformed vertically in this measurement, the
normal sextupoles feed-down a linear coupling error as
shown in the example of Eqs. (15) and (16). In terms of the
equations of NTRM, Eqs. (18) and (20), this is equivalent
to the excitation of the terms yQ

xx
ti , and yQ

yy
ti even if natural

octupolar errors are absent [the terms yQ
xx
ti , and yQ

yy
ti are

not explicitly written in Eqs. (20), but their form is the

same provided that ~Kx
l ,

~Kx
lq, ~J

x
lq are substituted with

~Ky
l ,

~Ky
lq,

~J y
lq]. Note that from Eqs. (20) the terms xQ

xx
ti are

excited also in the first proof of principle experiment, but
from Figs. 6(a) and 6(c) we see only a very weak trace of a
parabolic pattern, hence we conclude that the terms

K2lK2q
~Kx
lq as well as K3l are small (not surprisingly as

in SIS18 there are not octupoles and error octupoles are
typically small). Contrary to the small effect produced by
the normal quadrupole component errors, the effect of the
induced linear coupling is stronger: we checked this by

inspecting the matrix ~J y
lq, which has elements larger than

the elements of ~Ky
lq. This property of the lattice is the

source of the tune response found here. The explicit form

of the ~Kx
l ,

~Kx
lq, ~J x

lq, and
~Ky
l ,

~Ky
lq,

~J y
lq is given in the

Appendix. Note, however, that the difference tune response
curves in Figs. 7(b) and 7(d) exhibit only a linear pattern as
expected. In fact, the difference of the tunes depends only
on the extra probing errors, which are two small skew
sextupoles of strength as in Table V. The application of
NTRM gives the results summarized in Table V (fifth
column). We notice that the reconstruction is less accurate
here than in the first experiment, but the probing errors
used are very small (because of hardware limitations). In
the setting S2 we find that the reconstruction gives 45%
error with respect to the original set value for one of the
two skew sextupoles. It cannot be excluded that a larger
than assumed discrepancy between lattice model and real
lattice is responsible for this large error. Further investiga-
tion of this issue is needed.

V. CONCLUSION AND OUTLOOK

In this paper we have presented a method for measuring
nonlinear components in a circular accelerator. The theo-
retical basis is discussed and a proof of principle experi-
ment is performed. Our numerical examples show that the
reconstruction of sextupolar and octupolar errors is suffi-
ciently accurate to be used in experiments. In the experi-

mental tests we found that the reconstruction accuracy is in
most of the cases better than 10% for normal sextupolar
errors, and better than 15% for skew sextupolar errors. The
discussion on the origin of some large error is left to future
work, where we will repeat these measurements in better
experimental condition. The good reconstruction of the
nonlinear errors in the majority of the experimental tests,
the good results in numerical examples, as well as the
simple foundation of the theoretical approach allow us to
conclude that this method can be applied to large accel-
erators provided that the linear optics has been studied and
modeled before. Clearly, the NTRM method is affected by
the accuracy of the tune measurements, therefore it is
unlikely that this method can be applied to errors of order
higher than the 4th, as the tune accuracy required would
exceed 10�6. It is planned to further test this method at GSI
for a larger set of controlled probing errors and eventually
apply it to the measurement of the inherent random non-
linear errors.
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APPENDIX A

In order to predict the oscillation frequencies of a par-
ticle around the closed orbit, the one-turn map MT has to
be found. In the particular circumstance of a lattice with
deformed closed orbit, the linear lattice will be composed
by a sequence of 4� 4 linear (decoupled) transfer maps
M�

l , where

M �
l ¼

M�
xl 0
0 M�

yl

� �
; (A1)

alternated by feed-down induced linear errors�l. The 2�
2 matrices M�

xl, M
�
yl, are the transport maps between the

linear errors �l. The index l is enumerating the sequence
of matrices and is not meant as matrix component (hence
the symbol is in bold). The most general form of the lth
linear error can be written in matrix form as

� l ¼ Iþ El; (A2)

where I is the 4� 4 identity matrix and

TABLE V. Additional strength applied in the skew sextupoles and retrieved value via NTRM.

Setting l �J2 [m�2] �10�3 Simulation [m�2] �10�3 Experiment [m�2] �10�3 Relative error %

S1 1 8.32 8.35 7.13 �14:6
2 8.32 8.35 7.29 �12:7

S2 1 8.32 8.35 8.76 5.2

2 �8:32 �8:35 �4:52 �45:6
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E l ¼ �Kl Jl
Jl Kl

� �
;

with Kl, Jl the 2� 2 matrices

K l ¼ 0 0
~kl 0

� �
; Jl ¼ 0 0

~jl 0

� �
:

The terms ~kl, ~jl are the strength of the feed-down induced
linear errors obtained in Eqs. (14). The index l refers to the
location of the nonlinear errors. From the point of view of
the linear optics the accelerator lattice, including the
feed-down induced linear errors, is now composed of the
sequence of linear objects M�

1;�1;M
�
2;�2;M

�
3;

�3; . . . ;M
�
Nl
;�Nl

, and the one-turn map is then obtained

as

M T ¼ YNl
l¼1

�lM
�
l ¼ �Nl

M�
Nl

. . .�2M
�
2�1M

�
1: (A3)

By substituting Eq. (A2) into Eq. (A3) we obtain an
expansion of the one-turn map MT, namely

M T ¼ M�
T þ �ð1ÞM� þ �ð2ÞM� þOð3Þ; (A4)

where

�ð1ÞM� ¼ XNl
l¼1

�MlElMl;

�ð2ÞM� ¼ X
l>j

�MlElM½lj�EjMj:

(A5)

In Eq. (A4) the matrix M�
T is the 4� 4 unperturbed one-

turn map M�
T ¼ QNl

l¼1 M
�
l which we can write as

M �
T ¼ Mx 0

0 My

� �
; (A6)

whereMx ¼
QNl
l¼1 M

�
xl,My ¼

QNl
l¼1 M

�
yl. In Eqs. (A5) we

also define Ml ¼
Q
l
i¼1 M

�
i , and

�Ml ¼
QNl
i¼lþ1 M

�
i as the

two transport matrices between the error El and therefore
�MlMl ¼ M�

T. Consistently Mxl ¼ Q
l
i¼1 M

�
xi,

�Mxl ¼QNl
i¼lþ1 M

�
xi, and Myl ¼ Q

l
i¼1 M

�
yi,

�Myl ¼ QNl
i¼lþ1 M

�
yi.

The matrix M½lj� which describe the relation between the

linear error El, and Ej is defined as M½lj� ¼
Q
l
i¼jþ1 M

�
i .

Again Mx½lj� ¼ Q
l
i¼jþ1 M

�
xi, and My½lj� ¼ Q

l
i¼jþ1 M

�
yi.

The symplectic one-turn map, written in blocks, reads

M T ¼ M n
m N

� �
; (A7)

where

M ¼ Mx �
XNl
l¼1

�MxlKlMxl þ
X
l>j

½ �MxlKlMx½lj�KjMxj

þ �MxlJlMy½lj�JjMxj� þOð3Þ;

n ¼ XNl
l¼1

�MxlJlMyl �
X
l>j

½ �MxlKlMx½lj�JjMyj

� �MxlJlMy½lj�KjMyj� þOð3Þ;

m ¼ XNl
l¼1

�MylJlMxl �
X
l>j

½ �MylJlMx½lj�KjMxj

� �MylKlMy½lj�JjMxj� þOð3Þ;

N ¼ My þ
XNl
l¼1

�MylKlMyl þ
X
l>j

½ �MylJlMx½lj�JjMyj

þ �MylKlMy½lj�KjMyj� þOð3Þ:

(A8)

The frequencies of oscillation of a particle around the
deformed closed orbit are obtained by finding the normal
modes of the one-turn map Eq. (A7), which are implicitly
given by �þ ¼ 2 cos½2�ðQx0 þ �QxÞ�, and �� ¼
2 cos½2�ðQy0 þ �QyÞ�, where �Qx, �Qy are the tune-

shifts induced by linear feed-down in the presence of
closed orbit deformation. The quantity�� is given by [22]

2�� ¼ TrðMÞ þ TrðNÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½TrðMÞ � TrðNÞ�2 þ 4jmþ �nj

q
; (A9)

where �n ¼ �SnyS. The symbol y is used for the transpose
of a matrix and S is the symplectic matrix

S ¼ 0 1
�1 0

� �
:

If the natural linear coupling is small such that 4jmþ �nj<
TrðMÞ � TrðNÞ, we can expand Eq. (A9) as

�þ ¼ TrðMÞ þ jmþ �nj
TrðMÞ � TrðNÞ þOð3Þ;

�� ¼ TrðNÞ � jmþ �nj
TrðMÞ � TrðNÞ þOð3Þ:

(A10)

The condition of validity of this expansion is obtained by
keeping the tunes far from the linear coupling so that
TrðMÞ � TrðNÞ and to limit this expansion to a lattice
with small nonlinear errors and perturbed by small closed
orbit deformations so that jmþ �nj is small. Now the traces
can be written as
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TrðMÞ ¼ TrðMxÞ �
XNl
l¼1

Trð �MxlKlMxlÞ

þX
l>j

½Trð �MxlKlMx½lj�KjMxjÞ

þ Trð �MxlJlMy½lj�JjMxjÞ� þOð3Þ;

TrðNÞ ¼ TrðMyÞ þ
XNl
l¼1

Trð �MylKlMylÞ

þX
l>j

½Trð �MylJlMx½lj�JjMyjÞ

þ Trð �MylKlMy½lj�KjMyjÞ� þOð3Þ:

(A11)

It is now straightforward to prove that TrðMÞ ¼
2 cosð2�Qx0Þ, TrðNÞ ¼ 2 cosð2�Qy0Þ and

Trð �MxlKlMxlÞ ¼ sinð2�Qx0Þ�xl~kl;
Trð �MylKlMylÞ ¼ sinð2�Qy0Þ�yl~kl;

(A12)

and

Trð �MxlKlMx½lj�KjMxjÞ ¼�xl�xjSx;½lj� �Sx;½lj�~kl~kj;

Trð �MxlJlMy½lj�JjMxjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xj�yj

q
Sy;½lj� �Sx;½lj�~jl~jj;

Trð �MylJlMx½lj�JjMyjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xj�yj

q
Sx;½lj� �Sy;½lj�~jl~jj;

Trð �MylKlMy½lj�KjMyjÞ ¼�yl�yjSy;½lj� �Sy;½lj�~kl~kj; (A13)

where for sake of simplicity we define Sx;½lj� ¼
sinð� x;½lj�Þ, Sy;½lj� ¼ sinð� y;½lj�Þ, �Sx;½lj� ¼ sinð2�Qx0 �
� x;½lj�Þ, �Sy;½lj� ¼ sinð2�Qy0 � � y;½lj�Þ; with � x;½lj� ¼
 xl �  xj, and � y;½lj� ¼  yl �  yj. Here  xl,  xj,  yl,

 yj are the phase advances at s ¼ sl, s ¼ sj. By substitut-

ing� x;½lj� ! j� x;½lj�j, and � y;½lj� ! j� y;½lj�j, we sym-

metrize Sx;½lj�, �Sx;½lj�, Sy;½lj�, �Sy;½lj� for the exchange of

indexes l with j, i.e., we find Sx;½lj� ¼ Sx;½jl�, and �Sx;½lj� ¼
�Sx;½jl�. Therefore we can conveniently drop the condition

l > j in Eqs. (A11) and write

TrðMÞ ¼ 2 cosð2�Qx0Þ � sinð2�Qx0Þ
XNl
l¼1

�xl~kl

þ 1

2

XNl
l;j¼1

½�xl�xjSx;½lj� �Sx;½lj�~kl~kj

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xj�yj

q
Sy;½lj� �Sx;½lj�~jl~jj� þOð3Þ;

TrðNÞ ¼ 2 cosð2�Qy0Þ þ sinð2�Qy0Þ
XNl
l¼1

�yl~kl

þ 1

2

XNl
l;j¼1

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xj�yj

q
Sx;½lj� �Sy;½lj�~jl~jj

þ �yl�yjSy;½lj� �Sy;½lj�~kl~kj� þOð3Þ:

(A14)

All these findings are summarized in the following formu-
las:

�þ ¼ 2 cosð2�Qx0Þ � sinð2�Qx0Þ
XNl
l¼1

�xl~kl

þ 1

2

XNl
l;j¼1

½�xl�xjSx;½lj� �Sx;½lj�~kl~kj

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xj�yj

q
Sy;½lj� �Sx;½lj�~jl~jj�

þ jmþ �nj
2½cosð2�Qx0Þ � cosð2�Qy0Þ� þOð3Þ; (A15)

and

�� ¼ 2 cosð2�Qy0Þ þ sinð2�Qy0Þ
XNl
l¼1

�yl~kl

þ 1

2

XNl
l;j¼1

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xj�yj

q
Sx;½lj� �Sy;½lj�~jl~jj

þ �yl�yjSy;½lj� �Sy;½lj�~kl~kj�

� jmþ �nj
2½cosð2�Qx0Þ � cosð2�Qy0Þ� þOð3Þ: (A16)

1. Effect of the induced linear coupling

We calculate in this section the term jmþ �nj present in
Eqs. (A10). From Eqs. (A8) we find

n¼XNl
l¼1

�MxlJlMyl þOð2Þ; m¼XNl
l¼1

�MylJlMxl þOð2Þ:

(A17)

In order to compute the normal modes we first compute
mþ �n, which reads

m þ �n ¼ XNl
l¼1

½ �MylJlMxl � Sð �MxlJlMylÞyS� þOð2Þ:

(A18)

For the first term in the square bracket we use the decom-
position

�M ylJlMxl ¼ Ty
�RylT

�1
yl JlTxlRxlT

�1
x ;

with

T x=y ¼
ffiffiffiffiffiffiffiffiffiffi
�x=y

p
0

� �x=yffiffiffiffiffiffiffi
�x=y

p 1ffiffiffiffiffiffiffi
�x=y

p
0
@

1
A;

Txl=yl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�xl=yl

p
0

� �xl=ylffiffiffiffiffiffiffiffiffi
�xl=yl

p 1ffiffiffiffiffiffiffiffiffi
�xl=yl

p
0
@

1
A;

and �Ryl is a rotation of 2�Qy0 �  yl; Rxl is a rotation of

 xl. The term T�1
yl JlTxl becomes
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T�1
yl JlTxl ¼ 0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�xl�yl
p

~jl 0

� �
¼ CI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl

q
~jl;

with

C I ¼ 0 0
1 0

� �
:

That is we find

�M ylJlMxl ¼ Ty
�RylCIRxlT

�1
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl

q
~jl:

For the second term in the square bracket of Eq. (A18)

we make use of the symplecticity of the matrices �Myl,Myl.

We recall that for a generic 2� 2 matrix A the symplec-
ticity implies SAyS ¼ �A�1; also by direct calculation

we find the relation SJyl S ¼ Jl. By using these properties

we find

S ð �MxlJlMylÞyS ¼ M�1
yl Jl

�M�1
xl : (A19)

Following the same technique used for the first term in the
square brackets of Eq. (A18), we now find for Eq. (A19)

M�1
yl Jl

�M�1
xl ¼ TyR

�1
yl CI

�R�1
xl T

�1
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl

q
~jl;

and therefore we can write

m þ �n ¼ Ty

XNl
l¼1

ð �RylCIRxl �R�1
yl CI

�R�1
xl Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl

q
~jlT

�1
x

þOð2Þ:
Now note that �Ryl ¼ RyR

�1
yl , and

�R�1
xl ¼ RxlR

�1
x , where

Rx, Ry are the matrices of the one-turn map (in the

Courant-Snyder reference frame). Therefore we can write

m þ �n ¼ Ty

XNl
l¼1

R�1
yl ðRyCI �CIR

�1
x ÞRxl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl

q
~jlT

�1
x

þOð2Þ;
so that

jmþ �nj ¼
��������XNl
l¼1

R�1
yl ðRyCI �CIR

�1
x ÞRxl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl

q
~jl

��������
þOð3Þ;

as jTxj ¼ jTyj ¼ 1. Finally, defining the matrix

M l ¼ R�1
yl ðRyCI �CIR

�1
x ÞRxl

we write the final form

jmþ �nj ¼ X
lt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xt�yt

q
ðMl

11M
t
22 �Ml

12M
t
21Þ~jl~jt

þOð3Þ:
Note that for a lattice with only one error, for example,
located at s ¼ sl we find jMlj ¼ sinð2�Qx0Þ sinð2�Qy0Þ.

2. Perturbative expansion

In the previous sections we have derived that

�þ ¼ 2 cosð2�Qx0Þ � sinð2�Qx0Þ
XNl
l¼1

�xl~kl

þ XNl
l;q¼1

Kx
lq
~kl~kq þ

XNl
l;q¼1

J x
lq
~jl~jq þOð3Þ;

�� ¼ 2 cosð2�Qy0Þ þ sinð2�Qy0Þ
XNl
l¼1

�yl~kl

þ XNl
l;q¼1

Ky
lq
~kl~kq þ

XNl
l;q¼1

J y
lq
~jl~jq þOð3Þ;

(A20)

where

Kx
lq ¼

1

2
�xl�xqSx;½lq� �Sx;½lq�;

J x
lq ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xq�yq

q
Sy;½lq� �Sx;½lq�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xq�yq

p
2½cosð2�Qx0Þ � cosð2�Qy0Þ�

� ðMl
11M

q
22 �Ml

12M
q
21Þ;

Ky
lq ¼

1

2
�yl�yqSy;½lq� �Sy;½lq�;

J y
lq ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xq�yq

q
Sx;½lq� �Sy;½lq�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl�yl�xq�yq

p
2½cosð2�Qx0Þ � cosð2�Qy0Þ�

� ðMl
11M

q
22 �Ml

12M
q
21Þ:

(A21)

From the properties of Sx;½ij�, �Sx;½ij�, Sy;½ij�, �Sy;½ij�, we

obtain that Kx
lq ¼ Kx

ql, and Ky
lq ¼ Ky

ql. We also find

that Kx
ll ¼ Ky

ll ¼ 0 for l ¼ 1; . . . ; Nl. We now recall

that �þ ¼ 2 cos½2�ðQx0 þ �QxÞ�, and �� ¼
2 cos½2�ðQy0 þ �QyÞ�, and considering the expansion

�Qx ¼
XNl
l¼1

~Kx
l
~kl þ

XNl
l;q¼1

~Kx
lq
~kl~kq þ

XNl
l;q¼1

~J x
lq
~jl~jq þOð3Þ;

�Qy ¼
XNl
l¼1

~Ky
l
~kl þ

XNl
l;q¼1

~Ky
lq
~kl~kq þ

XNl
l;q¼1

~J y
lq
~jl~jq þOð3Þ;

(A22)

by expanding the expression of �� and equating the terms
of each order we find

~Kx
l ¼ þ�xl

4�
;

~Kx
lq ¼ � 1

4� sinð2�Qx0Þ
�
Kx

lq þ
�xl�xq

4
cosð2�Qx0Þ

�
;

~J x
lq ¼ � J x

lq

4� sinð2�Qx0Þ ; (A23)
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and

~Ky
l ¼ ��yl

4�
;

~Ky
lq ¼ � 1

4� sinð2�Qy0Þ
�
Ky

lq þ
�yl�yq

4
cosð2�Qy0Þ

�
;

~J y
lq ¼ � J y

lq

4� sinð2�Qy0Þ : (A24)

AsKx
lq,K

y
lq are symmetric, then ~Kx

lq,
~Ky
lq are symmetric

as well.

3. Nonlinear tune response matrix

Now we characterize ~kl, ~jl by inserting Eqs. (14) into the
expressions (A22) and find the contribution of the non-
linear components to the tune measured with respect the
closed orbit. Explicitly the terms to be computed are

XNl
l¼1

~Kx
l
~kl ¼

XNl
l¼1

~Kx
l

�
K1l þ K2lxol � J2lyol

þ K3l

1

2
ðx2ol � y2olÞ � J3lxolyol

�
; (A25)

and

XNl
l;q¼1

~Kx
lq
~kl~kq ¼

XNl
l;q¼1

~Kx
lq

�
K1lþK2lxol� J2lyol

þK3l

1

2
ðx2ol� y2olÞ� J3lxolyol

�

�
�
K1qþK2qxoq� J2qyoq

þK3q

1

2
ðx2oq� y2oqÞ� J3qxoqyoq

�
; (A26)

and

XNl
l;q¼1

~J x
lq
~jl~jq ¼

XNl
l;q¼1

~J x
lq

�
K2lyol þ J2lxol þ K3lxolyol

þ J3l
1

2
ðx2ol � y2olÞ

�

�
�
K2qyoq þ J2qxoq þ K3qxoqyoq

þ J3q
1

2
ðx2oq � y2oqÞ

�
: (A27)

As the closed orbit at the location of the errors [23] is

xol ¼
XNt
t¼1

Mx
lt�xt; yol ¼

XNt
t¼1

My
lt�yt; (A28)

we can substitute Eqs. (A28) into Eqs. (A25)–(A27), and
find the dependence of �Qx, �Qy from the steerer angle.

We find then

�Qx ¼ xQþXNt
t¼1

ðxQx
t �xt þ xQ

y
t �ytÞ

þ XNt
t;i¼1

ðxQxx
ti �xt�xi þ xQ

yy
ti �yt�yi þ xQ

xy
ti �xt�yiÞ;

(A29)

�Qy ¼ yQþXNt
t¼1

ðyQx
t �xt þ yQ

y
t �ytÞ

þ XNt
t;i¼1

ðyQxx
ti �xt�xi þ yQ

yy
ti �yt�yi þ yQ

xy
ti �xt�yiÞ;

(A30)

where

xQ ¼ XNl
l¼1

K1l
~Kx
l þ

XNl
l;q¼1

K1lK1q
~Kx
lq;

xQ
x
t ¼

XNl
l¼1

K2l
~Kx
lM

x
lt þ

XNl
l;q¼1

K1qK2lð ~Kx
lq þ ~Kx

qlÞMx
lt;

xQ
y
t ¼ �XNl

l¼1

J2l
~Kx
lM

y
lt þ

XNl
l;q¼1

½�K1qJ2lð ~Kx
lq þ ~Kx

qlÞ�My
lt;

xQ
xx
ti ¼ 1

2

XNl
l¼1

K3l
~Kx
lM

x
ltM

x
li

þ 1

2

XNl
l;q¼1

½K1qK3lð ~Kx
lq þ ~Kx

qlÞ�Mx
ltM

x
li

þ XNl
l;q¼1

ðJ2lJ2q ~J x
lq þ K2lK2q

~Kx
lqÞMx

ltM
x
qi;

xQ
yy
ti ¼ � 1

2

XNl
l¼1

K3l
~Kx
lM

y
ltM

y
li

� 1

2

XNl
l;q¼1

½K1qK3lð ~Kx
lq þ ~Kx

qlÞ�My
ltM

y
li

þ XNl
l;q¼1

ðK2lK2q
~J x
lq þ J2lJ2q

~Kx
lqÞMy

ltM
y
qi;

xQ
xy
ti ¼ �XNl

l¼1

J3l
~Kx
lM

x
ltM

y
li

þ XNl
l;q¼1

½�K1qJ3lð ~Kx
lq þ ~Kx

qlÞ�Mx
ltM

y
li

þ XNl
l;q¼1

½J2lK2qð ~J x
lq þ ~J x

qlÞ

� J2qK2lð ~Kx
lq þ ~Kx

qlÞ�Mx
ltM

y
qi: (A31)
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In case K1l are small compared with the sextupolar and
octupolar components, we obtain Eqs. (20). The nonlinear
tune matrix elements for �Qy namely yQ

x
t , yQ

y
t , yQ

xx
tt ,

yQ
yy
tt , yQ

xy
tt are readily obtained from Eqs. (A31) with the

following substitutions: ~Kx
l ! ~Ky

l ,
~Kx
lq ! ~Ky

lq, and
~J x
lq ! ~J y

lq.

Note that the derivation of Eqs. (A31) is based on
Eq. (A1), that is the natural linear coupling terms J1l are
absent, so that the orbit response at the location of the
errors is given by Eqs. (A28). The effect of a small linear
coupling would create in Eqs. (A27), in addition to a
correction in Eq. (A1), small correction terms proportional
to J1lJ1q, J1lK2q, J1lJ2q, J1lK3q, and J1lJ3q, which there-

fore becomes negligible if jJ1lj is smaller than jK2lj, jJ2lj,
jK3lj, jJ3lj. A discussion on a method for correcting the
natural linear coupling and its applications can be found in
Ref. [18].
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