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An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent

transverse beam oscillations in a synchrotron. By observing this driven coherent oscillation, the linear

optical parameters can be directly measured at locations of the beam position monitors. The driven

oscillations induced by an AC dipole will generate a phase space ellipse which differs from that of free

oscillations. If not properly accounted for, this difference can lead to misinterpretations of the actual

optical parameters, for instance, 6% or more in the cases of the Tevatron, RHIC, or LHC. This paper

shows that the effect of an AC dipole on the observed linear optics is identical to that of a thin lens

quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion

produced by an AC dipole becomes easier to interpret. The introduction of this new amplitude function

also helps measurements of the normal Courant-Snyder parameters based on beam position data taken

under the influence of an AC dipole. This new parametrization of driven oscillations is presented and is

used to interpret data taken in the FNAL Tevatron using an AC dipole.
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I. INTRODUCTION

In a modern accelerator, transverse motion of charged
particles is stabilized with linear forces of quadrupole
magnets and, as a result, the particles undergo oscillations
around the ideal trajectory, called betatron oscillations [1].
If observed at one location in an accelerator, the oscilla-
tions are discrete. The betatron tune [2] is the frequency of
such discrete oscillations in units of the revolution fre-
quency. The amplitude of the betatron oscillations at a
location in an accelerator is determined by a parameter
called � function. The relative phase difference of the
betatron oscillations between two locations in an accelera-
tor is called betatron phase advance. If quadrupole magnets
in an accelerator have (gradient) errors, the � function and
betatron phase advance become different from their design
values and performance of the accelerator can be degraded.
One purpose of an AC dipole is to measure the � function
and betatron phase advance and to find such errors.
Individual particles within the beam oscillate incoherently
and we can only observe motion of the beam centroid with
a beam position monitor (BPM). Hence, to observe the
betatron oscillations and measure parameters such as the �
function or the betatron phase advance, coherent oscilla-
tions must be excited (Fig. 1). An AC dipole is a tool to
excite coherent oscillations of the beam [3], much like a
kicker/pinger magnet, but over a longer time period.

An AC dipole excites coherent transverse oscillations
with a sinusoidally oscillating dipole field. It drives the
beam close to the betatron frequency, typically, for several
thousands of revolutions. If the amplitude of its oscillating
magnetic field is adiabatically ramped up and down, it can

produce large coherent oscillations without decoherence or
emittance growth [3]. This property makes it a useful
diagnostic tool of a synchrotron. AC dipoles have been
employed in the BNL AGS and RHIC [3–5], CERN SPS
[6,7], and FNAL Tevatron [8–10]. There is an ongoing
project to develop AC dipoles for LHC as well [11].
When the beam is driven by an AC dipole, its motion is

governed by two driving terms and the influence of the

AC dipole
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FIG. 1. Schematic of incoherent free oscillations (gray) and
excited coherent oscillations (black) of charged particles in the
Tevatron. Because individual particles within the beam oscillate
incoherently, coherent oscillations must be excited to observe the
betatron oscillations and measure parameters such as the �
function. An AC dipole is one of such tools to excite coherent
oscillations of the beam.
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lesser driving termmakes driven oscillations different from
the free oscillations. Although this difference has typically
been ignored in previous analyses [5,12], it could affect
interpretation of the � function more than 12% in a typical
operational condition of the Tevatron.

This paper proceeds as follows. Section II discusses the
two driving terms produced by an AC dipole and presents a
new formulation of driven oscillations which is suited to
simultaneously treat the two driving terms. Section III
discusses the difference between free and driven oscilla-
tions and the influence of this difference on measurements
of the � function, based on an analogy between the driven
motion and motion under the influence of a thin gradient
error [13]. Section IV presents a few examples of the
difference between free and driven oscillations observed
in the Tevatron and explains how to measure the� function
by appropriate analyses of data of driven oscillations.

II. A MODEL OF DRIVEN OSCILLATIONS

A. Two driving terms of an oscillating dipole field

The tune of an AC dipole �acd is defined as the ratio
between the frequencies of the AC dipole facd and the
beam revolution frev: �acd � facd=frev. In the following,
for any tunes, only their fractional parts are considered. For
instance, if facd=frev is larger than one, �acd means the
fractional part of facd=frev. Because the beam sees an AC
dipole only once in a revolution, the beam is driven by a
pair of driving terms with driving tunes �acd and 1� �acd
(cf. Nyquist sampling theorem) [14]. Obviously, the driv-
ing term closer to the machine tune � has a bigger influence
on a particle. Hence, in the following, the driving term
closer to � is called the primary and the other is called the
secondary. A symbol �d is used for the primary driving
tune (Fig. 2):

�d �
�
�acd when j�acd � �j< jð1� �acdÞ � �j
1� �acd when jð1� �acdÞ � �j< j�acd � �j:

(1)

For example, the frequencies of the AC dipole and beam
revolution in the Tevatron are facd ’ 20:5 kHz and frev ’
47:7 kHz and, hence, the tune of the AC dipole is �acd ¼
20:5=47:7 ’ 0:43. Because the machine tune of the
Tevatron is � ’ 0:58, 1� �acd ’ 0:57 is the primary driv-
ing tune and �acd ’ 0:43 is secondary. We note that ma-
chine tunes near 0.5 tend to exaggerate the influence of the
secondary driving term.

The difference between the primary driving tune and the
machine tune, �d � �d � �, is an important parameter of
driven oscillations. As �d ! 0, the influence of the pri-
mary driving term becomes dominant and the secondary
driving term can be ignored. However, a finite tune spread
of the beam can cause beam losses if j�dj is too small
(Fig. 2). In the Tevatron, without a special tune-up, the
limit of j�dj is about 0.005–0.015 to prevent beam losses.

It is often convenient to express the longitudinal position
s within a circular accelerator using the revolution number
n, the circumference C, and a parameter �s in the range
between 0 and C: s ¼ nCþ�s. Here, the reference point
of the longitudinal position s is the location of the AC
dipole and the revolution number n increases by one when
the beam passes the AC dipole. The transverse position of
the beam at s, xðsÞ, can be also written as xðnCþ �sÞ.
Because of its periodic nature, the � function of free
oscillations satisfies �ðsÞ ¼ �ðnCþ �sÞ ¼ �ð�sÞ. The
phase advance of free oscillations from s ¼ 0 to the ob-
servation point,  ðsÞ, satisfies  ðsÞ ¼  ðnCþ�sÞ ¼
2��nþ  ð�sÞ. As shown in [12,15], when the amplitude
of the AC dipole field is constant, the transverse position of
the driven beam at the longitudinal position s ¼ nCþ �s
is given by [16]

xdðnCþ �sÞ ’ �acd
ffiffiffiffiffiffiffiffiffi
�acd

p
4 sin½�ð�acd � �Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�sÞ

q

� cos½2��acdnþ  ð�sÞ þ �ð�acd � �Þ

þ �acd� þ �acd
ffiffiffiffiffiffiffiffiffi
�acd

p
4 sin½�ð1� �acd � �Þ�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�sÞ

q
cos½2�ð1� �acdÞnþ  ð�sÞ

þ �ð1� �acd � �Þ � �acd�; (2)

where �acd is the maximum kick angle of the AC dipole,
�acd is the � function at the location of the AC dipole, and
�acd is the initial phase of the AC dipole field. The reason
we express the longitudinal position as nCþ �s is because
the arguments of the cosines in Eq. (2) undergo discrete
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FIG. 2. The amplitudes of the two modes driven by an AC
dipole. A circulating beam is driven by the two driving terms of
an AC dipole whose driving tunes are �d and 1� �d. Solid and
dashed curves represent the amplitudes of the two modes excited
by these two driving terms for a given machine tune. When the
machine tune is �, beam motion is dominated by the mode of �d
(solid curve). However, the mode of 1� �d (dashed curve)
cannot always be ignored since realizable �d ¼ �d � � is lim-
ited by the tune spread of the beam (shaded area).
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changes at the location of the AC dipole and cannot be
expressed with continuous functions of s. The two terms in
Eq. (2) are symmetric between �acd and 1� �acd and
represent the influences of the two driving terms. To quan-
tify the effect of the secondary driving term, it is useful to
define a parameter to describe the ratio of the amplitudes of
the primary and secondary modes in Eq. (2):

�d � sin½�ð�d � �Þ�
sin½�ð1� �d � �Þ� ¼

sinð��dÞ
sinð2��þ ��dÞ : (3)

This parameter �d depends on not only �d but also the
machine tune �. When j�dj ¼ 0:01, j�dj ’ 0:06 for the
Tevatron (� ’ 0:58) and about half as much for the RHIC
and LHC (� ’ 0:7 and 0.3).

B. A new parametrization of driven betatron
oscillations

We note that Eq. (2) can be written in the following
compact form which includes the influences of the both
driving terms and is expressed with continuous functions
of s:

xdðsÞ ¼ Ad

ffiffiffiffiffiffiffiffiffiffiffiffi
�dðsÞ

q
cos½ dðsÞ � �acd�: (4)

Here, Ad is a constant of motion with dimensions

ðlengthÞ1=2:

Ad � �acd
4 sinð��dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2

dÞ�acd

q
; (5)

and the sign in front of the phase �acd is positive when
�d ¼ �acd and negative when �d ¼ 1� �acd. The function
�dðsÞ is the newly defined amplitude function of driven
oscillations:

�dðsÞ � 1þ �2
d � 2�d cos½2 ðsÞ � 2���

1� �2
d

�ðsÞ (6)

and  dðsÞ is the newly defined phase advance of driven
oscillations from s ¼ 0 to the observation point:

 dðsÞ �
Z s

0

d�s

�dð �sÞ : (7)

A relation between the phase advances of free and driven
oscillations,  ðsÞ and  dðsÞ, is given by

tan½ dðsÞ � ��d� ¼ 1þ �d
1� �d

tan½ ðsÞ � ���

¼ tanð��dÞ
tanð��Þ tan½ ðsÞ � ���: (8)

When the longitudinal position is given by s ¼ nCþ�s,
 dðsÞ satisfies  dðsÞ ¼  dðnCþ�sÞ ¼ 2��dnþ  dð�sÞ.

In this way, driven betatron oscillations can be parame-
trized in the same manner as free betatron oscillations
when the influences of the two driving terms are included.
The difference between driven and free oscillations is

characterized by the new amplitude function �dðsÞ and
phase advance  dðsÞ. In the limit of �d ! �, �d approaches
zero and �dðsÞ and  dðsÞ converge to �ðsÞ and  ðsÞ.
Figure 3 shows the numerical calculations of �dðsÞ=�ðsÞ
based on Eq. (6).

III. DIFFERENCE BETWEEN FREE AND DRIVEN
BETATRON OSCILLATIONS

Measurement of the � function using an AC dipole
requires a careful understanding of the difference between
the amplitude functions of free and driven oscillations,
�ðsÞ and �dðsÞ. For free betatron oscillations, the machine
tune � and amplitude function �ðsÞ are correlated, and a
change of the tune induces a change of the amplitude
function and vice versa. The correlation between the os-
cillation tune and the amplitude function also applies to
driven oscillations. When the beam is driven, the oscilla-
tion tune is the primary driving tune �d which is different
from the machine tune �. The amplitude function �dðsÞ
also differs from �ðsÞ for driven oscillations. The relation
between �d ¼ �d � � and�dðsÞ=�ðsÞ is formally the same
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FIG. 3. Ratio between the amplitude functions of driven and
free oscillations, �dðsÞ and �ðsÞ. Based on Eq. (6), �dðsÞ=�ðsÞ is
calculated for different values of �d ¼ �d � � and  ðsÞ. When
� ¼ 0:58 like the Tevatron, compared to when � ¼ 0:3 like the
RHIC and LHC, �dðsÞ=�ðsÞ deviates larger from the unity and
has stronger nonlinearity because of the larger influence of the
secondary driving term.
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as the tune shift and the change of the � function produced
by a thin gradient error. This analogy helps to interpret data
of driven oscillations.

A. Review of a thin gradient error

When an accelerator has a gradient error, its machine
tune and � function change [1]. We assume there is a thin
gradient error with gradient B1 and length ‘ at a longitu-
dinal position �s ¼ 0 within a synchrotron and the gra-
dient error changes the machine tune and the amplitude
function to �q and �qðsÞ. Then, the equation of motion is

given by

x00ðsÞ þ KðsÞxðsÞ ¼ �qerr
� X1
n¼�1

�ðs� CnÞ
�
xðsÞ: (9)

Here, the prime denotes the derivative with respect to the
longitudinal position s, KðsÞ is the effective focusing func-
tion, qerr ¼ B1‘=ðB�Þ is the effective strength of the gra-
dient error, (B�) is the magnetic rigidity, and �ðsÞ is the
Dirac delta function. As in the previous section, n is the
revolution number and we choose the location of the
gradient error as the reference point of the longitudinal
position s.

By comparing the single turn transfer matrices with and
without the gradient error, we get the following two equa-
tions for �q and �qðsÞ:

qerr ¼ 2
cosð2��Þ � cosð2��qÞ

�err sinð2��Þ (10)

�qðsÞ ¼ sinð2��Þ�qerr�err sinð ðsÞÞ sin½2��� ðsÞ�
sinð2��qÞ �ðsÞ;

(11)

where �err is the � function at the location of the gradient
error, �q � �q � � is the tune shift caused by the gradient

error. As in the previous section,  ðsÞ is the phase advance
of free oscillations from s ¼ 0 to the observation point
when the accelerator does not have this gradient error. By
substituting the first equation into the second, �qðsÞ is

given by

�qðsÞ ¼
1þ �2

q � 2�q cos½2 ðsÞ � 2���
1� �2

q

�ðsÞ: (12)

Here, �q is defined as a parameter with a similar form to

�d:

�q �
sinð��qÞ

sinð2��þ ��qÞ : (13)

When �q is small, the new and original amplitude func-

tions satisfy

�qðsÞ � �ðsÞ
�ðsÞ ’ �2�q cos½2 ðsÞ � 2���: (14)

This quantity behaves like a standing wave in the synchro-
tron and is called� beat or�wave. The amplitude of the�
beat is 2j�qj at lowest order.
It may be seen from Eqs. (6) and (12) that the relation

between �dðsÞ and �d for driven oscillations is similar to
the relation between �qðsÞ and �q when there is a thin

gradient error. Hence, relative to�ðsÞ, we expect�dðsÞwill
beat with amplitude of 2j�dj.

B. Analogy between an AC dipole and gradient error

This section explains why an oscillating dipole field
changes the observed phase space motion, much like a
gradient error. When driven by the AC dipole, the equation
of motion is given by

x00ðsÞþKðsÞxðsÞ ¼��acd
X
n

cosð2��dn��acdÞ�ðs�CnÞ:

(15)

The right-hand side describes the kicks by the AC dipole
located at �s ¼ 0. The summation of the revolution num-
ber n runs over the time period when the amplitude of the
AC dipole field is constant and the sign in front of the
initial phase �acd follows the same convention as Eq. (4).
Equation (4) is the particular solution of this inhomoge-
neous Hill’s equation when the amplitude of the AC dipole
field is adiabatically ramped up to a constant amplitude.
From Eq. (4), the transverse position of the driven beam at
the location of the AC dipole, �s ¼ 0, is given by

xdðCnÞ ¼ Ad

ffiffiffiffiffiffiffiffiffiffiffiffi
�dð0Þ

q
cosð2��dn� �acdÞ: (16)

We note that the phases in Eqs. (15) and (16) are the same.
Hence, the AC dipole field is in sync with the transverse
position of driven oscillations when the beam passes the
AC dipole. The situation is analogous to a quadrupole
magnet whose field is proportional to a transverse position.
Because xdðsÞ is the solution of Eq. (15), it formally

satisfies the following equation:

x00dðsÞ þ KðsÞxdðsÞ ¼ �qacd
�X

n

�ðs� CnÞ
�
xdðsÞ: (17)

Here, Eq. (16) is used to rewrite cosð2��dn� �acdÞ with
xdðsÞ. The parameter qacd is a constant analogous to the
effective strength of a gradient error qerr:

qacd � �acd

Ad
ffiffiffiffiffiffiffiffiffiffiffiffi
�dð0Þ

p ¼ 2
cosð2��Þ � cosð2��dÞ

�acd sinð2��Þ : (18)

Equation (17) has exactly the same form as the equation of
motion when there is a thin gradient error, Eq. (9). By
comparing Eqs. (9), (10), (17), and (18), it is trivial that the
relation between �dðsÞ and �d is the same as the relation
between �qðsÞ and �q.
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C. Ring-wide behavior of the amplitude function �dðsÞ
When turn-by-turn beam positions are recorded by

BPM’s for free oscillations, the relative � function can
be determined by simply comparing the square of the
oscillation amplitudes. If the same analysis is applied to
turn-by-turn data of driven oscillations, what is calculated
is �dðsÞ instead of �ðsÞ. From the analogy between an AC
dipole and a gradient error, the normalized difference
between �dðsÞ and �ðsÞ changes sinusoidally with BPM
location:

�dðsÞ � �ðsÞ
�ðsÞ ’ �2�d cos½2 ðsÞ � 2���: (19)

This beating of �dðsÞ relative to �ðsÞ cannot be distin-
guished from the � beat caused by gradient errors. When
the magnitude of the parameter �d is 0.01, the peak value
of the beating 2j�dj is about 12% for the Tevatron and 6%
for the RHIC and LHC [17]. Figure 4 shows�ðsÞ and�dðsÞ
in the case of �d ¼ �0:01 in the Tevatron.

As explained in the following section, by using multiple
data sets of driven oscillations, the influences of the pri-
mary and secondary driving terms can be separated and the
� function of free oscillations can be measured without
depending on a machine model.

IV. EFFECT ON �-FUNCTION MEASUREMENT

A. Rotation of the phase space ellipse

The previous section discussed the amplitude function
of driven oscillations �dðsÞ. Parameters corresponding to
the other Courant-Snyder parameters 	ðsÞ and 
ðsÞ [1] can
be also defined for driven oscillations:

	dðsÞ � � 1

2

d�dðsÞ
ds

(20)


dðsÞ � 1þ 	dðsÞ2
�dðsÞ : (21)

The explicit forms of these parameters are given by

	dðsÞ ¼ 1þ �2
d � 2�d cos½2 ðsÞ � 2���

1� �2
d

	ðsÞ

� 2�d sin½2 ðsÞ � 2���
1� �2

d

(22)

and


dðsÞ ¼ 1þ �2
d þ 2�d cosf2 ðsÞ � 2��þ 2 arctan½	ðsÞ�g

1� �2
d

� 
ðsÞ: (23)

When �dðsÞ, 	dðsÞ, 
dðsÞ, and Ad are defined in this way,
they satisfy the Courant-Snyder invariance:

A2
d ¼ 
dðsÞxdðsÞ2 þ 2	dðsÞxdðsÞx0dðsÞ þ �dðsÞx0dðsÞ2:

(24)

Hence, the turn-by-turn position and angle of driven oscil-
lations form an ellipse in phase space, just like free oscil-
lations. The Courant-Snyder-like parameters �dðsÞ, 	dðsÞ,
and 
dðsÞ depend on �d, so the area and shape of the phase
space ellipse changes with �d for driven oscillations.
Because �dðsÞ, 	dðsÞ, and 
dðsÞ converge into �ðsÞ,
	ðsÞ, and 
ðsÞ in the limit of �d ! 0, this change of the
shape is due to the secondary driving term.
In two collision straight sections of the Tevatron there

are pairs of BPM’s with no magnetic element in-between.
The beam travels along straight lines between these pairs
and, hence, both position and angle can be directly mea-
sured at these locations. Figure 5 shows the phase space
ellipses of driven oscillations measured with a pair of
BPM’s at an interaction point. In these measurements, �d
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FIG. 4. The amplitude functions of free and driven oscillations,
�ðsÞ (solid) and �dðsÞ when �d ¼ �0:01 (dashed), in the
Tevatron. As expected, �dðsÞ shows beating with 10%–15%
peak height relative to �ðsÞ. From multiple data sets of driven
oscillations, the amplitude function of free oscillations, �ðsÞ, can
be extrapolated.
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FIG. 5. Phase space ellipses of driven oscillations at an inter-
action point in the Tevatron (B0) when �d ¼ �0:02 and �0:04.
Because the Courant-Snyder-like parameters of driven oscilla-
tions �dðsÞ, 	dðsÞ, and 
dðsÞ depend on �d, not only the areas
but also the shapes of the ellipses are different.
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is set to �0:04 and �0:02, while the kick angle of the AC
dipole �acd is kept the same. As expected, the shape of the
ellipse changes with �d.

By fitting Eq. (24) to an ellipse in Fig. 5, its area �A2
d

and the parameters �dðsÞ, 	dðsÞ, and 
dðsÞ can be deter-
mined. Figure 6 shows �dðsÞ determined from the fits to
the ellipses in Fig. 5 (and three more). The curve in the
figure is the fit of Eq. (6) to the data with parameters �ðsÞ
and  ðsÞ. We can see the model of Eq. (6) fits well to the
data. In the figure, the true � function at this location is
obtained by extrapolation of�dðsÞ to the case of �d ¼ 0. In
the Tevatron, the � function at the two interaction points
can be measured in this way.

B. Asymmetric amplitude response

When the influence of the secondary driving term is
negligible, by ignoring the smaller term of Eq. (2) or taking
the limit of �d ! 0 in Eqs. (5) and (6), the amplitude of
driven oscillations is approximated by

að0Þd ðsÞ � ½jAdj
ffiffiffiffiffiffiffiffiffiffiffiffi
�dðsÞ

q
��d!0 ¼ �acd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�acd�ðsÞ

p
4 sinð�j�d � �jÞ : (25)

In this limit, the amplitude depends on the primary driving
tune �d only through sinð�j�d � �jÞ and is symmetric
around the machine tune �. From Eqs. (5) and (6), the
amplitude including the influence of the secondary driving
term adðsÞ is given by

adðsÞ � jAdj
ffiffiffiffiffiffiffiffiffiffiffiffi
�dðsÞ

q

¼ að0Þd ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

d � 2�d cos½2 ðsÞ � 2���
q

: (26)

Here, adðsÞ depends on �d through the factor f1þ �2
d �

2�d cos½2 ðsÞ � 2���g1=2 as well. To the first order of
�d � �,

adðsÞ ’ að0Þd ðsÞ
�
1� � cos½2 ðsÞ � 2���

sinð2��Þ ð�d � �Þ
�
:

(27)

Hence, the secondary driving term makes the �d depen-
dence of the amplitude asymmetric around the machine
tune �. Because of the factor cos½2 ðsÞ � 2���, the mag-
nitude of this asymmetry depends on a location in a
synchrotron.
Figure 7 shows the relation between the amplitude of

driven oscillations and �d at three BPM locations in
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the Tevatron. The dashed and solid curves represent the fits
of Eqs. (25) and (26) to the data. The fit parameters are

�acd½�acd�ðsÞ�1=2 and � for Eq. (25) and �acd½�acd�ðsÞ�1=2,
�, and  ðsÞ for Eq. (26). At two locations where
j cos½2 ðsÞ � 2���j is close to one, the asymmetries
around the machine tune (� ’ 0:5785) are large and the
fits of Eq. (25), which ignores the secondary driving term,
is not well matched. From the fit of Eq. (26), the� function
at each BPM location is determined up to a constant

�acdð�acdÞ1=2. This constant can be determined from the
analysis in the previous section which uses a pair of BPM’s
in a collision straight section. By combining these two
types of analyses, the ring-wide � function can be directly
measured from multiple data sets of driven oscillations
with different �d.

From the fits in Fig. 7, the machine tune � is determined
at each BPM location. Figure 8 shows the machine tunes
determined from the fits at all the BPM locations. The solid
curve includes the influence of the secondary driving term
and the dashed curve does not. Because the machine tune �
is a global parameter of an accelerator, the model including
the two modes works better. The residual variation of the
determined tunes in the analysis of the two modes model
can be contributed by BPM noises and other systematic
effects.

V. CONCLUSION

Under the influence of a sinusoidally oscillating mag-
netic field of an AC dipole, the beam is driven by two
driving terms. As a result, the phase space trajectory of
driven betatron oscillations is different from that of free
betatron oscillations. If this difference is simply ignored,
interpretations of the linear optical parameters based on
data of driven oscillations can have errors depending on the
driving tune and the machine tune. In this paper, we show
that this change of the phase space trajectory is formally

identical to the change induced by a gradient error at the
same location as the AC dipole. Just as a gradient error
changes the amplitude function and phase advance, the
expression of driven oscillations can be simplified by in-
troducing a new amplitude function and phase advance.
This paper presents a few examples of the difference

between free and driven oscillations as observed in the
Tevatron. It also shows that the new parametrization of
driven oscillations clarifies the interpretation of turn-by-
turn data of driven oscillations.
With this knowledge, very precise and direct measure-

ments of the true linear optical parameters in a synchrotron
can be obtained quickly without degradation of the beam
quality, using a small number of data sets obtained at
different frequencies of the AC dipole. This technique
will be especially useful in the LHC, for example, to adjust
the beam envelope at critical locations such as at beam
collimation devices.
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